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Abstract We propose to model the functional architecture of the primary vi-
sual cortex V1 as a principal fiber bundle where the 2-dimensional retinal plane is
the base manifold and the secondary variables of orientation and scale constitute
the vertical fibers over each point as a rotation-dilation group. The total space is
endowed with a natural symplectic structure neurally implemented by long range
horizontal connections. The model shows what could be the deep structure for both
boundary and figure completion and for morphological structures such as the medial
axis of a shape.

1. Introduction

There has been recently new applications of differential geometry to neurophys-
iology of visual perception. In particular, it has been shown in [40] , [41] and [9]
that the functional architecture of the area V1 of the primary visual cortex can
be geometrically modeled as a 3-dimensional structure V = M × P , where the
2-dimensional retinal plane M is the base manifold and the secondary variable of
orientation constitutes the fiber P over each point.

Even if V1 is concretely a 2-dimensional neural layer, it implements n > 2 degrees
of freedom and is thus abstractly of dimension n > 2. This difference between
the physical concrete and the geometrical abstract dimensions correspond to what
Hubel called an “engrafting” of variables:

“What the cortex does is map not just two but many variables on
its two-dimensional surface. It does so by selecting as the basic pa-
rameters the two variables that specify the visual field coordinates
(distance out and up or down from the fovea), and on this map it
engrafts other variables, such as orientation and eye preference, by
finer subdivisions.” (Hubel [23], p. 131)

The total space V of the fiber bundle modeling V1 is endowed with a natural
contact structure neurally implemented by long range horizontal connections. It
is possible to hypothesize that this fundamental contact structure (making V1 an
implementation of the space of 1-jets of curves in M) is at the basis of the contour
integration process.

Now it is well known that contact structures can be extended to symplectic
structures by adding a new dimension corresponding to the possibility of changing
scale at every point of M , that is of treating scale as a gauge.

In [9] the secondary variable of orientation constitutes the vertical fibers over each
point as a rotation group. Here we will thus propose to add the scale dimension
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to the model [9] and to model the functional geometry of V1 as a principal fiber
bundle G where the 2-dimensional retinal plane M is again the base manifold and
the secondary variables of orientation and scale constitute now the fibers over each
point as a rotation-dilation group. In terms of Hubel’s engrafted variables our
model engrafts therefore two variables: orientation and scale. The total space will
be endowed with a natural symplectic structure also neurally implemented by long
range horizontal connections.

Moreover we will show how this symplectic structure can be naturally deduced
from the filtering of the optical signal by the receptive fields of visual neurons and
their functional architecture.

Our model naturally integrates several features of the visual cortex observed in
experiments of neurophysiology, psychophysics and neuroimaging.

We start from the well known observation that the set of simple cells receptive
profiles (RPs) is generated by the action of the affine group of the visual plane on
a Gabor mother function.

Each hypercolumn of simple cells RPs, defined at a retinal point (x, y), forms a 2-
dimensional subgroup of rotations-dilations. This structure is identically repeated
for every point of the retina, and can therefore be considered as a fiber of the
4-dimensional principal bundle.

Then we show that the neural process of maximal selectivity due to intracor-
tical short range inhibitory connections internal to hypercolumns selects in each
case a section of the fibration. This mechanism will be described as the lifting of
boundaries in M to curves in V1 and whole figures in M to surfaces in V1.

From the neurophysiological point of view, there is evidence of connections be-
tween simple cells belonging to different hypercolumns. These neural connections
are what neurophysiologists call long range horizontal connections. They implement
what geometers call a connection operating a parallel transport between fibers of a
bundle.1 This latter connection (in the geometric sense) can be expressed in terms
of a symplectic form on the 4-dimensional principal bundle G, introducing on it
what is called a complex structure.

It was already shown in [40], [9] that the integral curves of the natural contact
structure in the 3-dimensional fiber bundle V is a mathematical representation of
the association field of Field, Hayes and Hess ([17]). In our model here, the inte-
gral curves of the symplectic structure model more finely the connectivity pattern
between simple cells in V1, as observed by electrophysiological experiments. In
other words, the symplectic structure introduces a system of natural coordinates in
the 4-dimensional space C2 which is implemented by neural connectivity.2 Notice
that many of the anatomical and functional features we will discuss and model
are common to most mammals, nevertheless we will refer particularly to features
experimentally found in tree shrew.

We also refer to the following results, for a theoretical description of the func-
tional architecture of the striate cortex [6], [7], [48], [49], [2], [3].

In this paper we model the cortex as a cotangent fiber bundle that can be
interpreted as a phase space from the physical point of view. This is the natural

1It must be emphasized that the technical lexicons of neurophysiology and geometry use the
same terms “fibers”, “connections”, etc. in completely different ways. In general the context will
eliminate any ambiguity.

2C2 is 2-dimensional over C but 4-dimensional over R.
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space for stochastic dynamical systems. The idealized model we presented can be
thought as the deterministic counterpart of these stochastic models.

The paper is organized as follows:
• In section 2 we consider the basic properties of simple cells RPs and outline

the group structure underlying the set of cells. We show also how 1-forms
can be naturally associated to RPs.

• In section 3 we deepen the group structure and introduce the hypercolum-
nar structure and the related geometrical concept of a principal fiber bun-
dle.

• In section 4 we prove that maximal selectivity in the hypercolumns explains
and justifies the association between RPs and 1-forms.

• In section 5 the “horizontal” connectivity between hypercolumns is consid-
ered and the notion of symplectic structure on the fiber bundle is intro-
duced. We define also the associated complex structure.

• In section 6 we present numerical simulations of integral curves of the sym-
plectic structure and compare them with neurophysiological experimental
results about long range horizontal connections. We show also that the lift-
ing of images yields Lagrangian manifolds, which explains the well known
but enigmatic perceptive relevance of the medial axis of a shape.

• For reader convenience we collected in Appendix A the proof of the main
theorem, and in Appendix B the basic definitions of differential geometry
instruments used in the paper.

2. The Receptive Profiles of Simple Cells

In this section we define the receptive profiles (RP) of neural cells, make explicit
the effects on them of a change of frame in the visual plane and show how to
associate to a RP a differential 1-form selecting its preferred orientation.

2.1. Receptive fields and receptive profiles. A great variety of cells respond to
a stimulus on the retinal plane M ⊂ R2. The receptive field (RF) of a visual neuron
is classically defined as the domain of the retina to which it is connected through
the neural connections of the retino-geniculo-cortical pathways (projecting from the
retina to the cortex through the lateral geniculate nucleus along the thalamic way)
and whose stimulation elicitates a spike response.

