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a b s t r a c t

We present a geometrical model of the functional architecture of the primary visual cortex. In particular
we describe the geometric structure of connections found both in neurophysiological and psychophysical
experiments, modeling both co-axial and trans-axial excitatory connections. The model shows what
could be the deep structure for both boundary and figure completion and for morphological structures
such as the medial axis of a shape.

� 2009 Published by Elsevier Ltd.

1. Introduction

It is well known (see Hubel, 1988), that the first layers of the vi-
sual cortex present a retinotopic and hypercolumnar structure. The
retinotopy means that there exist mappings from the retina to the
cortical layers which preserve retinal topography, while the colum-
nar and hypercolumnar structure organizes the cells of V1 in col-
umns corresponding to parameters like orientation, ocular
dominance and color.

Recently, this structure has been described with instruments of
differential geometry. Hoffman (1989) and Petitot (1994) first
modeled the hypercolumnar structure as a fiber bundle. From this
point of view the cortex is described as a geometrical structure
V ¼ M � P, where M describes the two-dimensional retinal plane,
while the secondary variables are described by the fiber P over
each point. The structure of the hypercolumns characterizes differ-
ent families of cells. After that it has been proposed in Citti and
Sarti (2006) to model the structure of the odd simple cells in a con-
tact structure in the Lie group of roto-translation, while in Sarti
et al. (2008) the set of even complex was described as a symplectic
space taking into account scale. Finally Arcozzi et al. (preprint) en-
dowed this space with the structure of an hyperbolic space, which
better outline the relation between odd and even simple cells.
Other models based on differential geometry in higher dimensional
spaces are due to Franken et al. (2007) and Shahar and Zucker
(2003).

In this review paper we adopt a general point of view, giving
a description of these family of cells in an unitary way, outlining
the fact that the mathematical structure which model the differ-
ent layers of the cortex is the same in these different examples,
and the functionality of cells are implemented through analo-
gous neural mechanisms. However, since the dimensionality of
the fiber is different in each of the specific examples considered,
each family will be responsible of a different completion
phenomenon.

We start from the well known observation that the set of simple
cells receptive profiles (RPs) is generated by the action of a group of
the visual plane on a Gabor mother function. The group will be
three- or four-dimensional, depending on the group of cells we
are describing. In particular, in case of the odd family of cells, we
assume that all RP’s are obtained by rotations and translations,
while in the even case we consider rotations, dilations and transla-
tions. Each hypercolumn of simple cells RP’s, defined at a retinal
point ðx; yÞ, forms a subgroup of the considered group (respec-
tively, of rotations and translations in the two examples). This
structure is identically repeated for every point of the retina, and
can therefore be considered as a fiber of the cortical principal bun-
dle. Then we show that the neural process of maxima selection due
to intracortical short range inhibitory connections internal to
hypercolumns selects in each case the section of the fibration lift-
ing boundaries in M to curves in V1 and whole figures in M to sur-
faces in V1.

From the neurophysiological point of view there is evidence of
connections between simple cells belonging to different hypercol-
umns. These neural connections are what neurophysiologists call
long range horizontal connections. They implement what geome-
ters call a connection operating a parallel transport between fibers
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of a bundle.1 This latter connection (in the geometric sense) can be
expressed in terms of differential part structure, and deeply depends
on the dimension of the space.

In the case of odd simple cells, as in Petitot and Tondut (1999)
we show the total space V of the fiber bundle modeling V1 is
equipped with a natural contact structure neurally implemented
by long range horizontal connections. Integral curves of the natural
contact structure in the three-dimensional fiber bundle V is a
mathematical representation of theassociation field of Field, Hayes
and Hess. Due to the fundamental contact structure (making V1
an implementation of the space of 1-jets of curves in M) contour
integration can be performed.

