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Introduction

At the end of August 1993 at the XIXth International Congress of
History of Science organized in Zaragoza by my colleague Jean
Dhombres, I gave a talk “Théorème de Fermat et courbes
elliptiques modulaires”[45] in a workshop organized by Marco
Panza. It was about the recent (quasi)-proof of the
Taniyama-Shimura-Weil conjecture (TSW ) presented by Andrew
Wiles in three lectures “Modular forms, elliptic curves, and Galois
representations” at the Conference “p-adic Galois representations,
Iwasawa theory, and the Tamagawa numbers of motives” organized
by John Coates. at the Isaac Newton Institute of Cambridge on
June 21-23, 1993.
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But the proof, which, as you know, implies Fermat Last Theorem
(FLT), was not complete as it stood and contained a gap pointed
out by Nicholas Katz (who, by the way, was one of the unique
colleagues of Wiles at Princeton brougth into confidence).

It has been completed in a joined work with Richard Taylor
(September 19, 1994: “I’ve got it!”), sent to some colleagues
(including Faltings) on October 6, 1994, submitted on October 25,
1994, and published in 1995 [73] and [74].

Until 1997, I attended the Bourbaki seminars of Serre [55] and
Oesterlé [44] at the Institut Henri Poincaré, worked a lot to
understand the proof, and gave some lectures on it.

Today, I will use this old technical stuff on TSW but with a new
focus.
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In a presentation of the proof, Ram Murty ([41], p.1) speaks of
“Himalayan peaks” that hold the “secrets” of such results. I will
carry this excellent metaphor further.

The mathematical universe is like an Hymalayan mountain chain
surrounded by the plain of elementary mathematics. A proof is like
a path and a conjecture is like a peak or the top of a ridge to be
reached. But not all paths are “conceptualizable” i.e. conceptually
describable. Valleys are “natural” mono-theoretical
conceptualizable paths.

But, if the conjecture is “hard”, its peak cannot be reached along
a valley starting from scrach in the plain. One has to reach internal
“hanging valleys” suspended over lower valleys. This corresponds
to the abstraction of relevant abstract structures. One has also to
change valley using saddles, tunnels, passes, canyons, and also
conceptual crossroads. One can also follow ridges between two
valleys (two theories).
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What is essential is that all these routes are internal to the whole
Himalayan chain, and it is here that Lautman’s concept of unity of
mathematics enters the stage (Lautman is my hero in philosophy
of mathematics).

A conceptually complex proof is a very uneven, rough, rugged
multi-theoretical conceptualizable route.
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It is this holistic nature of a complex proof which will be my main
purpose. It corresponds to the fact that, even if FLT is very simple
in its formulation, the deductive parts of its proof are widely
scattered in the global unity of the mathematical universe. As was
emphasized by Israel Kleiner ([31], p.33):

“Behold the simplicity of the question and the complexity
of the answer! The problem belongs to number theory –
a question about positive integers. But what area does
the proof come from? It is unlikely one could give a
satisfactory answer, for the proof brings together many
important areas – a characteristic of recent
mathematics.”
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Wiles proof makes an extremely long detour to connect FLT with a
great conjecture on elliptic curves, the Taniyama-Shimura-Weil
conjecture (TSW ). As was emphasized by Barry Mazur ([37], p.
594):

“The conjecture of Shimura-Taniyama-Weil is a
profoundly unifying conjecture — its very statement hints
that we may have to look to diverse mathematical fields
for insights or tools that might leads to its resolution.”.

In the same paper, Mazur adds:

“One of the mysteries of the Shimura-Taniyama-Weil
conjecture, and its constellation of equivalent
paraphrases, is that although it is indeniably a conjecture
“about arithmetic”, it can be phrased variously, so that:
in one of its guises, one thinks of it as being also deeply
“about” integral transforms in the theory of one complex
variable; in another as being also “about” geometry.”
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All these quotations point out that the proof unfolds in the
labyrinth of many different theories.

In many cases, it is possible to formulate “translations” as functors
from one category to another (as in algebraic topology). One can
say that a “direct and simple” proof is a sequence of deductive
steps inside a single category, while an “indirect and complex”
proof is a proof using many functorial changes of category.

But we need a lot of other conceptual operations to reach a correct
comprehension of what is traveling inside the unity of mathematics.
Albert Lautman was the first to investigate this problem.
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Kummer’s cyclotomic route

I will not go into the classical history of FLT, which is a true
Odyssea. As you know, the first great general result (“general”
means here for an infinite number of primes) is due to Kummer
and results from the deep arithmetic of cyclotomic fields.

The case n = 4 was proved by Fermat himself using a “descent
argument” based on the fact that if (a, b, c) is a Pythagorean
triple (that is a triple of positive integers such that a2 + b2 = c2),
then the area ab/2 of the right triangle of sides a, b, c cannot be a
square.

Then, during what could be called an “Eulerian” period, many
particular cases where successively proved by Sophie Germain,
Dirichlet, Legendre, Lamé, etc. using a fundamental property of
unique factorization of integers in prime factors in algebraic
extensions of Q. But this property is not always satisfied.

J. Petitot The unity of mathematics



FLT for regular primes

In 1844 Ernst Kummer was able to abstract the property for a
prime l to be regular, proved FLT for all regular primes and
explained that the irregularity of primes was the main obstruction
to a natural algebraic proof. As you know, it is for this proof that
Kummer invented the concept of “ideal” number and proved his
outstanding result that unique factorization in prime factors
remains valid for “ideal” numbers.

After this breakthrough, a lot of particular cases of irregular primes
were proved which enabled to prove FLT up to astronomical l ; and
a lot of computational verifications were made. But no general
proof was found.
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As reminded by Henri Darmon, Fred Diamond and Richard Taylor
in their 1996 survey of Wiles ([12], p.4):

“The work of Ernst Eduard Kummer marked the
beginning of a new era in the study of Fermat’s Last
Theorem. For the first time, sophisticated concepts of
algebraic number theory and the theory of L-functions
were brought to bear on a question that had until then
been addressed only with elementary methods. While he
fell short of providing a complete solution, Kummer made
substantial progress. He showed how Fermat’s Last
Theorem is intimately tied to deep questions on class
numbers of cyclotomic fields.”
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For l a prime number > 2, Kummer’s basic idea was to factorize
Fermat equation in the ring Z[ζ] where ζ is a primitive l-th root of
unity and to work in the cyclotomic extension Z[ζ] ⊂ Q(ζ). This
route was opened by Gauss for l = 3 (ζ = j).

In Z[ζ] we have the factorization into linear factors

x l − 1 =

j=l−1∏
j=0

(
x − ζ j

)
.

The polynomial

Φ(x) = x l−1 + . . .+ x + 1 =

j=l−1∏
j=1

(
x − ζ j

)
(beware: j = 1)

is irreducible over Q and is the minimal polynomial defining ζ
(Φ(ζ) = 0). We note that Φ(1) = l .
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The conjugates of ζ are ζ2, . . . , ζ l−1,

Q(ζ) is the splitting field of Φ(x) over Q and Q(ζ)/Q is a
Galois extension of degree [Q(ζ) : Q] = l − 1.

Z[ζ] has for Z-base 1, ζ, . . . , ζ l−2.

The prime l is totally ramified in Z[ζ].

More precisely, (1− ζ) is a prime ideal of Z[ζ], the quotient
Z[ζ]/(1− ζ) is the finite field Fl and there exists some unit u s.t.

l = u(1− ζ)l−1 (product of elements)

(l) = (1− ζ)l−1 (product of ideals)

since the uj = (1− ζ j)/(1− ζ) = 1 + ζ + . . .+ ζ j−1 are units.

Z[ζ] is a unique factorization domain for l ≤ 19 but not for
l = 23 (it was a great discovery of Kummer).
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Let us remind here some general conceptual properties of finite
algebraic extensions which are at the origin of abstract algebra.
They provide a structural picture enabling to manage intractable
concrete computations.

Let K/Q be a finite algebraic extension of degree d . There are
prime ideals p of OK (the ring of integers of K ) over p (i.e.
p ∩ Z = (p), notation p | (p)).

Polynomials irreducible over Q can become reducible and factorize
over K . So, (p) splits in OK as a product of primes

pOK =

j=r∏
j=1

p
ej

j with pj | (p)

and we have

OK/pOK =

j=r⊕
j=1

OK/p
ej

j .
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As you know, three types of numbers are essential to understand
the behavior of the primes p in K .

1 The number r of factors: it as to do with the decomposition
of (p).

2 The exponents ej are called the degrees of ramification of the
pj in K/Q. The extension K/Q is said unramified at pj if
ej = 1, and K/Q is said unramified at p if it is unramified at
any pj | (p), i.e. if all ej = 1.

3 The residue field OK/pj is an algebraic extension of Fp of
degree fj called the residue or inertia degree. Therefore
OK/pj = F

p
fj
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These numbers are linked by a fundamental relation:

j=r∑
j=1

ej fj = d .

If K/Q is Galois (i.e. Q is the subfield fixed by the automorphism
group of K/Q), then the Galois group Gal (K/Q) acts transitively
upon the pj and conjugate the r factors. All the ramification
degrees are the same, ej = e, and the same applies for the inertia
degrees fj = f . The fundamental relation becomes:

ref = d .
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Three cases are particularly interesting:

1 e = d , and f = r = 1. (p) is not decomposed, pOK = pd and
OK/p =Fp. The prime p is said totally ramified in K .

2 r = d , and e = f = 1. In that case, (p) is said totally

decomposed, pOK =
j=d∏
j=1

pj , OK/pj=Fp, and

OK/pOK =
⊕j=n

j=1 Fp.

3 f = d , and e = r = 1. In that case, p is said inert in K ,
which means that p remains prime in OK . But now, the
residue field is OK/pOK = Fd

p .
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The three properties: decomposition, ramification, and inertia can
be easily red on subgroups of the Galois group Gal (K/Q), and
therefore, via the Galois correspondance, on intermediary
extensions K/L/Q.

If g ∈ Gal (K/Q), then g acts on the residue fields as

g : OK/pj → OK/g (pj) .

So, if g fixes pj , then g ∈ Gal ((OK/pj) /Fp). These g stabilizing
pj consitute the decomposition group D = Dpj of pj and the kernel
I = Ipj of g 7→ g (i.e. g acts trivially on the residue field) is called
the inertia group of pj .
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D fixes a sub-extension KD/Q of K/Q and defines an extension
K/KD which is the smallest extension K/KD/Q where the prime
qj = pj ∩ OKD does not split because the complete possible
decomposition of pj in OK is already done in OKD .

KD is called the decomposition field of p in K .

The prime p is totally decomposed in KD and therefore[
KD : Q

]
= r .

The inertia subgroup I corresponds to a sub-extension K I of K
which is also an extension of KD .
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So we have the tower of extensions K/K I/KD/Q.

1 KD/Q explains decomposition.

2 K I/KD explains inertia, that is qj (above p and under pj)
remains inert between KD and K I .

3 And finally, K/K I explains ramification: all the qj become
totally ramified as p

ej

j .
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d pj K

ramification e j ↓ K/K I is the source of ramification
b
d qj K I

inertia f j ↓ K I/KD is the source of inertia
b
d qj KD

decomposition r ↓ KD/K is the source of decomposition
b p Q
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For the cyclotomic field Q (ζ), there exist three simple behaviors
for natural primes p in Z [ζ] (there exists a more complicated 4-th
case).

1 If p = l = u. (1− ζ)l−1, then p is totally ramified.

2 If p ≡ 1 mod l , then p is totally decomposed.

3 If f = p − 1, e = 1, then p is inert.
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In Z[ζ] we get the decomposition

z l = x l + y l =

j=l−1∏
j=0

(
x + ζ jy

)
.

If, in Z[ζ], the unique factorization of an integer in prime factors
(UF) were valid, then we would use the fact that all the factors(
x + ζ jy

)
are l powers and we would conclude. But, in Z[ζ], UF is

not necessarily true. However, Kummer proved it remains valid for
ideals.

To prove FLT in this context, we suppose that a non trivial
solution (a, b, c) exists and we look at its relations with the prime
power l . In the computations the property of “regularity” enters
the stage to derive impossible congruences.
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Case I

Suppose first that x and y are prime to l . This implies that the
ideals

(
x + ζ jy

)
are relatively prime.

As the product of the
(
x + ζ jy

)
is the l-th power (z)l , each(

x + ζ jy
)

is therefore a l-th power and we have in particular

(x + ζy) = al

which shows that al is a principal ideal.

It is here that the property of regularity enters the stage.
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Intuitive definition. l is a regular prime if when a l-th power al

of an ideal a is principal a is already itself a principal ideal.

Technical definition. l is a regular prime if it doesn’t divide
the class number hl of the cyclotomic field Q(ζ), the class
number hl “measuring” the failure of UF in Z[ζ].

As al is principal, if l is a regular prime, a is principal: a = (t),
(x + ζy) = (t)l and there exists therefore some unit u in Z[ζ] s.t.

x + ζy = ut l .

The idea is then to compare x + ζy with its complex conjugate
x + ζy using congruences mod l in Z[ζ].
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Using the fact that
{

1, ζ, . . . , ζ l−2
}

is an integral basis of Z[ζ] over

Z and developing t as t =
∑i=l−2

i=0 τ iζ
i , one shows first that t l ≡ t̄ l

mod lZ[ζ]. Secondly, using a lemma of Kronecker, one shows that
u being a unit, there exists j s.t. u

ū = ζ j . One concludes that

x + ζy = ut l = ζ j ūt l ≡ ζ j ūt̄ l mod lZ[ζ] ≡ ζ j
(
x + ζy

)
mod lZ[ζ]

(C)
We get therefore mod lZ[ζ] a linear relation between 1, ζ, ζ j , ζ j−1

(we use ζ jζ = ζ j−1) with integral coefficients x , y coming from the
supposed solution (x , y , z) of Fermat equation.

But the congruence (C) is impossible. Indeed if 1, ζ, ζ j , ζ j−1 are
different powers then then they are independent in Z[ζ] over Z.
When it is not the case (j = 0, j = 1, j = 2, j = l − 1), one proves
the particular cases.
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Case II

The real difficulty is the case II when one of x , y , z is divided by l . I
will skip it here.

Kummer’s proof is marvelous and played a fundamental role in the
elaboration of modern arithmetical tools. Its essential achievement
is to do arithmetic no longer in Z but in the ring of integers Z[ζ] of
the cyclotomic field Q(ζ). But it remains a proof developed inside
a single theory, namely algebraic number theory.
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In Summer 1847, Kummer not only proved FLT for l regular but,
reinterpreting a formula of Dirichlet, gave a deep criterion for a
prime l to be regular. As Edwards emphasizes [20], this

“must be regarded as an extraordinary tour de force.”

Characterization of regular primes. A prime l is regular iff it
doesn’t divide the numerators of any of the Bernouilli numbers
B2,B4, . . . ,Bl−3.