In the sequel, we will restrict our models to the RF in this narrow sense. Classi-
cally, a RF is decomposed into ON (positive contrast) and OFF (negative contrast)
zones according to the type of response to light and dark luminance Dirac stimu-
lations. There exists therefore a receptive profile (RP) of the visual neuron, which
is simply its impulse response as a filter kernel. It is a function Ψ(x, y) (where
x, y are retinal coordinates) Ψ : M → R which is defined on the retinal plane M
and measures the response (ON / OFF) of the neuron to stimulations at the point
(x, y). Sophisticated techniques enable the recording of the level curves of the RPs
(see e.g. De Angelis [12]). A light and dark spot or bar is switched on and off
at different positions of the RF and the mean response is measured. One uses for
instance random sequences of flashes (of 50 ms) distributed over a lattice of 20×20
positions, with 100ms − 1s for each response after each flash, and takes the mean
value on 10 flashes at each position (white noise analysis). The correlation of the
inputs (flashes) with the outputs (spikes) yields the transfert function of the neuron.
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It is a classical result of neurophysiology, already strongly emphasized by David
Marr [34] in the late 1970s, that the RPs of the retinal ganglion cells are like Lapla-
cians of Gaussians. On the contrary, the simple cells of V1 are strongly oriented,
and are often interpreted as Gabor patches (trigonometric functions modulated by
a Gaussian).

2.2. The set of receptive profiles. The visual plane M will be identified with
the plane R2 endowed with coordinates (x, y) and a fixed frame (∂x, ∂y). This is of
course a wild idealization and presupposes the choice of an arbitrary global origin
O = (0, 0).

When a visual stimulus I of intensity I(x, y) : M ⊂ R2 → R+ activates the
retinal layer of photoreceptors (identified with the visual field) M ⊂ R2, the cells
centered at every point (x, y) of M process in parallel the retinal stimulus with
their receptive profile Ψ(x,y), which is defined on M .

Each RP acting on a point (x, y) depends upon a preferred direction θ and a
scale σ, and it has been observed experimentally that the set of simple cells RPs is
obtained via translations to the point (x, y), rotations of angle θ, and dilations of
scale s = eσ from a unique profile, of Gabor type. This means that there does exist
a “mother” profile Ψ0(ξ, η) from which all the observed profiles can be deduced by
transformation.

A good formula for Ψ0 seems to be

Ψ0(ξ, η) = e−(ξ2+η2)e2iη.

In figure 1 we represent its even part e−(ξ2+η2)cos(2η), which will be studied in this
paper.

It has to be noted that the receptive profiles Ψ(x,y) are localized in a neighbor-
hood of the point (x, y). Hence, they will be expressed in local coordinates, around
the point (x, y), obtained by rotation and dilation of the initial ones. Any vector
will then have two representations: coordinates (ξ̃, η̃) in the global frame centered
at (0, 0), and (ξ, η) in the local frame centered at (x, y) :

(1)





ξ = e−σ
(
(ξ̃ − x) cos θ + (η̃ − y) sin θ

)

η = e−σ
(
− (ξ̃ − x) sin θ + (η̃ − y) cos θ

)
.

Therefore all the observed profiles can be modelled as

Ψx,y,θ,σ(ξ̃, η̃) = e−2σΨ0(ξ, η).

In this model we consider a uniform distribution of orientations and scales, even
if there is a neurophysiological evidence of covariation of scale and orientation [24].

We recall that a change of frames can act on the space M or, by duality, on
functions defined on M . Precisely, if A is a transformation of M , it transforms also
functions ψ through the formula

Aψ(ξ̃, η̃) =
1

det(A)
ψ(A−1(ξ̃, η̃)).
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Accordingly we will denote A−1
x,y,θ,σ the transformation defined in (1), and obtain

Ψx,y,θ,σ(ξ̃, η̃) = (Ax,y,θ,σΨ0)(ξ̃, η̃).

The expression of A thus becomes:

Ax,y,θ,σ(ξ, η) =
(

x
y

)
+ eσ

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
ξ
η

)
.

Notice that for simplicity we identify translations in the retinal plane and transla-
tions in the cortical layers, neglecting the conformal log-polar retino-cortical map-
ping. Anyway, the mapping can easily be taken into account by introducing a
suitable metric on cortical layers.

Figure 1. A Gabor filter (left) and a schematic representation of
its sign (right). Positive sign is in white and negative in black.

2.3. The output of receptive profiles. The overall output O of the parallel
filtering is given by the integral of the signal I(x, y) times the bank of filters:

O(θ,σ)(x, y) =
∫

M

I(ξ̃, η̃)Ψ(x,y,θ,σ)(ξ̃, η̃)dξ̃dη̃

=
∫

M

I(ξ̃, η̃)Ψ0

(
A−1

x,y,θ,σ(ξ̃, η̃)
)dξ̃dη̃

e2σ

(2)

Consequently we can perform a change of variable with respect to the transfor-
mation A. We get:

O(θ,σ)(x, y) =
∫

Ψ0(ξ, η)I
(
A(x,y,θ,σ)(ξ, η)

)
dξdη

We explicitly note that the linear transformation A acts on the retinal plane M ,
argument of I. On the contrary the inverse transformation A−1 acts on the domain
of Ψ0. This allows us to interpret the domain of Ψ0 as dual plane, with respect to
the retinal plane.
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3. Functional geometry of hypercolumns

3.1. The hypercolumnar structure. The hypercolumnar structure organizes
the cells of V1 in hypercolumns covering a small chart of the visual field (their
receptive field) and corresponding to parameters such as orientation, scale, ocular
dominance, direction of movement or color for a fixed retinal position (x, y). The
hypercolumnar organization means therefore essentially that to each position (x, y)
of the retina M is associated a full exemplar P(x,y) of the space of such “secondary”
variables. We restrict here ourselves to orientation θ and scale σ. As we have seen
in the introduction, even if the cortical space is a bidimensional layer it “engrafts”
secondary variables. Authors in [40] ,[9] proposed a first approximated model with
orientation. In [5] the orientation θ is described as a single engrafted secondary
variable, in terms of the principal fiber bundle of the roto-translation group 3. Here
we will use the same geometrical instruments to propose a new model, which takes
into account not only orientation θ but also scale σ, and leads therefore to a 4-
dimensional fiber bundle.