In the case of even simple cells, where, as in Sarti et al.
(2008) and Arcozzi et al. (preprint) the scale dimension is added,
we obtain a four-dimensional structure, which will be consid-
ered an hyperbolic structure. In our model here, the integral
curves of the four-dimensional structure model more finely the
connectivity pattern between simple cells in V1, as observed
by electrophysiological experiments. In other words the struc-
ture introduces a system of natural coordinates in the four-
dimensional space C2 which is implemented by neural
connectivity.2

The proposed meaning of the scale variable is the distance from
the boundaries of the image. Hence, at scale r ¼ 0; we recover the
boundaries, only described by the orientation, and we reduce to
the previous three-dimensional contact structure. The filtering in
the hyperbolic space realizes the well-known propagation of the
boundary which gives structure to the interior of the image. The
singularities of the propagation generate the so called ?cut locus?
or symmetry axis of the shape.

The paper is organized as follows:

� In Section 2 we geometrically model the set of receptive profiles,
the hypercolumnar structure and the maximum selection over
the fiber.

� In Section 3 we restrict ourselves to the set of odd simple cells,
which can be described using only the orientation as an
engrafted variable. In particular we outline how the action of
this family of cells is responsible for the boundary completion.

� In Section 4 we model the set of even simple cells, responsible
for the completion of interior as a hyperbolic space.

2. The receptive profiles

2.1. The set of receptive profiles

The visual plane M will be identified with the plane R2 endowed
with coordinates ðx; yÞ and a fixed frame ð@x; @yÞ. This is of course a
wild idealization and presupposes the choice of an arbitrary global
origin O ¼ ð0;0Þ.

When a visual stimulus I of intensity Iðx; yÞ : M � R2 ! Rþ acti-
vates the retinal layer of photoreceptors (identified with the visual
field) M � R2, the cells centered at every point ðx; yÞ of M process in
parallel the retinal stimulus with their receptive profile (RP) Wðx;yÞ,
which is defined on M.

Each RP acting on a point ðx; yÞ depends upon a preferred direc-
tion h and a scale r, and it has been observed experimentally that
the set of simple cells RPs is obtained via translations to the point
ðx; yÞ, rotations of angle h, and dilations of scale r from a unique pro-
file, of Gabor type.3 This means that there does exist a mother profile
W0ðn;gÞ from which all the observed profiles can be deduced by
transformation.

A good formula for W0 seems to be

W0ðn;gÞ ¼ e�ðn
2þg2Þe2ig: ð1Þ

In Fig. 1 we represent its odd and even parts which are, respec-
tively, the imaginary and the real parts.

It has to be noted that the RPs Wðx;yÞ are localized in a neighbor-
hood of the point ðx; yÞ. Hence, they will be expressed in local coor-
dinates, around the point ðx; yÞ, obtained by rotation and dilation of
the initial ones. Any vector will then have two representations:
coordinates ð~n; ~gÞ in the global frame centered at (0,0), and ðn;gÞ
in the local frame centered at ðx; yÞ:

n ¼ 1
r ðð~n� xÞ cos hþ ð~g� yÞ sin hÞ;

g ¼ 1
r ð�ð~n� xÞ sin hþ ð~g� yÞ cos hÞ:

(
ð2Þ

The factor 1
r means that, when r! 0, one zooms in the neighbor-

hood of ðx; yÞ. Therefore all the observed profiles can be modeled as

Wx;y;h;rð~n; ~gÞ ¼
1
r2 W0ðn;gÞ:

In this model we consider a uniform distribution of orientations and
scales, even if there is a neurophysiological evidence of covariation
of scale and orientation (Issa et al., 2000).

We recall that a change of frames can act on the space M or, by
duality, on functions defined on M. Precisely, if A is a linear trans-
formation of M, it transforms also functions w through the formula

Fig. 1. A representation of the real (left) and imaginary (right) part a Gabor filter.

1 It must be emphasized that the technical lexicons of neurophysiology and
geometry use the same terms ‘‘fibers”, ‘‘connections”, etc., in completely different
ways. In general the context will eliminate any ambiguity.

2 C2 is two-dimensional over C but four-dimensional over R.

3 In a preceding paper (Sarti et al., 2008) we used an exponential scale s ¼ er . But
for reasons explained later it is better to use a logarithmic scale r.