For instance 37 is an irregular prime since 37 divides the numerator
7709321041217 of B32 and 32 < 37− 3 = 34.

Bernouilli numbers are defined by the series

x

ex − 1
=

n=∞∑
n=0

Bn
xn

n!
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They are also defined by the recurrence relations B0 = 1,
1 + 2B1 = 0, 1 + 3B1 + 3B2 = 0, 1 + 4B1 + 6B2 + 4B3 = 0,
1 + 5B1 + 10B2 + 10B3 + 5B4 = 0

(n + 1) Bn = −
k=n−1∑
k=0

(
n + 1

k

)
Bk

where the binomial coefficients
(n
k

)
= n!

(n−k)!k! .

We have B1 = −1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 , B5 = 0, B6 = 1

42 ,
B7 = 0, etc. All the Bn for n > 1 odd vanish.

A theorem due to Von Staudt and Claussen asserts that the
denominator Dn of the Bn are the product of the primes such that
(p − 1) | n. In fact, B2k +

∑
p s.t. p−1|2k

1
p is a rational integer and

p | D2k iff (p − 1) | 2k and then pB2k ≡ −1 mod p.
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Bernouilli numbers are ubiquitous in arithmetics and closely related
to the values of Riemmann Zeta function (see below) at even
integers 2k and negative odd integers 1− 2k (k > 0):

ζ(2k) = (−1)k−1 (2π)2k B2k

2(2k)!
, ζ(1− 2k) = −B2k

2k

For instance, in the case k = 1, we find
ζ(2) =

∑
n≥1

1
n2 = 4π2

2.2 B2 = π2

6 and in the case k = 2, we find

ζ(4) =
∑

n≥1
1
n4 = −16π4

2.24 B4 = π4

90 , values Euler already knew.
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Kummer theorem, which in that sense is deeply linked with
Riemann ζ function, follows from the fact that if K + is the
maximal real subfield Q

(
ζ + ζ

)
(ζ = ζ−1) of Q(ζ) and h+ the

class number of K + then h = h+h−, h+ being computable in terms
of special units (it is a difficult computation) and h−, called the
relative class number, in terms of Bernouilli numbers: l | h− iff l
divides the numerators of the Bernouilli numbers B2,B4, . . . ,Bl−3.

If l is regular l - h and therefore l - h−. Kummer proved also that
l | h+ implies l | h− and therefore l2 | h and also l | h⇔ l | h−.
The Kummer-Vandiver conjecture claims that in every case l - h+

and that l is irregular iff l | h−. It has been verified up to
l < 227 = 134 217 728 by David Harvey.
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Further advances along the cyclotomic route

After Kummer’s intensive and extensive computations and
theoretical breakthrough, many people devoted a lot of works to
the incredibily more complex irregular case, trying to deepen the
knowledge of the structure of cyclotomic fields (see Washington’s
book [70] and Rosen’s survey [49]).

Kummer himself weakened his regularity condition and succeeded
in proving FLT for l < 100 because the irregular primes < 100,
namely 37, 59, and 67 satisfy these weaker criteria. But such
criteria are extremely computation consuming.

This point is particularly interesting at the epistemological level.
Kummer’s systematic computations for l regular opened the way to
abstract structural algebra à la Dedekind-Hilbert.
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A particularly important work on the cyclotomic route were that of
Harry Schultz Vandiver (1882-1973) who proved in the late 1920s
that if the Bernouilli numbers Bi for i = 2, 4, . . . , l − 3 are not
divisible by l3 and if l - h+

l then the second case of FLT is true for l .

Vandiver proposed also a key conjecture:

Vandiver conjecture: l - h+
l .

Vandiver began to use such criteria “to test FLT
computationnally” (Rosen [49]) and, with the help of Emma and
Dick Lehmer for computations, proved FLT up to l ∼ 4.000 and, in
Case I, for l < 253.747.889.
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In beautiful papers, Leo Corry [9] and [10] analyzed the
computational aspects of FLT after the introduction of computers.

In 1949 John von Neumann constructed the first modern
computer ENIAC. As soon as 1952 E. and D. Lehmer used
softwares implementing the largest criteria for proving FLT,
first with ENIAC, then at the NBS (National Bureau of
Standards) with SWAC (Standards Western Automatic
Computer, 1.600 additions and 2.600 multiplications per
second).

They discovered new irregular primes such as 389, 491, 613,
and 619. To prove that 1693 is irregular took 25mn.

In 1955, to prove FLT for l < 4, 000 took hundred hours of
SWAC.

In 1978, Samuel Wagstaff succeeded up to l < 125, 000.

In 1993, just before Wiles’ proof, FLT was proved up to
l ∼ 4 000 000 (Buhler) and, in Case I, for
l < 714 591 416 091 389 (Grandville).
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But in spite of deep results of Stickelberger, Herbrand, etc. there
remain apparently intractable obstructions on the cyclotomic route
for irregular primes. It seemed that such a purely algebraic strategy
didn’t succeed to break the problem.

As was emphasized by Charles Daney [11]

“Despite the great power and importance of Kummer’s
ideal theory, and the subtlety and sophistication of
subsequent developments such as class field theory,
attempts to prove Fermat’s last theorem by purely
algebraic methods have always fallen short.”

We will see that Wiles’ proof uses a very strong “non abelian”
generalization of the classical “abelian” class field theory.
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Faltings theorem and the Mordell-Weil conjecture

The natural context of a proof of FLT seems to be algebraic
geometry since Fermat equation

x l + y l = z l

is the homegeneous equation of a projective plane curve F . The
equation has rational coefficients and FLT says that, for l ≥ 3, the
curve F has no rational points.

So FLT is a particular case of computing the cardinal |F (Q)| of
the set of rational points of a projective plane curve F defined over
Q. To solve the problem, one needs a deep knowledge of the
arithmetic properties of infinetely many types of projective plane
curves since the genus g of F is

g =
(l − 1)(l − 2)

2
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This genus increases quadratically with the degree l . We note that
for l ≥ 4 we have g ≥ 3. But of course it is extremely difficult to
prove general arithmetic theorems valid for infinitely many sorts of
classes of curves.

A great achievement in this direction was the demonstration by
Gerd Faltings of the celebrated Mordell-Weil conjecture.
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Theorem (Faltings). Let C be a smooth connected projective curve
defined over a number field K and let K ⊂ K ′ be an algebraic
extension of the base field K . Let g be the genus C .

1 If g = 0 (sphere) and C (K ′) 6= ∅, then C is isomorphic over
K ′ to the projective line P1 and there exist infinitely many
rational points over K ′.

2 If g = 1 (elliptic curve), either C (K ′) = ∅ (no rational points
over K ′) or C (K ′) is a finitely generated Z−module
(Mordell-Weil theorem, a deep generalization of Fermat
descent method).

3 If g ≥ 2, C (K ′) is finite (Mordell-Weil conjecture, Faltings
theorem).

Faltings theorem is an extremely difficult one which won him the
Fields medal in 1986. But for FLT we need to go from
“C (K ′) finite” to “C (K ′) = ∅”. The gap is too large. We need to
find another route.
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Hellegouarch and Frey: opening the elliptic route

In 1969 Yves Hellegouarch introduced an “elliptic trick”. His idea
was to use an hypothetical solution al + bl + c l = 0 of Fermat
equation (l prime ≥ 5, a, b, c 6= 0 pairwise relatively prime) as
parameters for an elliptic curve (EC) defined over Q, namely the
curve E :

y 2 = x
(

x − al
)(

x + bl
)

= x3 +
(

bl − al
)

x2 − (ab)l x

Hellegouarch analyzed the l-torsion points of E (see below) and
found that the extension of Q by their coordinates had very
strange ramification properties (it is unramified outside 2 and l)
(see below).

Seventeen years later, in 1986, Gerhard Frey refined this key idea
which led to Wiles-Taylor proof in 1995.
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The EC E is regular. Indeed its equation is of the form

F (x , y) = y 2 − f (x) = y 2 − x
(

x − al
)(

x + bl
)

= 0

and a singular point must satisfy ∂F
∂x = ∂F

∂y = 0. The condition
∂F
∂y = 0 implies y = 0 and therefore f (x) = 0, while the condition
∂F
∂x = 0 implies f ′ (x) = 0. So the x coordinate of a singular point
must be a multiple root of the cubic equation f (x) = 0, but this is
impossible for f (x) = x

(
x − al

) (
x + bl

)
.
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A Frey curve E is given in the Weierstrass form:

y 2 = x3 +
b2

4
x2 +

b4

2
x +

b6

4

Its discriminant is given by the general formula:

∆ = − (b2)2 b8 − 8 (b4)3 − 27 (b6)2 + 9b2b4b6

with 4b8 = b2b6 − (b4)2. We have b2 = 4
(
bl − al

)
, b4 = −2albl ,

b6 = 0, b8 = −a2lb2l and therefore

∆ = 16
(

alblc l
)2

E is regular, iff ∆ 6= 0 and it the case here.
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But, if we reduce E mod p (which is possible since the coefficients
of E are in Z), the reduction Ep will be singular if p | ∆. But since
a and b are relatively prime, we cannot have at the same time
al ≡ 0 mod p and bl ≡ 0 mod p, and so we cannot have a triple
root.

The singularity of Ep can only be a normal crossing of two branches
(a node). ECs sharing this property are called semi-simple.

Another extremely important invariant of an EC is its conductor N
which, according to Henri Darmon ([13], p.1398), is

“an arithmetically defined quantity that measures the
Diophantine complexity of the associated cubic
equation.”
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In the semi-simple case (where all singular reductions Ep are
nodes) N is rather simple: it is the square free the product

N =
∏
p|∆

p =
∏

p|abc

p .

(2 which divides ∆ divides also abc since one of the a, b, c is even).

As ∆ is proportional to (abc)2l while N ≤ abc, we see that
∆ ≥ CN2l for a constant C .

This property is in fact quite “extraordinary” since it violates the
very plausible following Szpiro conjecture saying that the
discriminant is bounded by a fixed power of the conductor:

Szpiro Conjecture. If E is any elliptic curve defined over Q, for
every ε > 0 there exists a constant D s.t. |∆| < DN6+ε.
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Another fondamental invariant of E is the modular invariant j
defined by

j =

(
(b2)2 − 24b4

)3

∆
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Hellegouarch and Frey idea is that, as far as (a, b, c) is a solution
of Fermat equation and is supposed to be too exceptional to exist,
the associated curve E must also be in some sense “too
exceptional” to exist: exceptional numbers must parametrize
exceptional objects.

We meet here a spectacular example of a translation strategy
which consists in coding solutions of a first equation into
parameters of a second object of a completely different nature and
using the properties of the second object for gathering informations
on the solutions of the first equation.

In the Himalayan metaphor, this type of methodological move
consists in finding a sort of “tunnel” or “canyon” between two
valleys.
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G. Frey was perfectly aware of the originality of his method. In his
paper [25] he explains:

“In the following paper we want to relate conjectures
about solutions of the equation A− B = C in global
fields with conjectures about elliptic curves.”
“An overview over various conjectures and implications
discussed in this paper (...) should show how ideas of
many mathematicians come together to find relations
which could give a new approach towards Fermat’s
conjecture.”

Frey’s “come together” is like Kleiner’s “bring together” and
emphasizes the holistic nature of the proof.
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The advantages of Frey’s strategic “elliptic turn” are multifarious:

1 Whatever the degree l could be, we work always on an elliptic
curve and we shift therefore from the full universe of algebraic
plane curves x l + y l = z l to a single class of curves. It is a
fantastic reduction of the diversity of objects.

2 Elliptic curves are by far the best known of all curves and their
fine Diophantine and arithmetic structures can be investigated
using non elementary techniques from analytic number theory.

3 For elliptic curves a strong criterion of “normality” is
available: “good” elliptic curves are modular in the sense they
can be parametrized by modular curves.

4 A well known conjecture, the Taniyama-Shimura-Weil
conjecture, says in fact that every elliptic curve is modular.
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From Frey’s idea one can derive a natural schema of proof for FLT:

(a) Prove that Frey ECs are not modular.

(b) Prove the Taniyama-Shimura-Weil conjecture.

Step 1 was achieved by Kenneth Ribet who proved that
Taniyama-Shimura-Weil implies FLT and triggered a revolutionary
challenge, and

step 2 by Andrew Wiles and Richard Taylor for the so called
“semi-stable” case, which is sufficient for FLT since Frey ECs are
semi-simple.

In such a perspective, FLT is no longer an isolated curiosity, as
Gauss claimed, but a consequence of general deep arithmetic
constraints.
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The L-function of an elliptic curve

To define what is a modular elliptic curve E defined over Q, we
have to associate to E a L-function LE which counts in some sense
the number of integral points of E .

E has an infinity of points over C (but can have no points on Q).
However, if we reduce E mod p (p a prime number), its reduction
Ep will necessarily have a finite number of points Np = #Ep (Fp)
over the finite field Fp = Z/pZ.

The most evident arithmetic data on E consists therefore in
combining these local data Np relative to the different primes p.

J. Petitot The unity of mathematics



This is a general idea. Any EC (more generally any algebraic
variety) defined over Q can be interpreted as an EC with points in
Q, in algebraic number fields K , in Q, R, C, Fp, Fpn , Fp, etc.

J. Petitot The unity of mathematics



The L-function LE of E is defined as an Euler product, that is a
product of one factor for each p. We must be cautious since for p
dividing the discriminant ∆ of E , the reduction is “bad”, i.e. Ep is
singular (it is a node: semi-simplicity).

For technical reasons (see below), it is better to use the difference
ap = p + 1− Np. In the good reduction case (where Ep is itself an
EC) we can generalize the counting to the finite fields Fpn and
show that the apn are determined by the ap via the formula

1

1− ap

ps + 1
p2s−1

= 1 +
ap

ps
+

ap2

p2s
+ · · ·

In the bad reduction case, we must use (1− app−s)−1.
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So, the good choice of an Euler product is the following, which
defines the L-function LE (s) of the elliptic curve E :

LE (s) =
∏
p|∆

1

1− ap

ps

∏
p-∆

1

1− ap

ps + 1
p2s−1

As 1 ≤ Np ≤ 2p + 1 (we count the point at infinity), then
|ap| ≤ p, and therefore LE (s) converges for <(s) > 2. In fact, a
theorem due to Hasse asserts that |ap| ≤ 2

√
p and therefore LE (s)

converges for <(s) > 3/2.

We will see below with Hecke’s theory how the L-functions are
constructed.
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As explained Anthony Knapp [32], the L-function LE

“encode geometric information, and deep properties of
the elliptic curve come out (partly conjecturally) as a
consequence of properties of these functions.”

And as for Riemann’s Zeta function:

“It is expected that deep arithmetic information is
encoded in the behavior of LE (s) beyond the region of
convergence”.
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Riemann’s ζ-function

To understand the relevance of the L-functions LE , we have to
come back to Riemann’s ζ-function, which is the great inspirer.

The zeta function ζ(s) encodes deep arithmetic properties in
analytic structures.