3.2. The fiber RP(x,y) over each retinal point (x, y). To every fixed point (x, y)
of the retinal plane M is associated the complete set of values for orientation θ and
scale σ. In other words, for (x, y) fixed, we consider all filters obtained via rotations
of an angle θ and dilations of scale eσ from a fixed one Ψ(x,y,0,0). so that the set of
filters over the point (x, y) becomes:

RP(x,y) =
{
Ψ(x,y,θ,σ) : (x, y) fixed, (θ, σ) variable

}

=
{
A(θ,σ)Ψ(x,y,0,0) : (θ, σ) ∈ S1 × R}

,

where we have denoted A(θ,σ) = A(0,0,θ,σ).

3.3. The group of orientation and scale operating in a hypercolumn. The
set of filters at the point (x, y) is generated as image of

G2 =
{
A(θ,σ) : (θ, σ) ∈ S1 × R}

.

The set G2 is a trivial commutative group (topologically a cylinder), since, if we
apply in sequence two of its elements, we get a new element of it:

A(θ1,σ1)A(θ0,σ0)(ξ, η) = A(θ0+θ1,σ0+σ1)(ξ, η).

Formally, we have a map
(
A(θ1,σ1),Ψ(x,y,θ,σ)

) ∈ G2 ×RP(x,y) 7→ Ψ(x,y,θ+θ1,σ+σ1) ∈ RP(x,y)

which formally expresses that the group G2 acts on the set of all filters RP respect-
ing the fibers RP(x,y). Each filter is obtained from the fixed one via one of these
transformations: RP(x,y) is the orbit G2

(
Ψ(x,y,0,0)

)
.

The change of variable associated to the transformation A acts on the receptive
fields Ψ(x,y,θ,σ), as well as on the fixed frame ∂x, ∂y, which will be rotated to the
vectors

X1 = eσ
(

cos(θ)∂x + sin(θ)∂y

)
X3 = eσ

(
− sin(θ)∂x + cos(θ)∂y

)
.

3The fiber bundle is a mathematical structure, locally described as a cartesian product M×G,
where M models the retinal plane, and G the group of engrafted variables. In the model this
expresses the fact that that at every retinal point (x, y) ∈ M is associated a whole hypercolumn.
(We refer to Definition 4 in Appendix B for the precise definition of a fiber bundle).
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4. Maximal selectivity and geometrical interpretation of lifting

We come now to one of our central points. Up to now we have described the
hypercolumnar structure in terms of differential geometry. Now we introduce the
functionality of hypercolumns and particularly the orientation and scale selectivity.

In the past years several models have been presented to explain the emergence
of orientation and scale selectivity in the primary visual cortex. These models
use different combinations of feedforward (thalamic) and feedback (intracortical)
signals and consider different involvements of excitatory and inhibitory short range
connections (Miller et al. [36], Carandini et al. [8], Bar et al. [1], Shelley et
al. [46]). Even if the basic mechanism producing strong orientation selectivity is
controversial, nevertheless it is evident that the intracortical circuitry is able to
filter out all the spurious directions and to strictly keep the direction of maximum
response of the simple cells.

4.1. The maximization procedure. Neurophysiologically, orientation and scale
selectivity is the action of intracortical short range connections to select the maxi-
mum response from the outputs:

(3) O(θ,σ)(x, y) =
∫

M

I(ξ̃, η̃)Ψ(x,y,θ,σ)(ξ̃, η̃)dξ̃dη̃, =
∫

M

Ψ0(ξ1, η1)I(A(x,y,θ,σ)(ξ1, η1))dξ1dη1,

where the last integral is obtained with a change of variables.
This maximal selectivity is the simplest mechanism to accomplish the selection

from among all different cells responses to effect a lift in the cotangent space. Given
an input I, the neural processing associates to each point (x, y) of the retina M
a point (x, y, θ̄, σ̄) in the cortex, We interpret this mechanism as a lifting into the
fiber of the parameter space R2(x, y)×S1(θ)×R(σ) over (x, y). Precisely, the odd
part of the filters Ψ(x,y,θ,σ) lifts the boundaries of the image and the even part of
the filters lifts the interior of the objects.4 The odd part has already been studied
in [40], [9]. Hence we will focus here on the even part of the filter.

We will denote (θ̄, σ̄) the values of the maximal response:

O(x, y, θ̄, σ̄) = max
(θ,σ)

O(x, y, θ, σ).

This maximality condition can be mathematically expressed requiring that the
gradient of O with respect to the variables (θ, σ) vanishes at the point (x, y, θ̄, σ̄):

∇(θ,σ)O(x, y, θ̄, σ̄) = 0.

We will also require that at the maximum point the Hessian is strictly negatively
definite:

Hess(O) < 0.

For simplicity we will now reduce to contours, that is to domains E in M with
regular boundaries ∂E, the image I being a cartoon image, formally expressed as a
piecewise constant function, which takes only the values 0 or 1. As we will see with
the following theorem, a geometrical interpretation of the values of σ̄ and θ̄ selected

4Recall that Ψ0(ξ, η) = e−(ξ2+η2)e2iη = e−(ξ2+η2) (cos(2η) + i sin(2η)). The odd part is the
sin part and the even part the cos part.
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by the maximization procedure just described is that they detect respectively the
distance and the direction of the nearest boundary (see figure 2).

θ

σ

(x,y)

Figure 2. The simple cell centered in (x, y) takes the maximal
activity O(x, y, θ̄, σ̄) = max(θ,σ) O(x, y, θ, σ) at a point σ̄ which
is, up to a constant, the logarithm of the distance to the nearest
boundary and θ̄ is the direction of this boundary.

Theorem 1. At first order approximation, for any fixed value of (x, y), the output
function O(x, y, θ, σ) reaches a local maximum at the point θ̄, σ̄, where d(σ̄) = 1√

2
eσ̄

denotes the distance of (x, y) from the nearest boundary of the image I, and θ̄
denotes the orientation of this boundary at the point where the distance is achieved.

The proof is given in the Appendix A.

This theorem ensures that the simple cell selects the couple
(
θ̄, σ̄

)
in such a way

that, X3 being the vector

(4) X3 = eσ̄
(− sin(θ̄)∂x + cos(θ̄)∂y

)
,

then (x, y) + 1√
2
X3 belongs to the nearest boundary of I.

4.2. Simple cells and associated 1-forms. Let us provide a new interpretation
of the action of RPs as filters. A simple cell Ψθ,σ(ξ, η) gives the maximal response
for contours with direction θ. We can therefore consider that it selects such a
direction. But a traditional way to select orientations at points of M is to consider
differential 1-forms on M . (We refer to Appendix B for the definition of 1- form).