38 A. Sarti et al. / Journal of Physiology - Paris 103 (2009) 37–45



Awð~n; ~gÞ ¼ 1
detðAÞwðA

�1ð~n; ~gÞÞ:

Accordingly we will denote A�1
x;y;h;r the transformation defined in (2),

and obtain

Wx;y;h;rð~n; ~gÞ ¼ ðAx;y;h;rW0Þð~n; ~gÞ:

The expression of A thus becomes:

Ax;y;h;rðn;gÞ ¼
x

y

� �
þ r

cosðhÞ � sinðhÞ
sinðhÞ cosðhÞ

� �
n

g

� �
:

Notice that for simplicity we identify translations in the retinal
plane and translations in the cortical layers, neglecting the confor-
mal log-polar retino-cortical mapping. Anyway, the mapping can
be taken into account by introducing a suitable metric on cortical
layers.

2.2. The output of receptive profiles

The overall output O of the parallel filtering is given by the inte-
gral of the signal Iðx; yÞ times the bank of filters:

Oðh;rÞðx; yÞ ¼
Z

M
Ið~n; ~gÞWðx;y;h;rÞð~n; ~gÞd~nd~g

¼
Z

M
Ið~n; ~gÞW0ðA�1

x;y;h;rð~n; ~gÞÞ
d~nd~g
r2 : ð3Þ

Performing a change of variable with respect to the transformation
A, we get:

Oðh;rÞðx; yÞ ¼
Z

W0ðn;gÞIðAðx;y;h;rÞðn;gÞÞdndg:

We explicitly note that the linear transformation A acts on the ret-
inal plane M, argument of I. On the contrary the inverse transforma-
tion A�1 acts on the domain of W0. This allows us to interpret the
domain of W0 as dual plane, with respect to the retinal plane.

2.3. The hypercolumnar structure

The hypercolumnar structure organizes the cells of V1 in hyper-
columns covering a small chart of the visual field (their receptive
field) and corresponding to parameters such as orientation, scale,
ocular dominance, direction of movement or color for a fixed reti-
nal position ðx; yÞ. The hypercolumnar organization means there-
fore essentially that to each position ðx; yÞ of the retina M is
associated a full exemplar Pðx;yÞ of the space of such ‘‘secondary”
variables.

For each family of engrafted variables, the set of all receptive
profiles is obtained from a fixed one by suitable motion, as rota-
tion, dilation, or translation Aðh;rÞ. So that the set of filters over
the point ðx; yÞ becomes:

RPðx;yÞ ¼ Wðx;y;h;rÞ : ðx; yÞ fixed; ðh;rÞ variable
� �

¼ Aðh;rÞWðx;y;0;0Þ : ðh;rÞ 2 S1 � R
n o

;

where Aðh;rÞ ¼ Að0;0;h;rÞ.

2.4. Maximal selectivity and geometrical interpretation of lifting

We come now to one of our central points. Up to now we have
described the hypercolumnar structure in terms of differential
geometry. Now we introduce the functionality of hypercolumns
and particularly the orientation and scale selectivity.

In the past years several models have been presented to explain
the emergence of orientation and scale selectivity in the primary
visual cortex. These models use different combinations of feedfor-

ward (thalamic) and feedback (intracortical) inputs and consider
different involvements of excitatory and inhibitory short range
connections (Miller et al., 2001; Worgotter and Koch, 1991; Caran-
dini and Ringach, 1997; Bar et al., 1995; Priebe et al., 1998; Shelley
et al., 2000; Nelson et al., 1995). Even if the basic mechanism pro-
ducing strong orientation selectivity is controversial (‘‘push-pull”
models (Miller et al., 2001; Priebe et al., 1998), ‘‘emergent” models
(Nelson et al., 1995), ‘‘recurrent” models (Shelley et al., 2000), only
to cite a few), nevertheless it is evident that the intracortical cir-
cuitry is able to filter out all the spurious directions and to strictly
keep the direction of maximum response of the simple cells.