Its initial definition is extremely simple and led to a lot of
computations since Euler time:

ζ(s) =
∑
n≥1

1

ns

which is a series absolutely convergent for integral exponents s > 1.

Euler already proved ζ(2) = π2/6 and ζ(4) = π4/90.

J. Petitot The unity of mathematics



A trivial expansion shows that, in the convergence domain, the
sum is equal to an infinite Euler product containing a factor for
each prime p (we denote P the set of primes):

ζ(s) =
∏
p∈P

(
1 +

1

ps
+ . . .

1

pms
+ . . .

)
=
∏
p∈P

1

1− 1
ps

.
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The fantastic strength of the zeta function as a tool comes from
the fact that it can be extended by analytic continuation to the
complex plane.

First s can be extended to complex numbers s of real part
<(s) > 1, and moreover

ζ(s) can be extended by analytic continuation to a
meromorphic function on the entire complex plane C with a
pole at s = 1.
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Theta function and Mellin transform

The zeta function encodes very deep arithmetic properties.

Riemann proved in his celebrated 1859 paper “Über die Anzahl der
Primzahlen unter einer gegeben Grösse” (“On the number of prime
numbers less than a given quantity”) [48] that it manifests
beautiful properties of symmetry.

This can be made explicit noting that ζ(s) is related by a
transformation called the Mellin transform to the theta function
which possesses beautiful properties of automorphy, where
“automorphy” means invariance of a function f (τ) defined on the
Poincaré plane H (complex numbers τ of positive imaginary part
=(τ)) relatively to a countable subgroup of the group acting on H
by homographies (also called Möbius transformations)
γ(τ) = aτ+b

cτ+d . (See below)
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The theta function Θ(τ) is defined on the half plane H as the
series

Θ(τ) =
∑
n∈Z

e in2πτ = 1 + 2
∑
n≥1

e in2πτ

=(τ) > 0 is necessary to warrant the convergence of e−n2π=(τ).

We will see later that Θ(τ) is what is called a modular form of
level 2 and weight 1

2 . Its automorphic symmetries are

1 Symmetry under translation: Θ(τ + 2) = Θ(τ) (level 2, trivial
since e2iπ = 1 implies e in2π(τ+2) = e in2πτ ).

2 Symmetry under inversion: Θ(−1
τ ) =

(
τ
i

) 1
2 Θ(τ) (weight 1

2 ,
proof from Poisson formula).
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If f : R+ → C is a complex valued function defined on the positive
reals, its Mellin transform g(s) is defined by the formula:

g(s) =

∫
R+

f (t)ts dt

t

Let us compute the Mellin transform of Θ(it) or more precisely,
using the formula Θ(τ) = 1 + 2Θ̃(τ), of Θ̃(it) = 1

2 (Θ(it)− 1):

Λ(s) =
1

2
g
( s

2

)
=

1

2

∫ ∞
0

(Θ(it)− 1) t
s
2

dt

t
=
∑
n≥1

∫ ∞
0

e−n2πtt
s
2

dt

t

In each integral we make the change of variable x = n2πt. The
integral becomes:

n−sπ−
s
2

∫ ∞
0

e−xx
s
2
−1dx
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But
∫∞

0 e−xx
s
2
−1dx = Γ

(
s
2

)
where Γ (s) =

∫∞
0 e−xx s−1dx is the

gamma function.

Therefore

Λ(s) = π−
s
2 Γ
( s

2

)∑
n≥1

1

ns

 = ζ(s)Γ
( s

2

)
π−

s
2

This remarkable expression enables to use the automorphic
symmetries of the theta function to derive a functional equation
satisfied by the lambda function, and therefore by the zeta
function.
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Functional equation

Indeed, let us write Λ(s) =
∫∞

0 =
∫ 1

0 +
∫∞

1 and use the change of

variable t = 1
u in the first integral. Since i

u = − 1
iu and

Θ

(
i

u

)
= Θ

(
− 1

iu

)
=

(
iu

i

) 1
2

Θ (iu) = u
1
2 Θ (iu)

due to the symmetry of Θ under inversion, we verify that the
∫ 1

0
part of Λ(s) is equal to the

∫∞
1 part of Λ(1− s) and vice-versa and

therefore the lambda function satisfies the functional equation

Λ(s) = Λ(1− s)

As ζ(s) is well defined for <(s) > 1, it also well defined, via the
functional equation of Λ, for <(s) < 0, the difference between the
two domains coming from the difference of behavior of the gamma
function Γ.
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We can easily extend ζ(s) to the domain <(s) > 0 using the fact
that ζ(s) has a pole of order 1 at s = 1 and computing ζ(s) as

ζ(s) =
1

s − 1
+ · · ·

Λ(s) being now defined on the half plane <(s) > 0, the functional
equation can be interpreted as a symmetry relative to the line
<(s) = 1

2 , hence the major role of this line which is called the
critical line of ζ(s).
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The Γ function has no zeroes but has poles exactly on negative

integers −k (k ≥ 0) where it has residue (−1)k

k! .

For s = −2k with k > 1, the functional equation reads

ζ(−2k)Γ (−k)πk = ζ(1 + 2k)Γ

(
1 + 2k

2

)
π−

1+2k
2

and as the rhs is finite (the only pole of ζ(s) is s = 1 ) while
Γ (−k) is a pole, we must have ζ(−2k) = 0.

These are called the trivial zeroes of the zeta function.
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One of the main interests of ζ(s) is to have non trivial zeroes
which encode the distribution of primes in the following sense.

For x a positive real, let π(x) be the number of primes p ≤ x .

From Gauss (1792, 15 years old) and Legendre (1808) to
Hadamard (1896) and De La Vallée Poussin (1896) an asymptotic
formula, called the prime number theorem, was proved and deeply
investigated:

π(x) ∼ x

log(x)

A better approximation, due to Gauss (1849), is π(x) ∼ Li(x)
where the logarithmic integral is Li(x) =

∫ x
2

dx
log(x) .

For small n, π(x) < Li(x), but Littelwood proved in 1914 that the
inequality reverses an infinite number of times.
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The prime number theorem is a consequence of the fact that ζ(s)
has no zeroes on the line 1 + it (recall that 1 is the pole of ζ(s)).
It as been improved with better approximations by many great
arithmeticians.

In his 1859 paper, Riemann proved the fantastic result that π(x)
can be computed as the sum of a series whose terms are indexed
by the non trivial zeroes of ζ(s).

It can be proved easily that all the non trivial zeroes of ζ(s) must
lie inside the critical strip 0 < <(s) < 1. Due to the functional
equation they are symmetric relatively to the critical line and it is
known that there exist an infinity of zeroes on the critical line and
that the zeroes “concentrate” in a precise sense on the critical line.
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An enormous amount of computations from Riemann time to
actual supercomputers (ZetaGrid: more than 1012 zeroes in 2005)
via Gram, Backlund, Titchmarsh, Turing, Lehmer, Lehman, Brent,
van de Lune, Wedeniwski, Odlyzko, Gourdon, and others, shows
that all computed zeroes lie on the critical line <(s) = 1

2 .

The celebrated Riemann hypothesis, one of the deepest unsolved
problem (8th Hilbert problem), claims that in fact they all lie on
the critical line.
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Dirichlet’s L-functions

Dirichlet’s L-functions generalize ζ(s). They have the general form∑
n≥1

an

ns

and under some “multiplicative” conditions on the an can be
factorized into Euler products∏

p∈P

(
1 +

ap

ps
+ . . .

apm

pms
+ . . .

)
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1 The condition is of course that the coefficients an are
multiplicative in the sense that a1 = 1 and, if n =

∏
pri
i ,

an =
∏

ap
ri
i

.

2 Moreover if the an are strictly multiplicative in the sense that
apm = (ap)m then the series can be factorized in a first degree
(or linear) Euler product ∏

p∈P

1

1− ap

ps

.

3 If a1 = 1 and if for every prime p there exists an integer dp s.t.

apm = apapm−1 + dpapm−2

then the series can be factorized in a second degree (or
quadratic) Euler product∏

p∈P

1

1− ap

ps − dp

p2s
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The most important examples of Dirichlet series are given by
Dirichlet L-functions where the an are the values χ(n) of a
character mod m, that is of a multiplicative morphism

χ : (Z/mZ)∗ → C

Lχ =
∑
n≥1

χ(n)

ns

As χ is multiplicative, the an are strictly multiplicative and the
series can be factorized in a first degree Euler product.

The theory of the zeta function can be straightforwardly
generalized (theta function, automorphy symmetries, lambda
function, functional equation) to these Dirichlet L-functions.
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Modularity

We have defined L-functions LE of EC. We will now define a
completely different class of L-functions Lf associated to what are
called modular forms. By construction, the Lf have extremely deep
arithmetic properties. An EC curve is said modular if there exists a
“good” f s.t. LE = Lf .

By definition, modular EC have strong arithmetic properties and
therefore to say that all EC are modular is to say that there exist
highly non trivial constraints and that such constraints imply FLT.

We have to define f and Lf .
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ECs as complex tori

As cubic plane projective curves, EC are commutative algebraic
groups. Let P and Q be two points of E . As the equation is cubic,
the line PQ intersects E in a third point R. The group law is then
defined by setting P + Q + R = 0.

A great discovery (Abel, Jacobi, up to Riemann) is that they are
isomorphic to their Jacobian, which is a complex torus.

Let E = Ecub be a regular cubic. Topologically it is a torus and it
is endowed with a complex structure making it a compact Riemann
surface.

Let γ1 and γ2 be two loops corresponding to a parallel and a
meridian of E (they constitute a Z-basis of the first integral
homology group H1(E ,Z)).
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Up to a factor, there exists a single holomorphic 1-form ω on E .
Its periods ωi =

∫
γ i
ω generate a lattice Λ in C and we can

consider the torus Etor = C/Λ which is called the Jacobian of E .

If a0 is a base point in E , the integration of the 1-form ω defines a
map

Φ : Ecub → Etor

a 7→
∫ a
a0
ω

(the map is well defined since two pathes from a0 to a differ by a
Z-linear combination of the γ i and the values of ω differ by a point
of the lattice Λ).

Theorem. Φ is an isomorphism between Ecub and Etor.
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Elliptic functions

We consider now the representation of elliptic curves as complex
tori E = C/Λ with Λ a lattice {mω1 + nω2}m,n∈Z in C with
Z-basis {ω1, ω2}. If τ = ω2/ω1, we can suppose Im (τ) > 0, that
is τ ∈ H where H is the Poincaré upper half complex plane.

The EC defined by {1, τ} is denoted Λτ .

The complex valued functions f on E = C/Λ are doubly periodic
functions on C. They are called elliptic functions. E being
compact, such an f cannot be holomorphic without being constant
according to Liouville theorem; f can only be a meromorphic
function if it is not constant.
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Applying the residue theorem successively to f , f ′/f , and zf ′/f we
can show:

1 f possesses at least 2 poles.

2 If the mi are the order of the singular points ai (poles and
zeroes) of f ,

∑
mi = 0 (this says that the divisor div(f ) is of

degree 0).

3
∑

miai ≡ 0 mod Λ.
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One elliptic function is of particular interest since it generates with
its derivative the field of all elliptic functions. It is the Weierstrass
function ℘(z) which is the most evident even function having a
double pole at the points of the lattice Λ.

Let Λ′ = Λ− {0}, the definition is:

℘(z) =
1

z2
+
∑
ω∈Λ′

(
1

(z − ω)2
− 1

ω2

)
The derivative ℘′(z) is an odd function possessing triple poles at
the points of Λ:

℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3

Theorem. ℘(z) and ℘′(z) generate the field of elliptic functions on
the elliptic curve E = C/Λ.
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What are the relations between these two definitions of elliptic
curves, one algebraic and the other analytic?

In one sense, from complex tori to cubics, the relation is quite
simple. Indeed ℘(z)3 and ℘′(z)2 have both a pole of order 6 at 0
and must be related. Some (tedious) computations on their
Laurent expansions show that there exists effectively an algebraic
relation between ℘(z) and ℘′(z), namely

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

with g2 = 60G4 and g3 = 140G6, Gm being the Eisenstein series

Gm =
∑
ω∈Λ′

1

ωm
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This means that (℘(z), ℘′(z)) is on the elliptic curve Ecub of
equation

y 2 = 4x3 − g2x − g3

which discriminant is:

∆ = (g2)3 − 27 (g3)2

the lattice Λ corresponding to the point at infinity in the y
direction.

One can verify that ∆ 6= 0 and that E is therefore regular.

One of the great advantage of the torus representation is that the
group structure become evident. Indeed Etor = C/Λ inherits the
additive group structure of C and through the parametrization by
℘(z) and ℘′(z) this group structure is transfered to Ecub.
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SL(2,Z) action

The isomorphism between an EC and its Jacobian is the beginning
of the great story of Abelian varieties.

In this context, where algebraic structures are translated and coded
into analytic ones, one can develop an extremely deep theory of
arithmetic properties of elliptic curves. Its “deepness” comes from
the analytic coding of arithmetics.

Let E = C/Λ be an EC considered as a complex torus. To
correlate univocally E and its “module” τ we must look at the
transformation of τ when we change the Z-basis of Λ. Let
{ω′1, ω′2} another Z-basis.
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We have

(
ω′2
ω′1

)
=

(
a b
c d

)(
ω2

ω1

)
with γ =

(
a b
c d

)
an

integral matrix.

But γ must be inversible and its inverse must therefore be also an
integral matrix, so Det (γ) = ad − bc = 1 and γ ∈ SL(2,Z).

γ acts on τ via fractional linear Möbius transformations:

γ (τ) =
aτ + b

cτ + d
.
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Modular functions for SL(2,Z)

The concept of modular form arises naturally when we consider
holomorphic SL(2,Z)-invariant differentials on the Poincaré
half-plane H. Let f (τ)dτ be a 1-form on H with f an holomorphic
function on H and consider f (τ ′)dτ ′ with τ ′ = γ (τ). We have

f (τ ′)dτ ′ = f

(
aτ + b

cτ + d

)
(cτ + d) a− (aτ + b) c

(cτ + d)2
dτ

= f

(
aτ + b

cτ + d

)
1

(cτ + d)2
dτ since ad − bc = 1

We see that in order to get the invariance f (τ)dτ = f (τ ′)dτ ′ we

need f
(

aτ+b
cτ+d

)
1

(cτ+d)2 = f (τ), i.e.

f (γ (τ)) = (cτ + d)2 f (τ) .
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Hence the general definition:

Definition. An holomorphic function on H is a modular function of
weight k if f (γ (τ)) = (cτ + d)k f (τ) for every γ ∈ SL(2,Z).

We note that the definition implies f = 0 for odd weights since
−I ∈ SL(2,Z) and if k is odd

f (−I τ) = f

(
−τ
−1

)
= f (τ) = (−1)k f (τ) = −f (τ)

The weight 0 means that the function f is SL(2,Z)-invariant. The
weight 2 means that the 1-form fdτ is SL(2,Z)-invariant.
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A modular function of weight k can also be interpreted as an
homogeneous holomorphic function of degree −k defined on the
lattices Λ. If we define f̃ (Λ) by f̃ (Λ) = ω−k

1 f (τ) we see that for f
to be modular of weight k is equivalent to f̃ (αΛ) = α−k f (Λ).