A one form is a linear function, defined on the tangent space, with real values.
The form dy, dual of ∂y, selects the y- component of a tangent vector. Analogously
the form obtained by dy, rotating in the inverse direction with respect to A, selects
the coefficient of X3 on T(x,y)M , i.e. on the tangent plane of M at the point (x, y):

(
e−σ(− sin(θ)dx + cos(θ)dy)

)
(ξX1|(x,y) + ηX3|(x,y)) = η.

We will therefore associate to any filter Ψξ,η,θ,σ which is able to select the direc-
tion X3, the 1-form

e−σ(− sin(θ)dx + cos(θ)dy)
which selects the same direction (see figures 3 and 4).

Due to this correspondance between simple cells and 1-forms selecting their pref-
erential orientation, for every point (x, y) the fiber RP(x,y) of the set of filters
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Figure 3. The output of a simple cell is equal to the output of the
mother filter on an appropriately translated, rotated, and dilated
image. This simple cell can therefore be associated with the cotan-
gent vector (the 1-form) deduced from dy by the same transforma-
tion.

Figure 4. Simple cells act on the image as 1-forms (represented
in the figure by black arrows), i.e. they select the tangent vec-
tor of optimal orientation and scale, where optimality is given by
selecting the maximally spiking cell over the fiber.

Ψ(x,y,θ,σ) is made out of elements of the form:

(5)
{
ω(θ,σ) = e−σ (− sin(θ)dx + cos(θ)dy) : θ ∈ [0, π], σ ∈ R}

.

Using this particular representation, we can say that the coefficients (θ, σ) provide
a representation of a co-vector in log-polar coordinates, and the elements of this
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type completely fill the 2-dimensional cotangent space T ∗(x,y)M at (x, y). Hence
the fiber over the point (x, y) (the hypercolumn RP(x,y)) can be identified with the
cotangent space T ∗(x,y)M at this point (see figure 5).

Figure 5. A hypercolumn centered in (x, y) acts on the image as
a fiber of 1-forms.

4.3. A field of 1-forms. We see that the selection of θ̄ and σ̄ by maximal response
of the internal local neural circuitry of the hypercolumn RP(x,y) defines a function

Σ̄ : M → RP
(x, y) 7→ (x, y, θ̄, σ̄)

Identifying RP with T ∗M , Σ̄ becomes a field of 1-forms (see figure 6). We can
interpret this function as the lift the image I in M in the fiber bundle π : RP → M .

Figure 6. The set of maximal responding cells selects a field of
1-forms which lifts the image into V1.
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5. Long range neural connections and symplectic structure

In the previous section we have analyzed the selection of an orientation θ̄ and a
scale σ̄ induced in each hypercolumn by its internal circuitry. We will now take into
account the relationships between different hypercolumns. We know that these re-
lations are neurophysiologically implemented in long range excitatory intracortical
intercolumnar “horizontal” connections. We have seen on the other hand what are
the geometrical transformations which relate the fibers RP(x,y) in the fiber bun-
dle RP . 5 In this section we will focus on this double – neurophysiological and
geometrical – functional architecture and emphasize the action of the group G of
roto-translations and scaling.

5.1. The cotangent bundle associated to the set of receptive fields. We
will now make more precise the geometrical structure of the set of all hypercolumns
that is implemented in the functional architecture of V1. For every fixed point
(x, y), the set RP(x,y) of receptive profiles based at (x, y) has been endowed with a
structure of a homogeneous space under the action of a 2-dimensional group G2.

The set of all hypercolumns is the 4-dimensional fiber bundle

RP =
⋃

(x,y)

RP(x,y).

If we consider the hypercolumns as the cotangent space at each point (x, y) of M , we
associate to the bundle RP the cotangent space T ∗M with its system of log-polar
coordinates:

T ∗M =
⋃

(x,y)

T ∗(x,y)M =
⋃

(x,y)

{
(x, y, θ, σ) : e−σ(− sin(θ)dx + cos(θ)dy) ∈ T ∗(x,y)M

}
.

It is clear by definition that any element in the cotangent bundle is a 4-dimensional
vector (x, y, θ, σ) where (x, y) ∈ M, while (θ, σ) ∈ T ∗x,y(M) are the coordinates in
the cotangent plane at the point (x, y).

The group law G2 defined on RP(x,y) together with the group law defined on the
base space M define a group law on the whole bundle.
This group G is

G ' {
A(x,y,θ,σ) : (x, y, θ, σ) ∈ R2 × S1 × R}

For reader convenience we compute here the group law. Calling

rθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,

and applying in sequence two transformations we get:

A(x,y,θ,σ)A(x1,y1,θ1,σ1)(ξ, η) = A(x,y,θ,σ)

((
x1

y1

)
+ eσ1rθ1

(
ξ
η

))

=
(

x
y

)
+ eσrθ

((
x1

y1

)
+ eσ1rθ1

(
ξ
η

))

=
(

x
y

)
+ eσrθ

(
x1

y1

)
+ eσ+σ1rθ+θ1

(
ξ
η

)

= A(x2,y2,θ2,σ2)(ξ, η)

5See Appendix B for the definition of a fiber bundle and a fiber.
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with

(6) σ2 = σ + σ1, θ2 = θ + θ1,

(
x2

y2

)
=

(
x
y

)
+ eσrθ

(
x1

y1

)
.

We emphasize again that the composition is not commutative.

5.2. Horizontal long range connections and the tangent space to the
cotangent plane. The “vertical” structure of hypercolumns lifts retinal points
to cortical ones but it is largely non sufficient to implement a global coherence, for
which the visual system must be able to compare two retinotopically neighboring
fibers RP(xa,ya) and RP(xb,yb) over two neighboring points a and b of M . This
problem has been solved at the empirical level by the discovery of “horizontal”
cortico-cortical connections (see e.g. [11]). Horizontal connections are long ranged
(up to 6-8 mm) and connect cells of approximately the same orientation . In distant
hypercolumns this allows curved contents of connection fields that have been mod-
eled quantitatively by Ben Shahar [2]. To detect them (see e.g. Ts’o et al. [50]), one
can (i) measure the correlations between cells belonging to different hypercolumns;
(ii) compare the preferred orientation of a reference cell with the preferred orien-
tation of other cells; (iii) compute cross-correlograms. One verify that cells with
neighboring orientations are strongly correlated while cells with sufficiently different
orientations are decorrelated.

The key experimental fact is that, while short range connections inside a hyper-
column are isotropic, long range horizontal connections are on the contrary highly
anisotropic and restricted to cells sharing essentially the same orientation. These
two different types of connections implement two different levels of structure: (i) the
short range connections implement the local triviality of the fibration π : RP → M,
while (ii) the long range connections implement a richer structure.