Neurophysiologically, orientation and scale selectivity is the ac-
tion of intracortical short range connections to select the maxi-
mum response from the output:

Oðh;rÞðx; yÞ ¼
Z

M
Ið~n; ~gÞWðx;y;h;rÞð~n; ~gÞd~nd~g

¼
Z

M
W0ðn;gÞIðAðx;y;h;rÞðn;gÞÞdndg:

This maximal selectivity is the simplest mechanism (winner-take-
all strategy) to accomplish the selection among all different cell re-
sponses to effect a lift in the space of features. Given an input I, the
neural processing associates to each point ðx; yÞ of the retina M a
point ðx; y; �h; �rÞ in the cortex.4 We interpret this mechanism as a lift-
ing into the fiber of the parameter space R2ðx; yÞ � S1ðhÞ � RðrÞ over
ðx; yÞ. Precisely, the odd part of the filters Wðx;y;h;rÞ lifts the boundaries
of the image and the even part of the filters lifts the interior of the
objects.

We will denote ð�h; �rÞ the points of maximal response:

Oðx; y; �h; �rÞ ¼max
ðh;rÞ

Oðx; y; h;rÞ: ð4Þ

This maximality condition can be mathematically expressed requir-
ing that the gradient of O with respect to the variables ðh;rÞ van-
ishes at the point ðx; y; �h; �rÞ:

rðh;rÞOðx; y; �h; �rÞ ¼ 0:

We will also require that at the maximum point the Hessian is
strictly negatively definite:

HessðOÞ < 0:

2.5. Odd and even RP’s

We will study separately the real and the imaginary part of the
filter, which models, respectively, the even and the odd simple
cells of the visual cortex. Both sets of filters have similar geometri-
cal structure, described trough the hypercolumnar structure and
the corresponding fiber bundle structure. In both sets of cells the
intracolumnar connectivity is responsible for the phenomena of
orientation and scale selectivity, but the two families of cells have
different shapes. Hence, even though they act in the same way on
the input, they are able to detect different features. Indeed the odd
cells will be responsible for boundary detection, and the even ones
for the object detection.

3. The odd RP’s

Boundary detection is performed by odd simple cells that max-
imally fires at discontinuity of the stimulus. For simplicity in this
section we will consider an unitary value of the scale, taking into
account only the position and orientation of the RP (see Fig. 2).

4 A ‘‘point” in the cortex means a neuron or a small assembly of neurons acting as a
neuron.
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The odd part of the filter can be locally approximated (up to a
multiplicative constant) as

sinð2~gÞexpð�ð~n2 þ ~g2ÞÞ ’ 2~gexpð�ð~n2 þ ~g2ÞÞ
¼ �@~gexpð�ð~n2 þ ~g2ÞÞ:

3.1. The monodimensional fiber RPðx;yÞ over each retinal point ðx; yÞ

Since we assume that the scale is fixed, the hypercolumns intro-
duced in Section 2.3 contains only one feature, and are modelled as
monodimensional fibers. To every fixed point ðx; yÞ of the retinal
plane M is associated the complete set of values for orientation h.
In other words, for ðx; yÞ fixed, we consider all filters obtained via
rotations of an angle h from a fixed one Wðx;y;0Þ, so that the set of fil-
ters over the point ðx; yÞ becomes:

RPðx;yÞ ¼ Wðx;y;hÞ : ðx; yÞ fixed; h variable
� �

¼ Aðh;rÞWðx;y;0;0Þ : ðh;rÞ 2 S1 � R
n o

;

where we have again denoted Aðh;rÞ ¼ Að0;0;h;rÞ.
A derivative in the direction ~g can be expressed in the original

variables ðx; y; hÞ as a directional derivative in the direction of the
vector X3 ¼ ð� sinðhÞ; cosðhÞÞ. We will denote it

X3 ¼ � sinðhÞ@x þ cosðhÞ@y: ð5Þ

This derivative, applied to a function I, expresses the projection of
the gradient in the direction ð� sinðhÞ; cosðhÞÞ.

Hence a hypercolumn is modelled as a fiber of RPs and its action on
the image is a fiber of directional derivations for every orientation h
(see Fig. 3).