To be modular, f has only to be modular on generators of
SL(2,Z), two generators being the translation τ → τ + 1 and the
inversion τ → −1/τ . Therefore f is modular of weight k iff{

f (τ + 1) = f (τ)

f
(
− 1
τ

)
= (−τ)k f (τ)

These are properties of automorphy, where “automorphy” means
some sort of invariance of entities defined on the Poincaré plane H
with respect to a countable subgroup of the group SL(2,Z) acting
naturally on H.
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We already met modular functions in the theory of elliptic curves:

1 the Eisenstein series G2k of weight 2k ,

2 the elliptic invariants which are the coefficients g2 of weight 4
and g3 of weight 6 of the Weierstrass equation associated to a
complex torus,

3 the discriminant ∆ = (g2)3 − 27 (g3)2 of weight 12,

4 the modular invariant j of weight 0.
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Fourier expansion, modular forms, and cusp forms

The fact that a modular function f is invariant by the translation
τ → τ + 1 means that it is periodic of period 1 and therefore can
be expanded into a Fourier series

f (τ) =
∑
n∈Z

cne2iπnτ =
∑
n∈Z

cnκ
n with κ = e2iπτ

The variable κ = e2iπτ is called the nome (and is traditionally
denoted by q). It is a mapping H → D− {0}, τ 7→ κ = e2iπτ

which uniformizes H at infinity in the sense that, if τ = x + iy ,
κ = e2iπxe−2πy −→

y→∞
0. The boundary y = 0 of H maps cyclically

on the boundary S1= ∂D of D.

J. Petitot The unity of mathematics



If we use this representation, the second property of modularity

f

(
−1

τ

)
= (−τ)k f (τ)

imposes very strict constraints on the Fourier coefficients cn and
therefore modular functions generate very special series {cn}n∈Z.
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For controlling the holomorphy of f at infinity one introduces two
restrictions on the general concept of a modular function of weight
k .

Definition. f is called a modular form of weight k if f is
holomorphic at infinity, that is if its Fourier coefficients cn = 0
for n < 0.

Definition. Moreover, f is called a cusp form if f vanishes at
infinity, that is if c0 = 0 (then cn = 0 for n ≤ 0).

It is traditional to note Mk the space of modular forms of weight
k , and Sk ⊂ Mk the space of cusp forms of weight k .
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Eisenstein series

Gk (τ) =
∑

(m,n)∈Z×Z−{0,0}

1

(mτ + n)k

are modular forms. The power k must be even (k = 2r) for if k is
odd the (−m,−n) and (m, n) terms cancel.

The discriminant ∆ of elliptic curves,

∆ (τ) = (g2 (τ))3 − 27 (g3 (τ))2

with g2 (τ) = 60G4 (τ) and g3 (τ) = 140G6 (τ), is a modular
function of weight 12.
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It expands into

∆(τ) = q − 24q2 + 252q3 − 1472q4 + . . .

One can show that it is given by the infinite product

∆ (τ) = q
r=∞∏
r=1

(1− qr )24

It is therefore a cusp form ∆ ∈ S12. We note that ∆ (τ) = 0

exactly for qr = 1,

that is e2iπrτ = 1,

that is rτ ∈ Z,

that is τ ∈ Q,

that is for the rational points on the boundary of H, which are
called cusp points.

∆ (τ) vanishes nowhere on H.
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On the contrary, the modular invariant j of weight 0 expands into

j(τ) =
1

q
+ 744 + 196 884q + 21 493 760q2 + . . .

It has a pole at infinity and fails to be a modular form.

The fundamental importance of the Eisenstein series and the
discriminant is that they enables to determine the spaces Mk and
Sk .

We will see later that they are eigenvectors of the Hecke operators
defined on the spaces Mk and Sk .
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1 M0 ' C since an f which is SL(2,Z)-invariant and
holomorphic on H and at infinity is holomorphic on the
quotient (H/SL(2,Z)) ∪ {∞} which is compact. f is
therefore constant by Liouville theorem.

2 Mk = 0 for k < 0 since if f 6= 0 ∈ Mk , then f 12 is of weight
12k , ∆−k is of weight −12k , and f 12∆−k ∈ M0 but is
without constant term. Therefore f = 0.

3 Mk = 0 for k odd since, if we take γ = −I ,
f (γ (τ)) = f (τ) = −f (τ), and f ≡ 0.

4 Mk = 0 for k = 2.
5 For k even k > 2, Mk = CGk ⊕ Sk since Sk is of codimension

1 in Mk and Gk has a constant term.
6 Sk ' Mk−12. Indeed if f ∈ Sk , f /∆ ∈ Mk−12. Since ∆ 6= 0,

f /∆ (which is of weight k − 12) is holomorphic on H and, as
cn = 0 for n ≤ 0 for f and ∆, cn = 0 for n < 0 for f /∆ and
f /∆ ∈ Mk−12. Reciprocally, if g ∈ Mk−12 then g∆ ∈ Sk .
Sk ' Mk−12 implies, via (2), dim (Sk) = 0 for k < 12 and, via
(5), dim (Mk) = 1 for k < 12.

J. Petitot The unity of mathematics



It is therefore easy to compute the dimension of Mk : e.g. for
k = 12, via (6) and (1), dim (Sk) = dim (M0) = 1 and, via (5),
dim (Mk) = 2.

k 0 1 2 3 4 5 6 7

dim (Mk) 1 0 0 0 1 0 1 0

k 8 9 10 11 12 13 14 15

dim (Mk) 1 0 1 0 2 0 1 0

Such dimensions imply a lot of deep arithmetical relations because
every time we can associate to d situations d modular forms of Mk

and we have d > dim (Mk), then, as was emphasized by Don
Zagier ([75], (p.240)),

“We get “for free” information – often highly non
trivial – relating these different situations.”
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Moreover we will see that the Mk are spanned by modular forms
whose Fourier series have rational coefficients cn. As Don Zagier
also explains:

“It is this phenomenon which is responsible for the
richness of the arithmetic applications of the theory of
modular forms.”

We have seen that

∆ (τ) = (60G4 (τ))3 − 27 (140G6 (τ))2 .

It is a general fondamental fact:

Theorem. Every modular form can be expressed in a unique way as
a polynomial in G4 and G6.

J. Petitot The unity of mathematics



L-functions of cusp forms

If f is a cusp form of weight k, i.e. f ∈ Sk , then

f (τ) =
∑
n≥1

cnκ
n

with the nome κ = e2iπτ . We associate to f the L-function:

Lf (s) =
∑
n≥1

cn

ns

having the same coefficients. These L-functions encode a lot of
arithmetical information. They come essentially as Mellin
transform of their generating cusp form.
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Paralleling the case of Riemann ζ function, we introduce the Mellin
transform

Λf (s) =

∫ ∞
0

f (it) ts ds

s

of the cusp form f on the positive imaginary axis and we compute

Λf (s) =
1

(2π)s Γ(s)Lf (s)

The modular invariance of f and its good behavior at infinity imply
that the cn are bounded in norm by nk/2 and therefore Lf (s) is
absolutely convergent in the half-plane <(s) > k

2 + 1.
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As the Riemann ζ function, the L-functions Lf (s) satisfy a
functional equation. It is the content of a deep theorem due to
Hecke:

Hecke theorem. Lf (s) and Λf (s) are entire functions and Λf (s)
satisfies the functional equation

Λf (s) = (−1)k/2Λf (k − s)

J. Petitot The unity of mathematics



The modular curve X0 (1)

We need to introduce now the modular curves X0 (N) of different
levels N.

For N = 1, X0 (1) is the compactification of the quotient
H/SL(2,Z) of H by the modular group SL(2,Z), i.e. of its
standard fondamental domain R.

R is the domain of H defined by −1
2 ≤ < (τ) < 1

2 and |τ | > 1. It

contains on its boundary the 3 remarkable points i = e i π
2 ,

ζ3 = e2i π
3 = ρ2, and ζ3 + 1 = −ζ2

3 = ρ = e i π
3 .
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The modular invariant j maps R conformally onto C∪{∞} with
cuts on the real axis along {−∞, 0} and {1,∞}. As the
discriminant ∆ has only a simple zero at ∞, j has only a single
simple pole at ∞.

It can be shown that the field of meromorphic fonctions K (X0 (1))
is generated by the modular invariant j .

Theorem. K (X0(1)) = C (j).

The inclusion C (j) ⊆ K (X0(1)) is trivial. Conversely, let
f (τ) ∈ K (X0(1)) with poles πi (counted with multiplicity).
Consider the function g (τ) = f (τ)

∏
i

(j (τ)− j (πi )). It is a

modular function of weight 0 and level 1 without poles in H. If g
has a pole of order n at ∞ there exists c s.t. g − cjn is without
pole in H and is therefore constant. This implies f (τ) ∈ C (j).
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Elliptic points
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The modular curve X0 (N) and its congruence group Γ0(N)

The modular curve of level N, X0 (N), classifies pairs (Λ,C ) of a
lattice Λ and a N-cyclic group C of torsion points.

The modular curve of level N, X1 (N), classifies pairs (Λ, x) of a
lattice Λ and a N-torsion point x (Nx = 0).

For the lattice Λτ = Z⊕ τZ (τ ∈ H) of basis {1, τ}, Cτ is simply
the cyclic subgroup generated by 1/N.

For N = 1, C is reduced to the origin 0 (1x = x = 0).
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The X0 (N) are intimately associated to the congruence groups
Γ0(N) which are smaller than SL (2,Z). This corresponds to the
introduction of the key concept of level N of a modular function,
the classical ones being of level 1.

The congruence subgroup Γ0(N) of SL (2,Z) is defined by a
restriction on the term c :

Γ0(N) =

{
γ =

(
a b
c d

)
∈ SL (2,Z) : c ≡ 0 mod N

}
=

{(
a b
kN d

)
∈ SL (2,Z)

}
In Γ1(N) we have moreover a, b ≡ 1 mod N.

We note that

(
1 N
0 1

)
∈ Γ0(N). Of course Γ0(1) = SL (2,Z).
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A fundamental domain RN of Γ0(N) can be generated from R and,
if N > 1, has cusps which are rational points on the boundary of
H.

Indeed, let Γ0(1) =
⋃
j
βjΓ0(N), βj =

(
aj bj

cj dj

)
∈ SL (2,Z), be a

decomposition of Γ0(1) in Γ0(N)-orbits.

A fundamental domain RN of Γ0(N) is RN =
⋃
j
β−1

j (R) where R is

a fundamental domain of SL (2,Z),

(
β−1

j =

(
dj −bj

−cj aj

))
, and

the cusps of RN are the rational points of the boundary of H
image of the infinite point: β−1

j (∞) = −dj

cj
∈ Q.

X0(N) is the compactification of the quotient of H by Γ0(N).
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The genus of X0 (N)

Let g (N) be the genus of X0 (N). Barry Mazur proved a beautiful
theorem on g (N). For low genus he got:

genus g level N

0 1, . . . , 10, 12, 13, 16, 18, 25

1 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49

2 22, 23, 26, 28, 29, 31, 37, 50

We will use in particular the crucial fact that g(2) = 0.
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The remarkable general formula is a sum of four terms:

g = 1 +
µ

12
− ν2

4
− ν3

3
− ν∞

2

with

µ = [SL (2,Z) : Γ0 (N)] = N
∏
p-N

(
1 + 1

p

)
ν2 =

∏
p|N

(
1 +

(
−1
p

))
if 4 - N and = 0 if 4 | N

ν3 =
∏
p|N

(
1 +

(
−3
p

))
if 9 - N and = 0 if 9 | N

ν∞ =
∑

d≥0,d |N
ϕ
(
d , N

d

)
where ϕ is the Euler function

where in the second and third equations
(
−1
p

)
and

(
−3
p

)
are the

Legendre symbols:
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(
−1

p

)
=


0 if p = 2
1 if p ≡ 1 (mod 4)
−1 if p ≡ 3 (mod 4)(

−3

p

)
=


0 if p = 3
1 if p ≡ 1 (mod 3)
−1 if p ≡ 2 (mod 3)
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The field of rational functions of X0 (N)

A perspicuous way of defining the modular curve X0 (N) is to do it
from its field K of rational functions. This is the way adopted by
David Rohrlich [50].

One starts with an EC E no longer defined over Q but over the
field of rational functions Q (t). Moreover, one requires that its
j-invariant should be j (E) = t.

This means that we look in fact at a family E = (Et) of EC over Q
having t as j-invariant. If t is noted j we want the “tautology”
j = j .

An example of such a curve E is given by the Weierstrass equation

y 2 = 4x3 − 27t

t − 1728
x − 27t

t − 1728

(using the formula for j it is trivial to verify that j = t).
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One chooses then a point P of order N on E and looks at the
cyclic group C of order N generated by P. C is a family of cyclic
groups Ct of the Et parametrized by t. In some sense, (E , C) is a
generic or universal elliptic curve endowed with the supplementary
structure C.

The subfield of Q (t) fixed by the automorphisms
σ ∈ Gal

(
Q (t) /Q (t)

)
which fix C (i.e. such that σ (C) = C)

defines a finite extension K of Q (t) whose field of constants is Q
(Q ∩ K = Q).

K is the field of rational functions of a smooth projective curve
over Q and this curve is nothing else than X0 (N).

The link with the previous definition is done using the remark that
K is in fact a subfield of Q (t, E [N]) and the theorem that

Gal (Q (t, E [N]) /Q (t)) ' GL (2,Z/NZ)
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One associates now to the subgroup H of GL (2,Z/NZ) defining K
a subgroup Γ of SL (2,Z) which is the transpose of the inverse
image of H ∩ SL (2,Z) by the quotient SL (2,Z)→ SL (2,Z/NZ).

Using the fact that −I ∈ H and that the “determinant” map
det : H → (Z/NZ)∗ is surjective, one shows that Γ is nothing else
than Γ0 (N) and that X0 (N) (C) ' H/Γ0 (N) (see Rohrlich [50]).

This description makes evident that X0 (N) classifies the pairs
(E ,C ).
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In fact the field of rational functions on X0 (N) is easy to compute.
Let jN (τ) be the function defined by jN (τ) = j (Nτ).

Theorem. K (X0 (N)) = C (j , jN).