Long range horizontal cortico-cortical connections insure the large scale coher-
ence of retinotopy. Without them, neighboring hypercolumns would become func-
tionally independent and retinotopy would lose any immanent reality for the system
itself. That cortico-cortical connections connect neurons of essentially the same ori-
entation in different hypercolumns means that the system is able to know, for (x′, y′)
different from (x, y), if an orientation θ at (x, y) is approximatively the same as an
orientation θ′ at (x′, y′).

The direction of the motion between points in the cotangent bundle T ∗M belongs
to the tangent space to the cotangent space. Since (x, y, θ, σ) are coordinates for
T ∗M , then (∂x, ∂y, ∂θ, ∂σ) is a tangent frame at the origin. On the other side the
group G acts on T ∗M, and the differential of the left traslation Lg of G by g (that
is the map h 7→ gh of G onto itself) allows to transport the standard basis of T0G to
a left invariant basis at any other point of the space. A direct computation shows
that this left invariant basis is precisely:





X1 = eσ (cos(θ)∂x + sin(θ)∂y)
X2 = ∂θ

X3 = eσ (− sin(θ)∂x + cos(θ)∂y)
X4 = ∂σ

The fact that the standard basis (∂x, ∂y, ∂θ, ∂σ) is not left invariant manifests
the crucial phenomenon of non holonomy.
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5.3. The symplectic structure and the scale as a gauge field. We will now
consider another classical stucture defined on the cotangent bundle T ∗M , namely
its symplectic structure.6 Indeed for every σ we have selected as fundamental 1-form
the 1-form defined in [9] and [41] :

ω = e−σ (− sin(θ)dx + cos(θ)dy) .

The subspace V = R2(x, y) × S1(θ) × {σ}, associated to the 1-form for a scale
σ, is a contact structure. We take then as symplectic form on T ∗M the 2-form
dω obtained by differentiating ω with respect to all its variables. The symplectic
2-form dω writes:

dω =
(
e−σ cos(θ)dx + e−σ sin(θ)dy

) ∧ dθ(−e−σ sin(θ)dx + e−σ cos(θ)dy
) ∧ dσ

= ω1 ∧ ω2 + ω3 ∧ ω4,

where ωi is the dual form of Xi. This form can be identified with the left invariant
2-form deduced by left translations from the standard 2-form on G at 0:

dx ∧ dθ + dy ∧ dσ.

5.4. The complex structure. It is well known that every symplectic structure
induces a complex structure. Let B be the matrix associated to the symplectic
form dω defined by dω(X, X ′) = 〈BX, X ′〉 7 for every pair (X,X ′) belonging to the
tangent plane T(x,y,θ,σ)G:

{
X = ξ∂x + η∂y + ϑ∂θ + ς∂σ

X ′ = ξ′∂x + η′∂y + ϑ′∂θ + ς ′∂σ

We have:

(7) B = e−σ




0 0 − cos(θ) sin(θ)
0 0 − sin(θ) − cos(θ)

cos(θ) sin(θ) 0 0
− sin(θ) cos(θ) 0 0


 .

By definition of a 2-form we have dω(X,X ′) = −dω(X ′, X), which implies that

B∗ = −B

(where B∗ is the transpose of B) since

dω(X, X ′) = 〈BX, X ′〉 = 〈X, B∗X ′〉 = 〈B∗X ′, X〉
= −dω(X ′, X) = −〈BX ′, X〉 .

From this it is clear that −B2 = BB∗ is non negative definite. In our case

−B2 = e−2σI,

where I is the identity map. Hence, if we write

P =
√
−B2 = e−σI,

and put
J = BP−1 = eσB,

6See Appendix B for the definition.
7〈A, B〉 is the scalar product on the tangent planes.
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it is clear that J2 = −I, which means that J defines a complex structure. In our
case

(8) J =




0 0 − cos(θ) sin(θ)
0 0 − sin(θ) − cos(θ)

cos(θ) sin(θ) 0 0
− sin(θ) cos(θ) 0 0


 .

Through J , all the tangent spaces of G = R2(x, y)×S1(θ)×R(σ) can be identified
with C2.

The complex/symplectic structure naturally associates the vector fields X1 and
JX1 = X2, and X3 and JX3 = X4. The planes {X1, X2} and {X3, X4} spanned by
X1, X2 and X3, X4 at a point (x, y, θ, σ) are complex lines in

(
T(x,y,θ,σ)G, J

) ' C2.

6. Filtering, symplectic geometry and shape analysis

6.1. Integral curves of special vector fields. Viewed in V with σ = σ0, {X1, X2}
is the contact plane C(x,y,θ)V . The integral curves of the contact structure C start-
ing at a fixed point (x0, y0, θ0, σ0) are tangent to the contact plane at every point.
They are called contact curves and write

(9) γ′(t) = X1(γ(t)) + k(t)X2(γ(t)), γ(0) = (x0, y0, θ0, σ0),

k being a parameter varying in R. In particular for k constant, the solution is




x = 1
k (sin(kt + θ0)− sin(θ0) + kx0)

y = 1
k (− cos(kt + θ0) + cos(θ0) + ky0)

θ = kt + θ0

σ = σ0

For k = 0 its projection on the (x, y) plane is the x axis and for k 6= 0 it is
a circle of radius 1/k tangent to the x axis (see figure 7 left). The emergence of
curvature in this context is strictly related to the curve detection model based on
curvature in [38].

If we take into account the scale σ, x and y are scaled by eσ while θ remains
the same. Analogously, we can consider the integral curves of the vector fields
X3 + kX4,

(10) γ′(t) = X3(γ(t)) + k(t)X4(γ(t)), γ(0) = (x0, y0, θ0, σ0).

The solution is 



x = − sin(θ0)
k eσ0

(
ekt − 1

)
+ x0

y = cos(θ0)
k eσ0

(
ekt − 1

)
+ y0

θ = θ0

σ = kt + σ0

Its projection on the (x, y) plane is independent of k and orthogonal to the direction
θ0. For k variable the integral curve is the line of slope k in the fixed “vertical”
plane {X3, X4} (see figure 7 right).