3.2. Orientation selectivity and ‘‘nonmaximal” suppression

The intracortical circuitry is able to filter out all the spurious
directions and to strictly keep the direction of maximum response
of the simple cells. Since X3I is the projection of the gradient in the
direction of the vector ð� sinðhÞ; cosðhÞÞ, the maximum will be
achieved at a value �h, which is the direction of the gradient.

Then, if we call �h the point of maximum, condition (4) reduces
to

jX3ð�hÞIj ¼max
h
jX3ðhÞIj: ð6Þ

Proposition 3.1. The point of maximum over the fiber is attained at
the value �h of the orientation of image level lines. In other words the
vector

X1 ¼ cosð�hÞ@x þ sinð�hÞ@y

is parallel to the level lines at the point ðx; yÞ.

Indeed at the maximum point �h the derivative with respect to h
vanishes, and we have

0 ¼ @

@h
X3ð�hÞI ¼ �X1ð�hÞI ¼ �hX1ð�hÞ;rIi:

This implies that X1 is orthogonal to the gradient, so that it has the
direction of the level lines of I.

3.3. The contact structure

As a direct consequence of the preceding assertion we can de-
duce that the lifted curves are tangent to the plane generated by
the vectors X1 and X2.

In the standard Euclidean setting, the tangent space to R2 � S1

has dimension 3 at every point. Here we have selected a section
X3 of the tangent space. This defines also a bi-dimensional subset
of the tangent space at every point, orthogonal to X3ðhÞ. This is
called the contact plane (see Fig. 4). It is generated by

X1ðhÞ ¼ ðcosðhÞ; sinðhÞ;0Þ; X2 ¼ ð0; 0;1Þ

and can be represented as

px;y;h ¼ fa1X1 þ a2X2 : a1;a2 2 Rg:

This plane is the kernel of the 1-form

x3 ¼ � sinðhÞdxþ cosðhÞdy:

Proposition 3.2. The 1-form x3 is a contact form.

Indeed a direct computation shows that

dx3 ¼ ðcosðhÞdxþ sinðhÞdyÞ ^ dh:

In other words the 2-form dx3 spans the contact plane. Since x3 is
orthogonal to this plane, then

x3 ^ dx3

is the volume form of the space, which implies that x3 is a contact
form.
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Fig. 2. In vivo registered odd receptive field (left, from (De Angelis et al., 1995)) and
a schematic representation of it as a Gabor filter (right).

Fig. 3. Odd part of Gabor filters with different orientations (left) and schemata of
odd simple cells arranged in a hypercolumn of orientations.
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3.4. Association fields and integral curves

The lifted points of the image would remain without relations
between them without an integrative process allowing to connect

local tangent vectors and to form integral curves. This process is at
the base of both regular contours and illusory contours formation
(Petitot and Tondut, 1999).

The most plausible model of connections is based on a mecha-
nism of ‘‘local induction”. The specificity of this local induction is
described by the association field (Field et al., 1993).

The local association field is shown in (Fig. 5) and it can be
interpreted as a family of integral curves of vector fields belonging
to the contact planes spanned by X1 and X2, and starting at a fixed
point ðx; y; hÞ:

c0ðtÞ ¼ X1ðcÞ þ kX2ðcÞ; cð0Þ ¼ ðx; y; hÞ ð7Þ

obtained by varying the parameter k in R (Fig. 6). This parameter k
expresses the curvature of the projection of the curve c on the plane
ðx; yÞ (see Citti and Sarti, 2006; Petitot, 1994). Such a curve tangent
to the contact planes at every point, is called an integral curve and,
when k is constant, is given by the formula

cðtÞ ¼ expðtðX1 þ kX2ÞÞðx; y; hÞ:

Note that the coefficient of X1 never vanishes in this representation,
since the projection on the two-dimensional plane ðx; yÞ of an inte-
gral curve of X2 would be a point.