Indeed, let αi be representants of the orbits of Γ0 (N) acting on

the set M(N) of integral matrices

(
a b
c d

)
with determinant

ad − bc = N and c ≡ 0 mod N. The αi are chosen as

(
a b
0 d

)
with ad = N, d ≥ 1, 0 ≤ b < d , (a, b, d) = 1. Then jN = j ◦ α

with α =

(
N 0
0 1

)
is a root of the polynomial

ΦN (x) =

i=µ(N)∏
i=1

(x − j ◦ αi ) with (see above)

µ (N) = [SL (2,Z) : Γ0 (N)] = N
∏
p|N

(
1 +

1

p

)
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But ΦN (x) has its coefficients in Z [j ], is irreducible over C (j) and
is the minimal polynomial of jN over C (j). We have therefore (see
Boston)

K (X0 (N)) = K (X0 (1)) (jN) = C (j , jN)
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One generalizes trivially the definition of modularity to this more
general context.

1 A modular function of weight k and level N is an f (τ)
satisfying the invariance condition f (γ (τ)) = (cτ + d)k f (τ)
∀γ ∈ Γ0(N).

2 A modular function of weight k and level N is a modular form
f (τ) ∈ Mk (N) if it is holomorphic not only at infinity but
also at the cusps.

3 A modular form of weight k and level N is a cusp form
f (τ) ∈ Sk (N) if moreover it vanishes at infinity and at the
cusps. The dimension of Sk (N) is the genus g (N) of the
modular curve X0(N).

4 If f (τ) ∈ Mk (N), f (τ) is N-periodic and can be developped
at infinity in a Fourier series f (γ (τ)) =

∑
n≥0

cnκ
n with nome

κ = e
2iπτ

N
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A further generalization consists in introducing a character

ε :

(
Z

NZ

)+

→ C×

(what is called in German a Nebentypus) and defining the
invariance condition no longer by f (γ (τ)) = (cτ + d)k f (τ) but by

f (γ (τ)) = (cτ + d)k ε(d)f (τ) .

We get that way spaces Mk (N, ε) and Sk (N, ε).
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The Jacobian J0 (N)

Let g be the genus of the modular curve X0 (N) and let
(c1, . . . , c2g ) be a Z-basis of its integral homology H1 (X0 (N) ,Z).
Let (ω1, . . . , ωg ) be the dual C-basis of the cohomology group
H1 (X0 (N) ,Z) and (f1, . . . , fg ) the associated basis of S2(N). One
defines a map Θ — called the Abel-Jacobi morphism — from the
modular curve X0 (N) on Cg by

Θ (τ) =

{∫ τ

τ0

fj (z) dz

}
j=1,...,g

where τ0 is a base point on X0 (N). Θ (τ) is well defined modulo
the lattice Λ (X0 (N)) generated over Z by the 2g points of Cg

uk =

{∫
ck

fj (z) dz

}
j=1,...,g

The Jacobian J0 (N) is the quotient Cg/Λ (X0 (N)).
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Modular elliptic curves

Eichler and Shimura investigated the possibility of expressing the
L-function LE (s) of an EC as a modular L-function Lf (s) for a
certain modular form f (i.e. a Γ0 (N)-invariant holomorphic
differential f (z)dz on the modular curve X0 (N)).

For the construction of an E from an f to be possible, f must be a
cusp form of level N and weight 2. Let therefore f ∈ S2 (N).

We integrate the differential f (z)dz and get the function on H

F (τ) =

∫ τ

τ0

f (z)dz

where τ0 is a base point in H.
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Let now γ ∈ Γ0 (N) . Since f (z)dz is Γ0 (N)-invariant, we have:

F (γ (τ)) =

∫ γ(τ)

τ0

f (z)dz =

∫ γ(τ0)

τ0

+

∫ γ(τ)

γ(τ0)
=

∫ γ(τ0)

τ0

+

∫ τ

τ0

= F (τ) + Φf (γ) with Φf (γ) =

∫ γ(τ0)

τ0

f (z)dz

Φf is a map Φf : Γ0 (N)→ C and we see that if its image
Φf (Γ0 (N)) is a lattice Λ in C then the primitive F (τ) becomes a
map

F : X0 (N)→ E = C/Λ

which yields a parametrization of the elliptic curve E by the
modular curve X0 (N).

In that case E is called a modular elliptic curve.
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Following Barry Mazur [36] we make a remark on this definition.
We have seen that, as far as it is isomorphic with its Jacobian, a
general EC E admits an Euclidean covering by C,
π : C→ E = C/Λ.

If E is defined over Q (that is “arithmetic”) and modular, it
admits also an hyperbolic covering by a modular curve
F : X0 (N)→ E defined over Q.

But the two types of coverings are completely different (the text
was written in 1989 when the STW conjecture was still a
conjecture).

“It is the confluence of two uniformizations, the
Euclidean one, and the (conjectural) hyperbolic one of
arithmetic type, that puts an exceedingly rich geometric
structure on an arithmetic elliptic curve, and that carries
deep implications for arithmetic questions.”
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The great result of Eichler-Shimura’s very technical construction is
that if f is a newform (in the sense of Atkin and Lehner, see next
section) then

1 Λ is effectively a lattice in C;

2 X0 (N), E and F : X0 (N)→ E are defined over Q in a
compatible way;

3 and the L-functions of the elliptic curve E and the cusp form
f are equal: LE (s) = Lf (s).

The construction is mediated by the Jacobian curve J0 (N) of the
modular curve X0 (N), the elliptic curve E being a quotient of the
Jacobian. It is an astonishing result. As Knapp [32] explains:

“Two miracles occur in this construction [modular EC].
The first miracle is that X0(N), E , and the mapping can
be defined compatibly over Q. (...) The second miracle is
that the L function of E matches the L function of the
cusp form f .”
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Hecke algebras and new eigenforms

What are newforms? Up to now, the Lf was defined as series
Lf (s) =

∑
n≥1

cn
ns with f (τ) =

∑
n≥1 cnκ

n a Fourier series.

But, by construction, the LE are Euler products encoding
information prime by prime.

We need therefore to know what modular forms can be also Euler
products. It is the scope of Hecke operators. The problem is rather
technical and difficult.
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For SL (2,Z), Hecke’s very beautiful idea was to solve it in two
steps:

1 find linear operators Tk(m) on the vector spaces Mk of
modular forms which satisfy the relations of an Euler product;

2 look at their simultaneous eigenfunctions, which exist since
the algebra Tk of the Tk(m) is commutative.

These very particular modular eigenforms inherit very particular
properties from those of Hecke operators. Their coefficients cn are
algebraic integers and satisfy the multiplicative relation
cnm = cncm if (m, n) = 1.

The Dirichlet L-function Lf (s) =
∑

n≥1
cn
ns can then be expressed

as an Euler product.
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The simplest way of defining Hecke operator is to start with the
free group L generated by the lattices Λ of C (recall that it is the
origin of the SL (2,Z) action on the Poincaré half-plane H).

If we consider a lattice Λ and magnify it into the sublattice nΛ,
there will exist intermediary lattices Λ′ s.t. nΛ ⊆ Λ′ ⊆ Λ. In that
case the larger torus C/nΛ projects onto the smaller one C/Λ′.

We write [Λ : Λ′] = n. If {ω′1, ω′2} and {ω1, ω2} are respective
Z-basis of Λ′ and Λ we have(

ω′2
ω′1

)
=

(
a b
c d

)(
ω2

ω1

)

with

(
a b
c d

)
∈ M(n) the set of integral matrices with

determinant n.

J. Petitot The unity of mathematics



SL (2,Z) acts on M(n) and decomposes it in orbits. We can

choose as representing elements the matrices αi =

(
a b
0 d

)
with

ad = n, d ≥ 1, 0 ≤ b < d . There are ν (n) = σ1(n) =
∑
d |n

d of

them and we have

M(n) =

i=ν(n)⋃
i=1

SL (2,Z)αi

Hecke operators construct the sum of such Λ′:

Definition. The Hecke operator T (n) : L → L is the additive
operator associating to any lattice Λ the sum of the lattices Λ′ s.t.
[Λ : Λ′] = n:

T (n) : L → L
Λ 7→ T (n) (Λ) =

∑
[Λ:Λ′]=n

Λ′
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We have of course

T (n) =

i=ν(n)∑
i=1

αi (Λ)

It is easy to extend the definition of Hecke operators to modular
forms. Let us first consider homogeneous functions f̃ of degree −k
on the Λ: f̃ (αΛ) = α−k f̃ (Λ). We define

Tk(n)
(

f̃ (Λ)
)

= nk−1
∑

[Λ:Λ′]=n

f̃
(
Λ′
)

the factor nk−1 coming from homogeneity.
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Modular functions f (τ) are related to f̃ (Λ) by

f (τ) = f̃ (Λτ ) = (ω1)k f̃ (Λ) .

Computations yield for the action of Hecke operators on modular
forms f (τ) ∈ Mk , the following explicit formulae:

Proposition. Let f (τ) ∈ Mk , f (τ) =
∑

n≥0 cnqn, be a modular
form of weight k. Then Tk(m) (f (τ)) ∈ Mk ,
Tk(m) (f (τ)) =

∑
n≥0 bnqn with

b0 = c0σk−1(m) where σj(m) =
∑
d |m

d j

b1 = cm

bn =
∑

a|(n,m)

ak−1c nm
a2

for n > 1
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This result shows first that c0 = 0⇒ b0 = 0 and therefore if
f (τ) ∈ Sk , Tk(m) (f (τ)) ∈ Sk . On the other hand, if m = p is
prime,

b0 = c0

b1 = cm

bn =
∑

a|(n,p)

ak−1c np

a2
= cnp (only the term a = 1) for n > 1 if p - n

bn = cnp + pk−1c n
p

(the terms a = 1, a = p) for n > 1 if p | n

Hecke theorem. On Mk the Tk(m) constitue a commutative
algebra Tk generated by the Tk(p) and we have the product
formulae 

Tk(pr )Tk(p) = Tk(pr+1) + pk−1Tk(pr−1)
Tk(m)Tk(n) =

∑
a|(n,m)

ak−1Tk

(
mn
a2

)
Tk(m)Tk(n) = Tk(mn) if (m, n) = 1
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But these are precisely the equivalent for operators of the
multiplicative formulae for quadratic Euler products:

apr ap = apr+1 − dpapr−1 .

We can be even more precise when we restrict Hecke operators to
the space of cusp forms Sk . Let τ = ρ+ iσ. The measure dρdσ.

σ2 on
H is SL (2,Z)-invariant and, if R is a fundamental domain of
SL (2,Z),

〈f , g〉 =

∫
R

f (τ) h̄ (τ)σk dρdσ.

σ2

is a scalar product, called Petersson product, on Sk .

Petersson theorem. On Sk the Hecke operators Tk(n) are
self-adjoint for the Petersson scalar product 〈f , g〉.
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Petersson theorem implies that Sk possesses an orthogonal basis of
simultaneous eigenvectors of the Hecke operators Tk(n).

Let f (τ) ∈ Sk be such a simultaneous eigenvector.

For every n, Tk(n)f (τ) = λ(n)f (τ).

If f (τ) =
∑

r≥1 cr qr and Tk(n)f (τ) =
∑

r≥1 br qr , we have
therefore br = λ(n)cr for r ≥ 1.

But we have seen that b1 = cn.

So cn = λ(n)c1 and br = λ(n)cr = λ(n)λ(r)c1.

If we normalize f (τ) by setting c1 = 1, we get cn = λ(n)

So, as the λ(n) are eigenvalues of the Tk(n), the multiplicative
properties of Hecke operators become shared by the coefficients of
the eigen cusp form f (τ):

cpr cp = cpr+1 + pk−1cpr−1

cmcn =
∑

a|(n,m)

ak−1c mn
a2

cmcn = cmn if (m, n) = 1
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These multiplicative properties imply immediately that the
Dirichlet L-function Lf (s) of f can be expressed by a second order
Euler product:

Lf (s) =
∏
p∈P

1

1− cp

ps + 1
p1−k+2s

which is of the standard form∏
p∈P

1

1− ap

ps − dp

p2s

with ap = cp and dp = −pk−1.

Lf (s) converges for <(s) > k
2 + 1 and has a single simple pole at

s = k .
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Atkin and Lehner newforms

This can be generalized to Γ0(N) with some technicalities solved
by Atkin and Lehner with the concept of newform.

Among the cusp forms of level N, some come from a cusp form of
sublevel N/r . They are called “old” forms.

Sk (N) is the orthogonal sum of the subspaces of old and new (i.e.
non old) forms: Sk (N) = Sold

k (N)⊕ Snew
k (N).

If f (τ) ∈ Snew
k (N) is a new form, everything is fine: f (τ)

possesses at the same time an Euler product and a functional
equation.
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More precisely, if f (τ) ∈ Sk (N) we can associate to it by Mellin
transform a Dirichlet L-function Lf (s).

But we must be careful since for N > 1 the inversion τ → − 1
τ of

matrix α =

(
0 −1
1 0

)
is no longer in Γ0(N).

But we can use the transformation τ → − 1
Nτ and the operator

wN (f (τ)) = N−
k
2 τ−k f

(
− 1

Nτ

)
wich leaves stable Mk (N) and Sk (N).

As wN is an involution, called Fricke involution, the spaces Mk (N)
and Sk (N) split into eigenspaces M±k (N) and S±k (N) of the
eigenvalues ±1.
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Then, Hecke theorem can be generalized to eigenvectors of the
Fricke involution:

Hecke theorem. If f (τ) ∈ S±k (N), its L-function is an entire

function and Λf (s) = N
s
2

1
(2π)s Γ(s)Lf (s) satisfies the functional

equation
Λf (s) = ±(−1)k/2Λf (k − s)

So we have weakened the concept of cusp form in imposing less
symmetries, but at the same time we have strengthen it in
imposing its vanishing at its cusps and its “parity” relative to
Fricke involution wN .

We want now to generalize also Hecke operators and Euler
products. The problem is rather subtle since N has prime factors
p | N and we cannot control easily the relation between wN and
the Hecke operators Tk(p) for p | N.
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For the expansions at infinity, we find essentially the same formulae
as before.

We get also the same multiplicative recurrence formulae for p - N,
but for p | N we get another formula which is purely multiplicative:

Proposition. If p | N, Tk(pr ) = Tk(p)r .

Hence the generalization of Hecke theorem:

Generalized Hecke theorem. On Mk(N) the Tk(m) constitute a
commutative algebra Tk generated by the Tk(p) and

Tk(pr )Tk(p) = Tk(pr+1) + pk−1Tk(pr−1) if p - N
Tk(pr ) = Tk(p)r if p | N
Tk(m)Tk(n) =

∑
a|(n,m)

ak−1Tk

(
mn
a2

)
Tk(m)Tk(n) = Tk(mn) if (m, n) = 1
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Petersson’s theorem can also be generalized, the scalar product
being defined now by integration on a fundamental domain RN of
Γ0(N).

Petersson theorem. The Hecke operator Tk(n) is self-adjoint on
Sk (N) if (n,N) = 1.