The projection of these two classes of integral curves on the base plane (x, y) is
plotted in figure 8. Their pattern is in good agreement with the pattern of long range
connections found both in neurophysiological and psychophysical experiments. In
fact, excitatory connections are confined to two regions, one flaring out along the
axis of orientation of the cell (co-axial, in blu), and another confined to a narrow
zone extending orthogonally to the axis of orientation (trans-axial, in red). The
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co-axial connections are similar to the “association field” proposed by Field, Hayes,
Hess [17] and are represented here as integral curves of the fields X1, X2 (see also
[9]). The symplectic model adds a second set of trans-axial excitatory connections
which extends orthogonally from the orientation axis of the cell. There is anatomical
evidence consistent with the existence of this orthogonal connections ([18], [31], [35],
[43], [44]). The trans-axial connections are represented here as integral curves of
the fields X3, X4. The reason why co-axial connections spread out in a fan, while
trans-axial connections are more spatially focused is that the roto-translation fields
X1, X2 not only don’t commute but their commutator is linearly independent from
them:

[X1, X2] = −X3,

while the vectors X3, X4 don’t commute but their commutator is linearly dependent
upon them:

[X3, X4] = −X3.

Then integral curves of roto-translation fields are not planar (figure 8, left) while
integral curves of X3, X4 belong to a plane (figure 8, right) whose projection on the
(x, y) plane is just a line (red line in figure 8, right).
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Figure 7. Integral curves respectively of the (X1, X2) and
(X3, X4) vector fields.

6.2. Liftings and Lagrangian manifolds. Let us now return to the lifted sets
described in section 3 and see how we can interpret them relatively to the symplectic
structure we have just defined.

We associated to each point (x, y) of the retinal plane, values θ̄ and σ̄ which we
have interpreted as the direction of the nearest boundary and (a function of) the
distance from the center of the filter to this boundary. Let us consider the example
of figure 9, that of a white ellipse E on a black boundary. The boundary ∂E is
lifted as in the contact structure and gives the boundary of the down left ellipse.
The gray levels code the values of θ periodically from 0 (black) to π (white). But
due to the scale factor σ, we can lift not only the boundary ∂E but every point
(x, y) of the base. We generate that way a surface in G: Σ = {(x, y, θ̄, σ̄). As we
have shown in section 4, Σ is a part of the extremal surface where the gradient of
the output O(x, y, θ̄, σ̄) vanishes:

Σ̄ =
{
(x, y, θ̄, σ̄) : ∂θO(x, y, θ̄, σ̄) = 0, ∂σO(x, y, θ̄, σ̄) = 0,Hess(O) < 0

}
,
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Figure 8. The projection of the integral curves of the symplectic
structure on the retinal plane (left) reveals the pattern of co-axial
and trans-axial connections found by neurophysiological experi-
ments (right, from [47]).

where Hess denote the hessian Matrix of the functin O.
The condition on the Hessian ensures that Σ̄ is a regular manifold. This locally

defines θ̄ and σ̄ as two functions θ̄(x, y) and σ̄(x, y) on the base plane.
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Figure 9. Up center: an example of lifting of an ellipse. Down:
the corresponding fields of selected orientation θ̄ (left) and scale σ̄
(right). The exterior structure has been cancelled for graphical
reasons.

From the properties of the two functions θ̄, σ̄, we can deduce interesting prop-
erties of Σ relative to the symplectic structure, at least under the assumptions of
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Theorem 1 of section 4. Indeed, according to this theorem θ̄(x, y) is the direction
of the nearest boundary ∂E and σ̄(x, y) (up to a factor) the distance of (x, y) to
this boundary. This implies that the projections of the level curves of θ̄(x, y) are
orthogonal to the boundary ∂E and dually that the level curves of σ̄(x, y) are par-
allel to ∂E (see figure 10). In other words, the filtering of the indicatrix function
of the set E by the family of filters Ψ(x,y,θ,σ) realizes the well-known propagation
of the boundary by the eikonal equation of geometrical optics: the boundary prop-
agates as parallel wave fronts and its points generate rays orthogonal to the fronts.
We can call it a Huyghens model. The singularities of the propagation generate
the so called “cut locus” or symmetry axis of the shape. The symmetry axis of a
shape, which is so fundamental for its morphological analysis, segmentation, and
recognition as was shown since Harry Blum’s pioneering works (Blum [4]) by René
Thom, David Marr, David Mumford, Steve Zucker, James Damon and many others
(see Petitot [39] and Kimia [27]), has therefore a neurophysiological relevance in
our model. It is not surprising since symplectic structures constitute the framework
of Hamiltonian mechanics and the Huyghens model (propagation of rays and wave
fronts) is universal in Hamiltonian systems. As far as a symplectic structure is
neurally implemented in V1 it is natural to observe Hamiltonian structures such as
symmetry axes.

Consider now a point (x, y) in the base space M . θ̄(x, y) and σ̄(x, y) are as in
figure 10:

X1 = eσ̄
(
cos(θ̄)∂x + sin(θ̄)∂y

)

is parallel to the orientation of the boundary ∂E at the point of minimal distance
σ̄ and therefore

X1 (σ̄) = 0
Analogously,

X3 = eσ̄
(− sin(θ̄)∂x + cos(θ̄)∂y

)

is orthogonal to the orientation of this nearest boundary and it is constant along
this direction θ̄. Therefore:

X3

(
θ̄
)

= 0

From these relations we can deduce that

Theorem 2. The tangent plane to the surface Σ belongs to the kernel of the sym-
plectic form dω at every point (x, y, θ̄, σ̄).

Proof. We compute first the tangent plane to the lifted surface Σ at (x, y, θ̄, σ̄).
In the basis {X1, · · · , X4} it is spanned by the two vectors

{
X1 + X1θ̄X2 + X1σ̄X4

X3 + X3θ̄X2 + X3σ̄X4

On the other side the symplectic 2-form dω can be represented as

dω = ω1 ∧ ω2 + ω3 ∧ ω4

with {ω1, · · · , ω4} the dual basis of {X1, · · · , X4}. Hence, applying the two form
to the tangent vectors we get

(
ω1 ∧ ω2 + ω3 ∧ ω4

)(
X1 + X1θ̄X2 + X1σ̄X4, X3 + X3θ̄X2 + X3σ̄X4

)
=

X3θ̄ −X1σ̄.
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Figure 10. Level curves of θ̄(x, y) (blue) and σ̄(x, y) (red).

But as X1σ̄ = X3θ̄ = 0, we see that the tangent vector fields annihilate the sym-
plectic form

¤

Definition 1. Let (G,Ω) be a symplectic 4-dimensional manifold. A (smooth) sur-
face Σ of G is called Lagrangian if Ω |TΣ≡ 0.

Corollary 1. The lifted surface Σ is Lagrangian.