Choosing the Euclidean metric making fX1;X2g an orthonormal
basis in the contact planes, we can set

kX1 þ kX2kE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

q
;

so that we can call length of any curve c expressed as in (7)

kðcÞ ¼
Z 1

0
kc0ðtÞkdt ¼

Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

q
:

Consequently it is possible to define

dððx; y; hÞ; ð�x; �y; �hÞÞ ¼ inffkðcÞ : c is an integral curve ð8Þ
connecting ðx; y; hÞ and ð�x; �y; �hÞg;

connecting ðx; y; hÞ and ð�x; �y; �hÞ

see Nagel et al. (1985). In the Euclidean case the infimum is realized
by a geodesic that is a segment. Also here there exists an integral
path on which the infimum is achieved, called a geodesic. The
geometry so defined is called sub-Riemannian.

We will see in the next section that we are mainly interested in
surface completion. It is well known (see Hladky and Paul, submit-
ted for publication) that a surface is foliated by a special type of
geodesics, namely the geodesics represented as in (7), with con-
stant coefficients.
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Fig. 4. The contact planes at every point, and the orthogonal vector X3.
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Fig. 5. Association field from the experiment of Field et al. (1993).
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1 Integral curves of the roto−translation vector fields

Fig. 6. Integral curves of the field by varying the parameter k. On the left a 3D representation with contact planes is shown, in the right its projection onto the image plane is
visualized.
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3.5. Lifting of the surface, and selection of geodesics which belong to a
surface

The orientation selectivity process we have just described lifts
each point ðx; yÞ in the 2D domain of the image to a 3D-point
ðx; y; �hÞ.

If we denote Tðx;yÞðR2Þ the tangent space to R2 at the point ðx; yÞ,
the vector ð� sinð�hÞ; cosð�hÞÞ 2 Tðx;yÞðR2Þ is lifted to the vector field

X3ð�hÞ ¼ ð� sinð�hÞ; cosð�hÞ;0Þ 2 T ðx;y;hÞðR2 � S1Þ:

The whole image domain is lifted to:

R0 ¼ fðx; y; �hÞ : jX3ð�hÞIsj ¼ max
h
jX3ðhÞIj > 0g: ð9Þ

This lifted set corresponds to the maximum of activity of the output
of the simple cells, that can be modeled as a Dirac mass concen-
trated on R0 itself, with a density u0, given by the value of the
activity:

u0ðx; y; hÞ ¼ Oðx; y; �hÞdR: ð10Þ

4. The even simple cells

The even simple cells are the real part of the mother Gabor fil-
ter, so that they are expressed as (see Fig. 7)

cosð2gÞe�ðn2þg2Þ:

The structure of the even simple cells is formally analogous to the
set of odd cells, but we will show that it builds a symplectic, instead
of a contact structure.

4.1. The two-dimensional fiber RPðx;yÞ over each retinal point ðx; yÞ

In order to describe the even cells, as before, we associate to
every fixed point ðx; yÞ of the retinal plane M a complete set of val-
ues for orientation h and scale r, i.e. a two-dimensional fiber:

RPðx;yÞ ¼ Wðx;y;h;rÞ : ðx; yÞ fixed; ðh;rÞ variable
� �

¼ Aðh;rÞWðx;y;0;0Þ : ðh;rÞ 2 S1 � R
n o

;

with Aðh;rÞ ¼ Að0;0;h;rÞ (see Fig. 8).

4.2. Orientation-scale selectivity and ‘‘nonmaximal” suppression

As in the case of odd cells, again we model the selectivity mech-
anism as a nonmaximal suppression mechanism. Given an input I,
the neural processing associates to each point ðx; yÞ of the retina M

a point ðx; y; �h; �rÞ in the cortex, We interpret this mechanism as a
lifting into the fiber of the parameter space
R2ðx; yÞ � S1ðhÞ � RðrÞ over ðx; yÞ.

In this geometrical setting, the geometrical meaning of the
maximum selectivity mechanism is different from before.