Let f (τ) ∈ Sk (N) be a cusp form of weight k and level N which is
a commun eigenvector of all the Tk(n). Due to Hecke theorem, its
Dirichlet L-function Lf (s) can be expressed by a second order Euler
product but with a first order part corresponding to the p | N:

Lf (s) =
∏
p∈P
p|N

1

1− cp

ps

∏
p∈P
p-N

1

1− cp

ps + 1
p1−k+2s

Lf (s) converges for <(s) > k
2 + 1 and has a single simple pole at

s = k .
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As we have already noticed, the main difficulty encountered with
these generalizations of the case SL (2,Z) to the case Γ0(N)
concerns the control of the relation between wN and Tk(p) when
p | N.

It is this problem which has been solved by Atkin and Lehner using
the concept of newform.
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The Eichler-Shimura construction

Let us come back to the Eichler-Shimura construction presented
above.

One shows first that there exists a basis fj of S2(N) in which the
Hecke operators T2(n) are represented by integral matrices.

The pairs (Λ,C ) of a lattice Λ and a cyclic subgroup C of order N
being classified by the modular curve X0 (N), Hecke operators,
which act on the (Λ,C ) , act also on the divisor group Div (X0 (N))
of X0 (N), which is the group of the algebraic Z-sums of points of
X0 (N).

Let M(n,N) be the set of integral matrices with determinant n,

α =

(
a b
c d

)
∈ M(n), satisfying not only the level condition

c ≡ 0 mod N but also the condition (a,N) = 1.
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A simple set of αi are the matrices αi =

(
a b
0 d

)
with ad = n,

d ≥ 1, (a,N) = 1, 0 ≤ b < d . If M(n,N) =
i=r⋃
i=1

Γ0(N)αi where the

αi are representants of the orbits of Γ0(N) acting on M(n,N), and
if [τ ] is the class of τ ∈ H in X0 (N), then

T2(n) (τ) =
i=r∑
i=1

[αiτ ] ∈ Div (X0 (N))

More explicitely we have (see Rohrlich) the formulae for T2(p)

T2(p) (τ) =

ν=p−1∑
ν=0

τ + ν

p
+ pτ if p - N

T2(p) (τ) =

ν=p−1∑
ν=0

τ + ν

p
if p | N
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Hecke operators T2(n) act also on the first integral homology
group H1 (X0 (N) ,Z) of the modular curve X0 (N).

Indeed, let c be a loop on X0 (N) and let (τ0, γ (τ0)) be a path
lifting c in H (τ0 being a base point in H and γ ∈ Γ0(N)).

If ω is the differential form ω = f (z)dz then∫ γ(τ0)
τ0

f (z)dz =
∫
c ω = Φf (γ). It is then natural to define the

action of T2(n) on the path (τ0, γ (τ0)) by

T2(n) ((τ0, γ (τ0))) =
i=r∑
i=1

(τ0, γi (τ0))

γ i being defined by αiγ = γ iαj(i) in such a way that, T2(n) (ω)
being the action of T2(n) on ω = f (z)dz deduced from its action
on f ∈ S2(N), we have∫

T2(n)(c)
ω =

∫
c

T2(n) (ω)
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Using these different actions of Hecke operators, one proves the
following theorem:

Theorem. In the bases (c1, . . . , cg ), (ω1, . . . , ωg ), and (f1, . . . , fg ),
the matrices of Hecke operators T2(n) are integral matrices and
there eigenvalues are therefore algebraic integers.

Now we can define what is called a Q-structure on the modular
curve X0 (N).

We have seen above that the field K (X0 (N)) of meromorphic
functions on X0 (N) is generated by the modular function j and its

N-level transform jN = j ◦
(

N 0
0 1

)
: K (X0 (N)) = C (j , jN).

The rational Q-structure is defined by the subfield Q (j , jN) of
C (j , jN). A meromorphic function f (τ) belongs to Q (j , jN) iff its
Laurent series

∑
n≥−M

cnκ
n has all its coefficients cn rational.
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Let us now extend the action of Hecke operators to the Jacobian
J0 (N) of X0 (N). We have the composed map

H π→ X0 (N)
Θ→ J0 (N)

−−−−−−−−−−−−−−−−→
Θ̃

Θ̃ (τ) =

{∫ τ

τ0

fj (z) dz

}
j=1,...,g

If {zj}j=1,...,g are therefore local complex coordinates on the

Jacobian J0 (N) , the inverse images by Θ̃ of their differentials dzj

are the 1-forms on H Θ̃∗ (dzj) = ωj = fj (τ) dτ .

But since J0 (N) is an abelian group, the map Θ can be extended
by linearity to the divisor group Div (X0 (N)) and as the Hecke
operators T2(n) act on this divisor group, they act also, by
composition with Θ, on J0 (N) via T2(n)∗ = Θ ◦ T2(n)

T2(n)∗ (τ) =

{
i=r∑
i=1

∫ αiτ

τ0

fj (z) dz

}
j=1,...,g
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This action enables to define an Hecke endomorphism t(n) of the
Jacobian J0 (N) through the following commutative diagram:

X0 (N)
T2(n) //

T2(n)∗

&&MMMMMMMMMM

Θ
��

Div (X0 (N))

Θ
��

J0 (N)
t(n)

+3 J0 (N)

The Hecke endomorphism t(n) exists because the mapping
Θ : X0 (N)→ J0 (N) of the compact Riemann surface X0 (N) onto
its Jacobian J0 (N) is universal.
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This means that if F : X0 (N)→ V is a morphism of X0 (N) on an
abelian variety V then F (τ) = f ◦Θ(τ) + F (τ0) (where τ0 is a
base point of X0 (N)) with f : J0 (N)→ V a morphism of abelian
varieties. So

T2(n)∗ (τ) = t(n) ◦Θ (τ) + T2(n)∗ (τ0) .

Proposition. All these constructions are simultaneously defined
over Q in a compatible way.

Let then A be the abelian submanifold of J0 (N) defined as the
sum of the images of the t(p)

A =
∑

almost all p

Im (t(p)− cp)
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Theorem of Eichler-Shimura-Igusa. Let f ∈ Snew
2 (N) be a new cusp

eigenform of S2 (N) and let f =
∑
n≥1

cnκ
n be its Fourier expansion

at infinity. There exists an elliptic curve E and a projection
F : X0 (N)→ E (an hyperbolic parametrization) s.t.

1 E is defined over Q and E is the quotient of the Jacobian
J0 (N) by the subgroup A.

2 The Hecke operators t(n) ∈ End (J0 (N)) leave A stable and
act on A by multiplication by the coefficient cn.

3 The differential 1-form ωf on X0 (N) associated with f is a
multiple of F ∗ (Ω) where Ω is the invariant differential on E .

4 The set Λf =
{

Φf (γ) =
∫ γ(τ0)
τ0

f (z)dz | γ ∈ Γ0(N)
}

is a

lattice in C and E ' C/Λf .

5 The coefficients cp are equal to the ap = p + 1−#Ep (Fp)
and therefore LE (s) = Lf (s).
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As E is an abelian variety, the fact that it is an elliptic curve comes
from the fact that it is of dimension 1.

This is proved using the fact that, since E is by definition the
quotient J0 (N) /A, holomorphic differential 1-forms ω on E are
lifted into holomorphic differential 1-forms ω∗ on J0 (N) s.t.
t(p)∗ (ω∗) = cpω

∗.

These correspond to cusp forms f ′ ∈ S2(N) which, for almost all p,
are eigenfunctions of the Hecke operators T2(p) with eigenvalue cp.

But as f is a new form, the space of such f ′ is of dimension 1 and
therefore there is essentially one and only one holomorphic
differential 1 -forms ω on E and dim (E ) = 1.

J. Petitot The unity of mathematics



If f ∈ S2(N), f =
j=g∑
j=1

rj fj the fj corresponding to the dzj , we have

with the above notations:

ωf (uk) =

j=g∑
j=1

rjdzj (uk) =

j=g∑
j=1

rj (uk)j

=

j=g∑
j=1

rj

(∫
ck

fj (z) dz

)
=

∫
ck

j=g∑
j=1

rj fj (z)

 dz =

∫
ck

f (z)dz

and therefore ωf (Λ (X0 (N))) = Λf and Λf is a lattice in C and
E ' C/Λf .
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For the proof of the matching of the L-functions LE (s) = Lf (s)
one uses the Frobenius morphism ϕ. We will return on that below.

ϕ is the morphism of degree p which fixes the points of E modulo
p, that is the points of Ep (Fp). We have the equivalence

x ∈ Ep (Fp)⇔ x ∈ Ker (1− ϕ)

and, as # Ker (1− ϕ) = deg (1− ϕ),

Np = #Ep (Fp) = deg (1− ϕ) .

Now, one can show that there exists a dual morphism ϕ̂ s.t.
(1− ϕ̂) ◦ (1− ϕ) = deg (1− ϕ) Id of E and ϕ̂ ◦ ϕ = p Id.
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So, if we compute into the ring End (Ep) of endomorphisms of E
reduced modulo p, we find:

#Ep (Fp) Id = deg (1− ϕ) Id = (1− ϕ̂) ◦ (1− ϕ)

= 1− (ϕ+ ϕ̂) + ϕ̂ ◦ ϕ = 1− (ϕ+ ϕ̂) + p Id

This shows that in End (Ep)

ϕ+ ϕ̂ = (p + 1−#Ep (Fp)) Id = ap Id

But it can be proved that

Proposition. Modulo p, the Hecke operator T2(p) acts on X0 (N)
as ϕ+ ϕ̂.

And, as the action of T2(p) is also the multiplication by cp, we get
finally ap = cp and the desired identity LE (s) = Lf (s).
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The core of the proof

Modularity is the core of the proof because it is an “extraordinaire
carrefour” between many theories. It is an “holistic” concept. In his
Panorama des Mathématiques pures. Le choix bourbachique [18],
Jean Dieudonné gives specifically the example of modular forms:

“La théories des formes automorphes et des formes
modulaires est devenue un extraordinaire carrefour où
viennent réagir les unes sur les autres les théories les plus
variées : Géométrie analytique, Géométrie algébrique,
Algèbre homologique, Analyse harmonique non
commutative et Théorie des nombres.”

As all creative mathematicians, Jean Dieudonné was convinced that
the mathematical interest of a proof depends upon its capacity of
circulating between many heterogeneous theories and of translating
some parts of theories into completely different other ones.

J. Petitot The unity of mathematics



Two classes of L-functions

We met two classes of L-functions, those LE associated to elliptic
curves and those Lf associated to cusp modular forms. In the case
of modular elliptic curves, the two L-functions are equal
(Eichler-Shimura).

The Taniyama-Shimura-Weil conjecture that every elliptic curve
over Q (i.e. “arithmetic”) is modular says therefore that the two
classes are identical. It is a conjecture on the equivalence between
two completely different ways of constructing objects of a certain
type (L-functions).

Its deepness has been very well formulated by Anthony Knapp [32]
who explained that XXth century mathematics discovered

“a remarkable connection between automorphy and
arithmetic algebraic geometry. ”
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“This connection first shows up in the coincidence of
L-functions that arise from some very special modular
forms ( ‘automorphic’ L-functions) with L-functions that
arise from number theory ( ‘arithmetic’ or ‘geometric’
L-functions, also called ‘motivic’).”

“The automorphic L-functions have manageable analytic
properties, while the arithmetic L-functions encode subtle
number-theoretic information. The fact that the
arithmetic L-functions are automorphic enables one to
bring a great deal of mathematics to bear on extracting
the number-theoretic information from the L-function.”
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Ram Murty [41] also emphasized the point:

“In its comprehensive form, an identity between an
automorphic L-function and a ‘motivic’ L-function is
called a reciprocity law. (. . . ) The conjecture of
Shimura-Taniyama (...) is certainly the most intringuing
reciprocity law of our time. The ‘Himalayan peaks’ that
hold the secrets of this non abelian reciprocity law
challenge humanity.”
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TSW and Ribet theorem

The Taniyama-Shimura-Weil conjecture (TSW) (conjectured by
Yutaka Taniyama in 1955 and formulated precisely by Goro
Shimura in the early 1960s) says that every EC is isogenous (that
is a covering of finite degree) with a modular EC coming from an
X0 (N) and a f ∈ Snew

2 (N) by the Eichler-Shimura construction.

Shimura proved himself in 1971 that his conjecture is true for
elliptic curves with complex multiplication (there exists a complex
number α /∈ Z s.t. αΛ ⊂ Λ).

A result due to Carayol says that the level N must be equal to the
conductor NE of E .
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TSW conjecture is equivalent to another celebrated conjecture:

Hasse-Weil conjecture. The L-functions LE (s) of elliptic curves
share the same automorphy properties as the L-functions Lf (s).

Theorem. TWS conjecture and the Hasse-Weil conjecture are
equivalent.

The implication TWS → HW is easy since if two ECs defined over
Q are isogenous over Q then there L -functions are equal. So E is
isogenous to E ′ with LE ′(s) = Lf (s) for a certain f ∈ Snew

2 (N) and
LE (s) = LE ′(s) = Lf (s).
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The implication HW → TSW is less evident. HW implies that
∃f ∈ Snew

2 (N) with LE (s) = Lf (s). The Eichler-Shimura
construction associates to f a modular elliptic curve E ′ with
LE ′(s) = Lf (s). So, LE (s) = LE ′(s) and we can conclude using a
theorem of Faltings:

Theorem (Faltings). If LE (s) = LE ′(s) then E and E ′ are isogenous
over Q.
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Theorem. TSW implies FLT.

Let al + bl + c l = 0 be an hypothetic solution of Fermat theorem
(prime l ≥ 5 and a, b, c relatively prime). We consider the
associated Frey elliptic curve E of equation

y 2 = x
(

x − al
)(

x + c l
)

We know that the discriminant is ∆ = 16(abc)2l and that the
conductor is N =

∏
p|abc

p due to semi-simplicity. Ribet proved that

these values forbid E to be modular.

J. Petitot The unity of mathematics



In [46] (p.16), Ribet gave the following conceptual description of
Frey’s strategy:

“From Frey’s point of view, the main “unexpected”
property of E is that ∆ [the minimal discriminant] is a
product of a power of 2 and a perfect l th power, where l
is a prime ≥ 5. Frey translated this property into a
statement about the Néron model for E : if p is an odd
prime at which E has bad reduction, the number of
components in the mod p reduction of the Néron model
is divisible by l . Frey’s idea was to compare this number
to the corresponding number for the Jacobian of the
modular curve X0 (N), where N is the conductor of E .
Frey predicted that a discrepancy between the two
numbers would preclude E from being modular. In other
words, Frey concluded heuristically that the existence of
E was incompatible with the Taniyama-Shimura
conjecture, which asserts that all elliptic curves over Q
are modular.”
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Ribet theorem is a descent result. The idea is to show that the
level N can be reduced to the case N = 2 and then to use the

Lemma. S2(2) = 0.

Indeed, in the N = 2 case, the result of Barry Mazur on the genus
g (N) of X0(N) says that the modular curve X0(2) is of genus
g = 0 (it is topologically a sphere) and there exist therefore no non
trivial holomorphic differential ω on X0(2) (the differential dz has a
pole at infinity). As an f ∈ S2(2) corresponds to an ω, S2(2) = 0.