6.3. Boundaries and objects: 1- and 2-forms. If we fix the value of the scale
σ, we obtain a simplified model, only dependent on orientation, but independent
of the scale. The lifted surface simply reduces to a curve Γ lifting the boundary
∂E in the roto-translation group and called the Legendrian lift of ∂E and we find
again the situation studied in [9]. In this paper it was proved that the tangents to
the lifted curve Γ all lie in the so called contact planes which turn out to be the
kernels of the 1-form

ω = − sin(θ)dx + cos(θ)dy.

In previous paper [40] , [41] it has been proposed a linearized version of the same
form.

The analogous result for surfaces is contained in the previous theorem, since the
lifted surface is Lagrangian with respect to the 2-form dω.

7. Conclusion

We have shown how to filter a contour using a family of filters derived from a
mother filter whose receptive profile is that of a simple cell of V1. This family is
an homogeneous space under the action of the group G(x, y, θ, σ) of translations,
rotations, and scaling of the retinal plane M . The horizontal cortico-cortical con-
nections implement the natural G−invariant symplectic structure of this space.
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We have then shown that the maximal response of the filters to an input contour
∂E computes at every point (x, y) of M the nearest distance d(σ̄) of (x, y) to
∂E and the orientation θ̄ of ∂E at its nearest point to (x, y). The lifted surface
Σ = {(x, y, θ̄, σ̄)} is a Lagrangian surface and realizes the Huyghens model (rays
and wave fronts propagation) of the contour ∂E, propagation whose singularities
constitute the cut locus (the symmetry axis) of the shape E.

8. Appendix A - Proof of theorem 1

We give a simple sketch of the proof using the fact that I is the indicatrix function
of a set E with regular boundary ∂E, i.e. is 1 inside the set E and −1 outside.
Hence the gradient ∇I vanishes out of the boundary ∂E.

It is not restrictive to consider a fixed cell Ψ(0,σ)(ξ, η). As Ψ(0,σ)(ξ, η) is consid-
ered to be defined on the tangent plane TOM , we compute the result up to the first
order approximation. Then

Ψ(0,σ)(ξ, η) =
1

e2σ
e−(ξ2+η2)/e2σ

cos(2η/eσ) ' 1
e2σ

e−(ξ2+η2)/e2σ

(
1− 2

η2

e2σ

)

But it is trivial to verify that

1
e2σ

e−(ξ2+η2)/e2σ

(
1− 2

η2

e2σ

)
= ∂η

(
1

e2σ
ηe−(ξ2+η2)/e2σ

)

and therefore, up to first order approximation,

(11) Ψ(0,σ)(ξ, η) ' ∂η

( η

e2σ
e−(ξ2+η2)/e2σ

)

In our case the tangent vector X3 = eσ (− sin(θ)∂x + cos(θ)∂y) reduces to X3 =
eσ∂η at O. Hence, if we denote by K(0,σ)(ξ, η) the function on TOM

K(0,σ)(ξ, η) =
η

e3σ
e−(ξ2+η2)/e2σ

,

we get

Ψ(0,σ)(ξ, η) = eσ∂η

( η

e3σ
e−(ξ2+η2)/e2σ

)
= X3

(
K(0,σ)(ξ, η)

)
.

Hence the output O(0, 0, 0, σ) is given by

O(0, 0, 0, σ) =
∫

M

X3

(
K(0,σ)(ξ, η)

)
I(ξ, η)dξdη

and, integrating by parts, we get

O(0, 0, 0, σ) = −
∫

M

K(0,σ)(ξ, η)X3 (I(ξ, η)) dξdη

since K(0,σ)(ξ, η)I(ξ, η) vanishes at infinity.
Since I is the indicatrix function of E, its gradient∇I vanishes inside and outside

E, and can be represented, as a Dirac mass concentrated on ∂E, with the direction
of the outer normal ν of E: ∇I = νδ|∂E . Then, if 〈• | •〉 is the scalar product, we
have X3 (I) dξdη = 〈X3 | ∇I〉 = 〈X3 | ν〉 δ|∂E = (since X3 and ω are dual one of
each other) = 〈ω, ν〉 = ω(ν). We get finally that

O(0, 0, 0, σ) = −
∫

∂E

K(0,σ)(ξ, η)ω(ν)δ|∂E .
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Since ω is the dual form of X3, ω vanishes for the direction X1, reaches it
maximum e−σ for the orthogonal direction X3 and its minimum −e−σ for the
opposite direction −X3. The value ω(ν) is therefore extremal when the boundary
∂E is of orientation θ = 0.

As for K(0,σ)(ξ, η) we have

K ′
(0,σ)(0, η) =

(−2η2e−2σ + 1
)
e−3σ−η2/e2σ

and K ′
(0,σ)(0, η) vanishes for

η =
1√
2
eσ

Up to first order approximation, we can suppose that the regular boundary ∂E is
an horizontal line η = cst. Then

O(0, 0, 0, σ) = −
∫

∂E

K(0,σ)(ξ, η)ω(ν)δ|∂E

= −
∫

R
K(0,σ)(ξ, η)e−σdξ

= −√π
η

e3σ
e−η2/e2σ

.

It is proportional to K(0,σ)(0, η) = η
e3σ e−η2/e2σ

and reaches it maximum

√
π

1√
2
eσ 1

e3σ
e
−

(
1√
2
eσ

)2
/e2σ

=
√

π

2
1

e(2σ+ 1
2 )

when K(0,σ)(0, η) reaches it minimum.
The integral O(0, 0, 0, σ) will therefore reach its maximum

√
π

2
1

e(2σ+ 1
2 )

when K(0,σ) attains its maximum on ∂E, and −X3 and ν coincide. The orientation
θ = 0 is the orientation of the boundary, while K(0,σ) is maximum at the point (ξ, η)
which have distance d(σ) = 1√

2
eσ to the boundary ∂E. This argument is local, but

in order to see that the maximum is reached at the nearest boundary, we fix the
direction of Ψ and we vary the scale. Since Ψ has null mean, the integral defining
O tends to 0 when the scale tends to 0 and the filter Ψ tends to concentrate on
the support of the image I. Hence increasing the value of the scale, the integral
increases until the first zero of Ψ cross the boundary of I. At this point the integral
start decreasing again. Hence the maximum is reached when θ is the orientation of
the nearest boundary. ¤

9. Appendix B. - Differential geometry instruments

Let us briefly recall the definition of some mathematical concepts used in the
paper.