Theorem 4.1 (see Sarti et al., 2008). At first order approximation,
for any fixed value of ðx; yÞ, the output function Oðx; y; h;rÞ reaches a
local maximum at the point �h; �r, where dð�rÞ ¼ 1ffiffi

2
p �r denotes the

distance of ðx; yÞ from the nearest boundary of the image I, and �h
denotes the orientation of this boundary at the point where the
distance is achieved.

This theorem ensures that the simple cell selects the couple
ð�h; �rÞ in such a way that, X3 being the vector

X3 ¼ � sinð�hÞ@x þ cosð�hÞ@y; ð11Þ

then ðx; yÞ þ �rffiffi
2
p X3 belongs to the nearest boundary of I (see Fig. 9).

4.3. A symplectic 2-form

In order to take into account the role of the contact structure,
we will endow the space R2ðx; yÞ � S1ðhÞ � RðrÞ with a symplectic
structure. We multiply x by the scale factor r�1 (remember it
means that, when r! 0, one zooms in the neighborhood of ðx; yÞ)

x ¼ r�1ð� sinðhÞdxþ cosðhÞdyÞ:

Then we take as symplectic form the 2-form dx obtained by differ-
entiating x with respect to all its variables. The symplectic 2-form
dx writes:

dx ¼ r�1ðcosðhÞdxþ sinðhÞdyÞ ^ dhþ r�2ð� sinðhÞdxþ cosðhÞdyÞ
^ dr

¼ r�1x1 ^x2 þ r�2x3 ^x4;

where xi is the dual form of Xi. This form can be identified with the
left invariant 2-form deduced by left translations from the standard
2-form on G at 0:

dx ^ dhþ dy ^ dr:
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Fig. 7. In vivo registered even receptive field (left – from Niell and Stryker (2008))
and a schematic representation of it as a Gabor filter (right)). Positive sign is in
white and negative in black.

Fig. 8. The two-dimensional fiber of even simple cells, obtained via rotation and
dilation of the mother filter.
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4.4. The hyperbolic structure

We can now adapt the vector fields previously chosen to the
structure of the 2-form we have found, following an idea first
introduced by (Arcozzi et al., preprint). We will choose the follow-
ing vector fields

X1 ¼ cosðhÞ@x þ sinðhÞ@y

X2 ¼ @h

X3 ¼ � sinðhÞ@x þ cosðhÞ@y

X4 ¼ @r

8>>><
>>>:
and define a metric G which makes

rX1; rX2; r2X3; r2X4

orthonormal.
Accordingly, the inverse of the metric can be immediately com-

puted as

ð@x; @y; @h; @sÞT G�1ð@x; @y; @h; @sÞ ¼ r2X2
1 þ r2X2

2 þ r4X2
3 þ r4X2

4

¼ r2 cos2ðhÞ@2
x þ r2 sin2ðhÞ@2

y þ 2r2

� cosðhÞ sinðhÞ@x@y þ r4

� cos2ðhÞ@2
x þ r4 sin2ðhÞ@2

y � 2r4

� cosðhÞ sinðhÞ@x@y þ r2@2
h

þ r4@2
r:

Let us now rescale the vector fields, in order to better understand
the structure of the space. In this way we can consider the vector
fields:

X1; X2; rX3; rX4:

It is evident that the scale variable assign a different role to the
plane generated by X1 and X2 with respect to the plane generated
by X3 and X4. Indeed, if the scale is small, the tangent space reduces
to the plane generated by X1 and X2, if the scale is 1, the tangent

space is generated by all vector fields, while for large values of
the scale, the vectors rX3; and rX4 are predominant.

Let us now fix the value of r, and consider the metric induced
on the 3D space ðx; y; hÞ. If r is constantly equal to 0 the metric re-
duces to the sub-Riemannian one, and the structure is the contact
structure previously studied. Since r expresses the distance from
the boundary, this means that, on the boundaries, the metric is
sub-Riemannian, since we have a preferred direction of the diffu-
sion of the visual signal.

If we consider the 3D space obtained for r fixed, but different
from 0, we obtain a Riemannian metric, and, for r ¼ 1, an Euclid-
ean one. This reflects the fact that, far from the boundaries there
is no preferred direction for the diffusion.