J. Petitot The unity of mathematics



The fact that S2(2) = 0 shows that a parametrization associated
to a modular form f cannot exist. The reduction to level 2 is a
consequent of a theorem of Ribet.

Ribet theorem (Serre ε-conjecture). Let E be an elliptic curve
defined over Q having discriminant ∆ with prime decomposition
∆ =

∏
p|∆

pδp and conductor N =
∏
p|∆

pfp . If E is a modular EC of

level N associated to a cusp form f ∈ S2(N), if l is a prime
dividing the power δp of p in ∆ and if fp = 1 (that is if p ‖ N in
the sense p | N but p2 - N) then modulo l the modular
parametrization can be reduced to level N ′ = N/p mod l in the
sense that there exists a cusp form f ′ ∈ S2(N ′) s.t. the coefficients
of f and f ′ are equal modulo l : cn ≡ c ′n l ∀n ≥ 1.
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Let us apply Ribet theorem to the Frey curve.

We know that ∆ = 16a2lb2lc2l . As a, b, c are relatively primes, for
p 6= 2, if p | ∆, we have 2l | δp, hence l | δp, and fp = 1 and we
can apply the theorem.

For p = 2 the situation is different since 4 + 2l | δ2 and therefore
l - δ2 (if δ2 = lm and 4 + 2l = nδ2, then 4 + 2l = nlm and l | 4,
but l is odd) and the reduction of levels leads to N ′ = 2.

So there exists f ′ ∈ S2(2) such that cn ≡ c ′n mod l ∀n ≥ 1. We
then apply the lemma S2(2) = 0.
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So under an incredibly complicated travel inside the Himalayan
unity of mathematics and the TSW conjecture, the proof of
Fermat theorem boils down to the topological obstruction that a
torus of genus 1 cannot be parametrized by a sphere of genus 0.

An incredibly complex arithmetic impossibility is translated into a
trivial topological impossibilty.
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Wiles’ travel

In his reference paper [73] summarizing the story of his proof,
Wiles says

“I began working on these problems in the late summer
of 1986 immediately on learning of Ribet’s result.”

To prove TSW , he used deep works of Jean-Pierre Serre and Barry
Mazur on a specific class of objects called Galois representations
naturally associated to ECs and introduced in the 1940–1950’s by
André Weil and John Tate.

We meet here another extraordinary example of encoding
informations of a theory into another theory. The arithmetic
informations we will focus on are associated to torsion points (also
called “division” points) of ECs.
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Encoding information into Galois representations

This encoding is particularly interesting for the following reason.
Until now we met two definitions of modular ECs defined over Q:

a geometric definition: they are quotients of modular curves
X0 (N),

an analytic definition: they are associated to modular forms f .

But as was emphasized by Charles Daney ([11], p.24), these two
definitions respectively geometric and analytic are difficult to use.

“The difficulty, perhaps, lies in the disparity between the
essentially analytic nature of the properties and the
algebraic nature of an elliptic curve and the kind of
problems to which we want to apply the theory. (...) We
seem to need some more algebraic formulation of what it
means for an elliptic curve to be modular.”

It is here that Galois representations enter the stage.
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Let E be an elliptic curve identified with its Jacobian J, which is a
complex torus C/Λ. The torsion points of order N of E (C)
correspond to those of the smaller lattice 1

N Λ, that is those
satisfying Nx = 0. Their set TN is trivially isomorphic to Z

NZ ×
Z

NZ .

So, the torsion points of E (C) constitute a group
E [N] (C) ' Z

NZ ×
Z

NZ . If {ω1, ω2} is a Z-basis of Λ,
{ω1/N, ω2/N} is a Z-basis of Λ/N and if xi corresponds to ωi/N
by the isomorphism of E with its Jacobian, {x1, x2} is a Z-basis of
E [N] (C).

If x is a pm-division point of E and if n > m then, a fortiori x is a
pn-division point. The E [pn] constitute a projective system whose
projective limit E [p∞] is called the p-adic Tate module of E .
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Suppose now that E is “arithmetic” (i.e. defined over Q). Then
the N-torsion points are algebraic over Q (look at the formulae of
division on E ) and E [N] (C) = E [N]

(
Q
)
.

It is natural to look at rational N-torsion points, that is at
E [N] (Q). The structure of their subgroup has been clarified by
Lutz and Nagel in the 1930s. Long after, Barry Mazur proved a
beautiful theorem giving their exhaustive list.

Mazur theorem. The only groups which appear as rational torsion
groups of ECs defined over Q are:

1 Z/NZ for N = 1, 2, . . . , 10, 12.

2 Z/2NZ⊕ Z/2Z for N = 1, . . . , 4.

But between Q and Q there is the whole universe of algebraic
number fields!
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As the N-torsion points are Q-points, we can consider the
extension Q (E [N]) of Q defined by the adjunction of their
coordinates.

It can be shown that Q (E [N]) is an algebraic Galois extension of
Q and we can consider the way the elements
σ ∈ Gal (Q (E [N]) /Q) act on Q (E [N]).

In the Z-basis {x1, x2} of E [N] , any such automorphism σ of
Q (E [N]) over Q is represented by a 2× 2 matrix and we get
therefore a representation, called a Galois representation,

ρE ,N : G = Gal (Q (E [N]) /Q)→ GL2

(
Z

NZ

)
.
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This representation is injective (one-to-one) and makes
Gal (Q (E [N]) /Q) a subgroup of GL2

( Z
NZ
)
. Indeed let g s.t.

ρE ,N (g) =

(
1 0
0 1

)
, then g leaves invariant the Z-basis {x1, x2}

of E [N] and therefore g = Id.
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More generally, if K is an extension of Q containing Q (E [N]), we
get a representation ρE ,N : Gal (K/Q)→ GL2

( Z
NZ
)
. In particular,

for K = Q we get a Galois representation

ρE ,N : G = Gal
(
Q/Q

)
→ GL2

(
Z

NZ

)
and in the case where N = p is a prime, we get a Galois
representation

ρE ,p : G = Gal
(
Q/Q

)
→ GL2 (Fp)

of the “absolute” Galois group Gal
(
Q/Q

)
.

This representation is called “continuous” in the sense it factorizes
through the Galois group Gal (K/Q) of a finite algebraic Galois
extension K/Q.

ρE ,p can be reducible. E.g., it is trivial if the p-torsion points are
rational.
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To make things more concrete, let us take the simplest case p = 2.

We have E [2] = {(0,∞) , (α1, 0) , (α2, 0) , (α3, 0)} where the αi

are the 3 roots of the cubic polynomial f (x) in the equation
y 2 = f (x) of E and G permutes these roots.

The group GL2

( Z
2Z
)

is isomorphic with the group S3 of
permutations on 3 elements a, b, c and the image of G by ρE ,2 in

GL2

( Z
2Z
)
' S3 is isomorphic to Gal (K/Q) where K is the splitting

field of the polynomial f (x).

In his 1972 paper “Propriétés galoisiennes des points d’ordre fini
des courbes elliptiques” dedicated to André Weil [53] , Jean-Pierre
Serre explains that

“Il s’agit de prouver que les groupes de Galois associés
aux points d’ordre fini des courbes elliptiques sont ‘aussi
gros que possible.’”
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Theorem (Serre). The index of the image ρE ,N (G ) of G is

bounded in GL2

( Z
NZ
)

by a constant depending only on E .

Let E [∞] =
⋃

N∈N
E [N] be the subgroup of all torsion points in

E
(
Q
)

and consider the automorphism group

lim
←−

GL2

(
Z

NZ

)
= GL2

(
lim
←−

Z
NZ

)
= GL2

(
Ẑ
)

Let ρE ,∞ : G = Gal
(
Q/Q

)
→ GL2

(
Ẑ
)

be the limit of the ρE ,N

then

Theorem. The index of the image ρE ,∞ (G ) of G in GL2

(
Ẑ
)

is

finite.
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These results can be formulated in the p-adic framework.

Indeed E [∞] =
⋃

N∈N
E [N] =

⊕
p prime

E [p∞] with E [p∞] the p-adic

Tate module, and GL2

(
Ẑ
)

= Aut (E [∞]) is a product of factors

corresponding to the different primes:

GL2

(
Ẑ
)

= Aut (E [∞]) =
∏

p prime

Aut (E [p∞]) '
∏

p prime

GL2 (Zp)

and the representation ρE ,∞ : G = Gal
(
Q/Q

)
→ GL2

(
Ẑ
)

is a

“product” of ρE ,p∞ : G = Gal
(
Q/Q

)
→ GL2 (Zp).
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The representations ρE ,∞ encode a lot of informations on the
elliptic curve E . For instance, ρE ,∞ and ρE ′,∞ are isomorphic iff E
and E ′ are isogenous.

Serre proved the theorem:

Theorem (Serre). For almost every prime p, ρE ,p∞ is surjective:
ρE ,p∞ (G ) = GL2 (Zp).

The main obstruction to the surjectivity of ρE ,p∞ is the existence
of a Q-rational point of order p.

So, we can say that the ρE ,p : G = Gal
(
Q/Q

)
→ GL2 (Fp) are

generically (i.e. for almost all p) surjective, and therefore
isomorphisms Gal (K/Q)→ GL2 (Fp).
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The Frobenius

In order to go further, we need Frobenius morphisms.

For the algebraic extensions Fqn of Fq and the algebraic closure Fq

of Fq the Frobenius is defined as Frobq : x → xq.

It is the generator of the Galois group Gal
(
Fqn or Fq/Fq

)
.

As, due to Fermat little theorem, xq = x for every x ∈ Fq, it
is the identity on Fq.

On Fqn it is a Fq-automorphism of order n, i.e. Gal (Fqn/Fq)
is a cyclic group of order n.

A key fact is that it can be lifted to a Frobenius Frobq in the
Galois group Gal (K/Q) of any Galois extension K/Q where q is
unramified.
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Indeed, let K/Q be a Galois extension and OK the ring of integers
of K . The prime ideals q of OK s.t. q ∈ q (i.e. (q) ⊂ q, i.e.
q | (q)) are conjugated by the Galois group Gal (K/Q).

If q is unramified in K/Q then its inertia group Iq = {1} is trivial,
its decomposition group Dq is isomorphic to Gal (Fq/Fq) and the
unique σq ∈ Dq ' Gal (Fq/Fq) associated to Frobq is written
Frobq and is also called the Frobenius.

All the different Frobq for q | (q) are conjugate and they define up
to conjugacy a Frobenius Frobq ∈ Gal (K/Q).

One can generalize the finite degree case to the infinite degree case
of the algebraic closure K = Q, and Fq = Fq. As explained by
Kenneth Ribet ([46], p. 12), in that special but very fundamental
case,

“One can think of q as a coherent set of choices of
primes lying over q in the rings of integers of all finite
extensions of Q in Q.”
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One says that ρE ,p is unramified at q if ρE ,p is trivial on the inertia
group Iq.

The conductor Np of the representation ρE ,p is defined as

Np =
∏
q 6=p

q ramified

qn(ρ,q)

where n(ρ, q) is the degree of ramification of ρE ,p at the prime
q 6= p. Np divides the conductor NE of E .

An important theorem relates the properties of ramification of ρE ,p

to the properties of reduction of E : if q 6= p and q - NE (good
reduction) then ρE ,p is unramified at q. Further:
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Theorem of Néron, Ogg, Shafarevich. Let q 6= p. Then E has good
reduction at q iff the representation ρE ,p∞ on the p-adic Tate
module is unramified at q. In particular, if E/Q and E ′/Q are
isogenous they have the same primes of good and bad reduction.

Suppose, e.g., that E is semi-stable at q, its reduction mod q
being a node.

The group of regular points is then the multiplicative group Gm of
C and the pn-torsion points are the pn-th roots of unity.

Their group is of size pn while E [pn] is of size p2n. So a lot of
pn-torsion points are killed by the reduction mod q. Hence the
ramification.
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Another related result concerns the links between the reducibility
of ρE ,p and the rationality of the corresponding point of X0 (p) :

Theorem. ρE ,p is reducible iff the corresponding point of X0 (p) is
rational.

This is due to the fact that rational points of X0 (p) correspond to
curves whose p-division points are rational and on which
Gal

(
Q/Q

)
act therefore trivially.

J. Petitot The unity of mathematics



Galois representations and LE -functions

The consideration of the Galois representations ρE ,p of

G = Gal
(
Q/Q

)
is relevant because they have deep links with

L-functions.

It is due to the remarkable following theorem.

For σ ∈ G , the image ρE ,p (σ) is a matrix GL2 (Fp) and this matrix
has two invariants belonging to Fp, its trace and its determinant.

The theorem shows in particular that the different ρE ,p encode the
counting of points of E over the different prime fields Fq with q
another prime (beware: we are considering two primes p and q).
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Theorem. Let E be an EC defined over Q. Its Galois representation
ρE ,p satisfies the following properties:

1 Trace ρE ,p (Frobq) ≡ q + 1−#Eq (Fq) (= aq) mod p for
almost every prime q (essentially q 6= p and q - N). This is
the reason why we used aq instead of #Eq (Fq).

2 Det ρE ,p = εp where εp : G → F×p is the cyclotomic character
giving the action of G on the p-th roots of unity, and in
particular Det ρE ,p (Frobq) ≡ q (mod p).

3 Det ρE ,p (c) = εp (c) = −1 (i.e. ρE ,p is odd) since the
complex conjugation c acts on a pth root of unity ζ by
ζ 7→ ζ−1. (Complex conjugation can be interpreted as Frob∞,
the Frobenius of the “infinite” prime corresponding to R.)

This theorem remains valid (with = and no longer ≡) for the
p-adic limit ρE ,p : G → GL2 (Zp), that is when we lift the residual
situation at p to the p-adic local situation at p.
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Serre’s conjecture

The conjecture which is the equivalent to the TSW conjecture for
Galois representations is due to Jean-Pierre Serre and says
essentially that every Galois representation

ρ : G = Gal
(
Q/Q

)
→ GL2 (Fp)

coming from the torsion points of an elliptic curve is modular.

The representations ρE ,p : G → GL2 (Fp) are continuous and their
character Det ρE ,p is odd. It can be shown that they are absolutely

irreducible in the sense that they are irreducible and ρE ,p ⊗Fp Fp is
also irreducible.

Serre conjecture. Let ρ : G → GL2 (Fp) be a continuous, and
absolutely irreducible Galois representation with Det ρ (c) = −1
(that is ρ can be modular). Then ρ is effectively modular: there

exist a level N ≥ 1, a weight k ≥ 2, a character χ :
( Z

NZ
)+ → C×,

and a new cusp form f ∈ Snew
k (N, χ) s.t. ρ = ρf .
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Serre made precise propositions for the weight k , the conductor N,
the Nebentypus χ and the newform f .

Theorem. Serre conjecture implies FLT .

The proof is similar to the proof that STW implies Fermat.