By simplicity we give all definitions in R2. The definitions in vector spaces of
higher dimension is analogous. If the local parametric equation of a curve γ is
(x(t), y(t)) then its tangent vector at a point (x(t), y(t)) will be

~X = (α1(t), α2(t)) = (x′(t), y′(t)).
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Figure 11. The shape of the function K(0,σ). Note that, since the
derivative of K(x,y,θ,σ) is the even filter Ψ(x,y,θ,σ), then K(x,y,θ,σ) is
an odd filter. Left: it reaches its maximum at a distance d(σ) =
eσ/

√
2 from the center. Center: the choice of K(x,y,θ,σ) which

maximizes the output O. Recall that the function K has been
choosen in such a way that its derivative is the filter Ψ(x,y,θ,σ).
Right: the corresponding shape of Ψ(x,y,θ,σ), which vanishes where
K(x,y,θ,σ) is maximum.

If we identify the curve γ with the trajectory of a point, the tangent vector ~X
describes the direction of the motion at every point.

Definition 2. Tangent space. The set of tangent vectors is denoted T(x,y)M,
and it is a plane, called tangent plane at M at the point (x, y).

At every tangent vector ~X = (α1, α2) we can associate the directional derivative
along the vector ~X, and we denote it with a similar symbol (where ∂x means ∂

∂x ):

X = α1∂x + α2∂y.

With this identification the basis of the tangent space T(x,y)M at (x, y) is (∂x, ∂y).

Definition 3. Cotangent space. Linear functions defined on the tangent space
at a point (x, y) are called 1-forms, or cotangent vectors. The set of 1-forms at a
point (x, y) is denoted T ∗(x,y) and it is a vector space of dimension 2. Its basis is
denoted (dx, dy). This means that a general 1-form can be expressed as

ω = ω1dx + ω2dy.

By definition, a form is a function defined on the tangent space, and, being linear
the action is formally analogous to a scalar product:

ω(X) = ω1α1 + ω2α2.

However this operation is called duality, instead of scalar product, since it acts
between different spaces: ω1, ω2, are coefficients of a 1-form and α1, α2 coefficients
of a tangent vector.
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Example 1. The simplest example of a 1-form is the differential of a regular func-
tion f , which can be represented as

df =
∂f

∂x
dx +

∂f

∂y
dy.

Hence it is expressed in terms of the standard basis dx, dy.
Applying the 1-form df to a tangent vector X = (α1, α2), we obtain the direc-

tional derivative of f , which can be considered the projection of the differential in
the direction X.

df(X) = α1∂xf + α2∂yf.

We can as well give a notion which generalize the idea of orthogonal and parallel
vectors, using the duality in place of the scalar product. Given a form ω = ω1dx +
ω2dy, its dual vector field is the vector field which has the same components: X =
ω1∂x + ω2∂y, formally being parallel to ω. The kernel of the 1-form ω is the set of
vector X such that

ω(X) = 0.

In the model of odd cells we considered the 1- form

− sin(θ)dx + cos(θ)dy.

It is easy to see that the vector fields

X1 = cos(θ)∂x + sin(θ)∂y, X2 = ∂θ

are orthogonal to ω, so that they belong to the kernel of ω.
The kernel of a 1-form is a subset of the tangent plane. For this reason the action

of simple cells receptive profiles on the image can be modeled as the selection of
tangent vector (to the level lines) by a 1-form. In particular, the vector X1 which
describes the direction of the level lines of the image belongs to the kernel of the
form ω.

Up to now we have fixed the point (x, y) and considered the tangent space T(x,y)

to M at the point (x, y). We can now vary the point (x, y). The union of all tangent
spaces is called the tangent bundle of M :

TM =
⋃

(x,y)∈M

T(x,y).

A point of the tangent bundle is denoted

(x, y, α1, α2),

where (x, y) ∈ M and (α1, α2) belongs to the tangent space at the point (x, y).
Then we have a natural projection

π : TM → M π(x, y, α1, α2) = (x, y).

More generally let us now define a fiber bundle, which is the mathematical
structure proposed to describe the hypercolumnar structure.

Definition 4. Fiber bundle. A fiber bundle is defined by two differentiable man-
ifolds M and C, a group G, and a projection π. C and M are called respectively
base space and total space.

The total space is locally described as a cartesian product

C = M ×G,
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meaning that at every point (x, y) ∈ M is associated a whole copy of the group G,
called the fiber. The function π is a surjective differential map, which locally acts
as follows

π : M ×G → M π(x, y, g) = (x, y),
where g is an element of G. In the paper the base space is implemented in the
retinal space and the total space in the cortical space. Particularly the group G of
rotations and scales to the point (x, y) is implement in an hypercolumn over the
same point.

Definition 5. Section of a fiber bundle. A function

Σ : (x, y) → (x, y, ḡ)

defined on the base space M with values in the fiber bundle is called a section of the
fiber bundle. In other words a section is the selection of a point on a fiber.

In the model introduced here we associate to each point (x, y) of the retinal plane
an orientation and scale value, i.e. a point (θ̄, σ̄) in the feature space, defining a
section of the cortical bundle

Σ : (x, y) → (x, y, θ̄, σ̄)

The geometrical tools and bundles described up to now can be used to define
complex geometrical structures.

Contact geometry is the study of a geometric structure on smooth manifolds
given by a hyperplane distribution in the tangent bundle. This hyperplane can be
specified by an orthogonal vector, or, more precisely by an orthogonal 1-form:

Definition 6. Contact structure. A contact structure is an odd dimensional dif-
ferentiable structure with a 1 form ω, which satisfies a ’maximum non-degeneracy’
condition

ω ∧ (dω)n 6= 0

Starting with a contact structure ω a classical way to define a symplectic struc-
ture is to multiply ω by a real variable ω1 = αω and differentiatng ω1. Note that
Ω = dω1 is a 2-form such that dΩ = 0. It can be expressed in terms of the standard
basis

Ω = Ωijdxi ∧ dxj

The space is now even-dimensional, since we add the extra variable α. Hence
the formal definition of a symplectic structure is the following:

Definition 7. Symplectic structure. A symplectic form Ω on an even manifold
M is a nondegenerate, closed two-form

Ω = Ωijdxi ∧ dxj .

Explicitly, nondegeneracy of the form means that the matrix Ωij is a skew-symmetric
and non-singular matrix, i.e., with non vanishing determinant. The requirement
that Ω is closed, means that

dΩ = 0
where d is the exterior derivative.
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The simplest example of a symplectic form is∑

i

dxi ∧ dyi,

in a complex space {(x1 + iy1 · · ·xn + iyn)}. In this case the 2-form expresses the
coupling of the variables xi with the correspondent variables yi in the complex
structure.
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