In particular, varying r, we have obtained a foliation of the sym-
plectic structure in 3D Riemannian spaces, which tends to the sub-
Riemannian one, when r goes to 0.

This structure models an hyperbolic one (see Fig. 10).

4.5. Integral curves of special vector fields

Let us compute the integral curves of the renormalized vectors,

c0ðtÞ ¼ X1ðcðtÞÞ þ k2X2ðcðtÞÞ þ k3rX3ðcðtÞÞ
þ k4rX4ðcðtÞÞ; cð0Þ

¼ ðx0; y0; h0;r0Þ: ð12Þ

As before we first fix the value of r. This can be obtained choosing
k3 ¼ 0.

If the starting value of r is r ¼ 0, we reduce to the integral
curves of the contact structure

c0ðtÞ ¼ X1ðcðtÞÞ þ k2X2ðcðtÞÞ; cð0Þ ¼ ðx0; y0; h0;0Þ: ð13Þ

The projection on the ðx; yÞ plane is then either a line (if k2 ¼ 0), or a
circle of radius 1=k2 tangent to the x axis (see Fig. 11 left). The emer-
gence of curvature in this context is strictly related to the curve
detection model based on curvature in Parent and Zucker (1989).

θ

σ

(x,y)

Fig. 9. The simple cell centered in ðx; yÞ takes the maximal activity Oðx; y; �h; �rÞ ¼maxðh;rÞOðx; y; h;rÞ at a point �r which is, up to a constant, the logarithm of the distance to the
nearest boundary and �h is the direction of this boundary.
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Fig. 10. The 2D-projection of integral curves for r ¼ 0; r ¼ 1=2, and r ¼ 1.
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If the starting value of r – 0, we obtain we obtain a new set of
curves by varying k3, and assuming k2 ¼ 0. The projection of these
curves on the 2D retinal plane describes an ellipsis, as depicted in
Fig. 4.

At small scale the most significant curves are the ones on the
plane X1; and X2. On the contrary, if the scale is big, the significant
ones are the integral curves of the vector fields X3 þ k4X4 (we may
take k3 ¼ 1 if k3 – 0). Hence we obtain:

c0ðtÞ ¼ X3ðcðtÞÞ þ k4X4ðcðtÞÞ; cð0Þ ¼ ðx; y; h;rÞ: ð14Þ

The curves cross the foliation. Their projection on the ðx; yÞ plane is
orthogonal to the direction h0. For k variable the integral curve is the
line of slope k in the fixed ‘‘vertical” plane fX3;X4g (see Fig. 11
right).

The projection of these two classes of integral curves on the
base plane ðx; yÞ is plotted in Fig. 12. Their pattern is in good agree-
ment with the pattern of long range connections found both in
neurophysiological and psychophysical experiments. In fact, excit-
atory connections are confined to two regions, one flaring out
along the axis of orientation of the cell (co-axial), and another con-
fined to a narrow zone extending orthogonally to the axis of orien-
tation (trans-axial, vertical). The co-axial connections are exactly
the same we found in the previous section. The symplectic model
adds a second set of trans-axial excitatory connections which extends
orthogonally from the orientation axis of the cell. There is anatom-
ical evidence consistent with the existence of these orthogonal
connections (Fitzpatrick, 1996; Lund et al., 1985; Mitchinson and
Crick, 1982; Rockland and Lund, 1982, 1983). The trans-axial con-
nections are represented here as integral curves of the fields
X3; X4. The reason why co-axial connections spread out in a fan,
while trans-axial connections are more spatially focused is that
the roto-translation fields X1; X2 not only do not commute but
their commutator is linearly independent from them:

½X1;X2� ¼ �X3;

while the vectors X3;X4 do not commute but their commutator is
linearly dependent upon them:

½X3;X4� ¼ �X3:

Then integral curves of roto-translation fields are not planar
(Fig. 12, left) while integral curves of X3;X4 belong to a plane
(Fig. 12, right) whose projection on the ðx; yÞ plane is just a line (ver-
tical line5 Fig. 12).
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