Let al + bl + c l = 0 be an hypothetical solution of Fermat theorem
for a prime l ≥ 5 and a, b, c relatively prime non vanishing integers.
We consider once again the associated Frey elliptic curve E

y 2 = x
(

x − al
)(

x + bl
)

and this time we consider the very particular Galois representation
ρE ,l : G → GL2 (Fl) defined by the points of l-torsion, where l is
now the power in Fermat equation.
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1 ρE ,l is continuous since it factorizes through Gal (K/Q) where
K is the field generated by (the coordinates of) the l-division
points.

2 ρE ,l is absolutely irreducible.

3 ρE ,l is unramified outside 2 and l and its ramification at l and
2 is, as says Bas Edixhoven, “very well behaved”. Indeed for
ρE ,l to be ramified at q 6= 2, l we must have (since q | ∆)
q | abc. But in that case we get a node (semi-simplicity) with
l dividing the exponent 2l of q in ∆, and this implies the non
ramification.

4 ρE ,l can be modular.

5 If Serre conjecture is true, then ρE ,l is modular.

6 One shows, it is the difficult part of the proof, that for any f
s.t. ρE ,l = ρf we must have (N, k , χ) = (2, 2, 1).

7 One concludes with the same argument as before:
S2(2, 1) = 0 since X0(2) is of genus g = 0.
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Step 6 uses a theorem due to Barry Mazur and an adaptation of
Ribet theorem which say essentially that

we can choose as conductor N the Artin conductor of ρ, and

for a ρ coming from a Frey curve, this Artin conductor is
minimal and equal to 2.

As was emphasized by Yves Hellegouarch ([29], p.329):

“La ‘philosophie’ qui rend ces conjectures si précieuses
tient au fait que la représentation ρf liée à une nouvelle
forme f de niveau N peut être beaucoup plus simple que
ce que l’on pouvait attendre : en particulier son
conducteur d’Artin Nρ peut être beaucoup plus petit que
N. La forme f est alors congrue modulo p à une forme
dont le niveau est un très petit diviseur de N, ce qui
conduit à des conséquences merveilleuses.”
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These arguments (implying that ρ is absolutely irreducible,
unramified at p and flat at l) give a proof of the implication
STW ⇒ Fermat.

Of course it is normal for ρ to be unramified at the points where E
has good reduction.

But in our case, ρ is also unramified at p = l and p | N with p > 2
and this is quite extraordinary. As Gerd Faltings formulates it
([22], p.744):

“The l-division points behave as if E had good reduction
at all p > 2.”

But this is impossible.
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In fact Serre conjecture is stronger than the TSW conjecture.
Indeed:

Theorem. Serre conjecture implies TSW conjecture.

Sketch of the proof. Let E be of conductor N with Hasse-Weil
L-function LE (s) =

∑
n≥1

an
ns .

One shows first that, for almost every prime p, the Galois
representations modulo p, ρE ,p, can be modular.

If Serre conjecture is valid, then they are modular and ρE ,p = ρfp
for a cusp form fp ∈ S2 (N, 1) whose coefficients aq,p for q - N are
eigenvalues of Hecke operators.
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But fq can be lifted to characteristic 0 to a modular cusp form

F =
∑
n≥1

Anκ
n s.t. F̃ ≡ fp mod p.

As the weight k and the level N are fixed, there exist only a finite
number of possible F . There exists therefore an F s.t. F̃ = fp
mod p for an infinite set P of primes p.

Let q - N. Then E has good reduction. Let
aq = Trace (Frobq) . We have aq ≡ aq,p mod p for every q 6= p
and therefore Aq = aq in Fp for every p ∈ P − {q} and, as P is
infinite, Aq = aq for every q - N.

This shows that Aq ∈ Z and that the Aq define a modular curve EF

of level N ′/N, E and EF sharing equivalent q-adic representations.

But, due to Faltings theorem, this implies that E and EF are
isogenous over Q, and E is therefore modular.
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A letter of Jean-Pierre Serre to Alexandre Grothendieck

The 31 December 1986, Jean-Pierre Serre wrote a very interesting
and touching letter to Alexandre Grothendieck [27] announcing his
conjecture. Let us quote it.

“ Cher Grothendieck,
“Tu vas recevoir un de ces jours une copie de “Sur les
représentations modulaires de degré 2 de Gal(Q/Q)”, un travail
que j’ai rédigé ces derniers mois, mais qui était en fait en chantier
depuis une douzaine d’années. (...)

“Tu te souviens sans doute de la conjecture avancée par Weil en
1966 : toute courbe elliptique sur Q est “modulaire”. (...)
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Le grand intérêt de cette conjecture est qu’elle décrit comment on
peut obtenir les motifs les plus simples qui soient : ceux de
dimension 2, de hauteur 1 et de corps de base Q.

En particulier, si la conjecture est vraie (et elle a été vérifiée
numériquement dans de très nombreux cas), la fonction zêta du
motif a les propriétés analytiques (prolongement et équation
fonctionnelle) que l’on pense.

“Plus généralement, toutes les fonctions zêta attachées aux motifs
devraient (conjecturalement) provenir de “représentations
modulaires” convenables; il y a là-dessus des conjectures assez
précises de Langlands et Deligne.
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“Ce que j’ai essayé de faire dans le texte que je t’envoie, c’est un
analogue (modulo p) de la conjecture de Weil en question. On
veut décrire en termes de formes modulaires (modulo p) certaines
représentations galoisiennes. Ces représentations sont en apparence
très spéciales; ce sont des représentations

Gal
(
Q/Q

)
→ GL2 (Fp)

irréductibles (sinon ce n’est pas très intéressant) et de déterminant
impair (la conjugaison complexe doit avoir un déterminant égal à
−1).

La conjecture que je fais est que toutes ces représentations sont
“modulaires” , i.e. proviennent de formes modulaires modulo p
dont je prédis en outre le niveau et le poids (la recette prédisant le
niveau est très naturelle — celle du poids ne l’est pas).
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Bien entendu, je ne suis pas du tout sûr que cette conjecture soit
vraie! Mais elle est étayée par quantité d’exemples mi-théoriques,
mi-numériques, et j’ai fini par me décider à la publier.

D’autant plus que ses applications sont nombreuses :

a) elle entrâıne la conjecture de Weil citée au début, ainsi que des
conjectures analogues sur des motifs de hauteur > 1 (...); a priori,
cela peut parâıtre surprenant : comment déduire un énoncé de
caractéristique 0 d’un énoncé de caractéristique p? C’est beaucoup
moins surprenant lorsqu’on se rend compte qu’on a une infinité de
p à sa disposition.

b) elle entrâıne le (grand) théorème de Fermat, ainsi que des
variantes assez surprenantes: non-existence de solutions non
triviales de xp + yp + `zp = 0, p ≥ 11, pour ` premier égal à 3, 5,
7, 11, 17, 19,. . . (mais la méthode ne s’applique pas à ` = 31).
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c) elle entrâıne que tout schéma en groupes sur Z, plat, fini, de
type (p, p) est somme directe (pour p ≥ 3) de copies de Z/pZ et
de µp. (Attention: il ne s’agit que de schémas de rang 2. Je ne
sais rien faire pour un rang plus grand.).

“Bien sûr, on serait un peu plus rassuré si on savait faire une
conjecture générale (sur un corps global quelconque, pour des
représentations de dimension quelconque). J’y ai souvent réfléchi,
mais je ne vois pas comment faire (et cependant je suis sûr que
c’est possible, au moins dans certains cas). On verra bien. . .

“Bien à toi — et meilleurs vœux pour 1987.
“J-P. Serre” .
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Deligne’s theorem

We must define now modular Galois representations.

We have encoded a lot of arithmetic informations on ECs in Galois
representations ρE ,p : Gal

(
Q/Q

)
→ GL2 (Fp).

Now, due to a fundamental work of Pierre Deligne in 1969, one
can also associate such Galois representations to modular forms.

Hence the strategic idea of proving TSW conjecture by proving
that the “arithmetic” ρE ,p are modular.
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Let Sk(N, ε) be the space of cusp forms of weight k , level N and
character (Nebentypus) ε.

The Hecke operators Tk (`) for ` prime (they generate all the
Tk (n)) act on Sk(N, ε) and commute between them.

Let λ(n) be the eigenvalues of a common new eigenform
f =

∑
n≥1 anκ

n ∈ Snew
k (N, ε) of the Tk (n), let Of be the ring

generated by the λ(`) and the ε (`) and Kf the quotient field.

Let ∼: Of → Fp be a morphism of Of into the finite field Fp.

For p a prime non dividing N, let p be a prime ideal of Of above
p, and Of ,p the p-adic completion of Of at p (local p-adic ring).
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Deligne theorem. (For k = 2, the theorem has been proved before
by Eichler and Shimura.) Under these hypotheses there exists a
(unique) Galois representation ρf : G = Gal

(
Q/Q

)
→ GL2 (Of ,p)

associated with f , which is continuous, semi-simple and unramified
for q 6= p and q - N and has the “good” properties for the trace,
the determinant and the character.

Namely its quotient ρf : G = Gal
(
Q/Q

)
→ GL2 (Fp) defined via

the map ∼: Of → Fp satisfies for every prime q 6= p and q - N

1 ρf is unramified at q;

2 Trace ρf (Frobq) = ãq;

3 Det ρf (Frobq) = qk−1ε̃ (q),

4 Det ρf (c) = −1 where c is the complex conjugation.

Moreover, the same properties are true for ρf :
Trace ρf (Frobq) = aq, Det ρf (Frobq) = qk−1ε (q), and
Det ρf (c) = −1.
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For such modular Galois representations everything is fine.

Theorem. For elliptic curves E defined over Q the following
properties are equivalent:

1 E is modular and associated to a newform f ;

2 there exists a prime p s.t. the Galois representation ρE ,p is
modular;

3 for every p, ρE ,p is modular;

4 there exists a covering π : X0 (NE )→ E of E by the modular
curve X0 (NE );

5 E is isogenous to the modular abelian variety defined by f .

We have therefore a two completely different ways to Galois
representations: elliptic curves and modular forms, and the unity of
this double way inside the whole unity of mathematics is
particularly deep and striking.
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As said Richard Taylor in an interview at Harvard [64] concerning
Langlands program:

“The answer is to my mind extremely surprising; it
invokes extremely different objects. You start with this
algebraic structure and end up using what are called
modular forms, which relate to complex analysis.”
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This provides a method of proof. The idea is now to translate all
the problematic of the TSW conjecture and FLT into this new
context of Galois representations. As Allan Adler explains very well
in [1],

“The point is that to every elliptic curve one can
associate a Galois representation, while in some cases one
knows how to associate a Galois representation to a
modular form. The idea then is to show that the Galois
representation associated to the semi-stable elliptic curve
E is of the type one gets from modular forms.”

As Wiles explains for his part ([73], p.445), his aim was to prove a
sort of converse of Deligne’s theorem:

“We will be concerned with trying to prove results in the
opposite direction, that is to say, with establishing
criteria under which a p-adic representation arises in this
way from a modular form.”
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Langlands-Tunnell theorem

With Deligne theorem, we can associate to any suitable modular
form a Galois representation mod p. But for the converse, which is
the objective sought by Wiles, we meet a key difficulty:

there are only very few results constructing a cusp eigenform from
a Galois representation.

The most important one is the fundamental theorem of Langlands
and Tunnell concerning Galois representations ρ of
G = Gal

(
Q/Q

)
in GL2 (C) (and not in GL2 (Fp): representations

in GL2 (C) are Artin representations).
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To formulate it we need to define the smaller congruence group

Γ1 (N) =

{
γ ∈ SL2 (Z ) | γ ≡

(
1 b
0 1

)
mod N

}
. Remember that

Γ0 (N) =

{
γ ∈ SL2 (Z ) | γ ≡

(
a b
0 d

)
mod N

}
Langlands-Tunnell theorem. Let ρ : G = Gal

(
Q/Q

)
→ GL2 (C) be

a continuous irreducible representation with odd determinant
Det ρ(c) = −1 (c = complex conjugation). Suppose that the
image ρ (G ) is a subgroup of S4 (fondamental hypothesis of
diehedrality). Then there exist a level N and an eigenform
g ∈ S1 (Γ1 (N)), g =

∑
n≥1

bnκ
n, s.t., for almost every prime q, one

has bq = Trace ρ (Frobq).

In our “Hymalayan” metaphor, this highly non trivial theorem on
Artin representations could be considered as a sort of forced,
narrow and very elevated “mountain pass”.
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In fact Langlands-Tunnell theorem is valid under the more general
condition that ρ (G ) is a solvable subgroup of GL2 (C) (a group G
is solvable if there exists a finite chain of normal subgroups from
{1} to G whose successive quotients are abelian).

As every continuous representation ρ : G = Gal
(
Q/Q

)
→ GL2 (C)

factors through the finite Galois group Gal (K/Q) of a finite
algebraic extension, its image ρ (G ) in GL2 ( C) (in fact
PGL2 ( C)) is finite and is the group of symmetry of a regular
polyhedron in R3.
As ρ is irreducible, the degenerate case of a regular polygon in a
plane is excluded and ρ (G ) is therefore either A5 (icosahedral and
dodecahedral cases), S4 (octahedral and cubic cases), A4

(tetrahedral) or D2n (dihedral case).

The dihedral case was solved by Hecke;

A5 is not solvable;

the cases of interest are therefore S4 and A4.
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Langlands-Tunnell theorem doesn’t afford directly an eigenform g
but an odd automorphic cuspidal representation π (ρ) of the adelic
group GL2 (AQ) (see Gelbart), where the group of adeles of Q is

AQ =

(αp) ∈ R×
∏
p∈P

Qp | αp ∈ Zp for almost every p


This means that π (ρ) = ⊗pπp (GL2 (AQ)) is a family {πp}
(including π∞) of irreducible unramified representations of the
local groups GL2 (Qp) (with Q∞ = R).

Such a representation π (ρ) has the property that, for almost every

q, Trace ρ (Frobq) = Trace
(
tπq

)
where tπq =

(
µ1 (p) 0

0 µ2 (p)

)
,

with µ1 and µ2 being the two unramified characters of Q×p
inducing πp (tπq is called the Langlands class of πq in GL2 (C)).
The traces µ1 (p) + µ2 (p) give the coefficients bp of g .
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Wiles new route: SSML for p = 3, 5

According to Wiles ([73], p.444):

“The key development in the proof is a new and
surprising link between two strong but distinct traditions
in number theory, the relationship between Galois
representations and modular forms on the one hand and
the interpretation of special values of L-functions on the
other.”

An excellent introduction to the first Wiles proof is the text of Karl
Rubin and Alice Silverberg [51] “A report on Wiles’ Cambridge
lectures”, Bulletin of the AMS (1994).
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As emphasized by Charles Daney ([11], p.2), Wiles theorem

“can be seen to be both surprising and beautiful. The
reason is that it concerns two apparently quite different
sorts of mathematical objects — elliptic curves and
modular forms. Each of these is relatively simple and has
been studied intensively for ever 100 years. Along the
way some very surprising parallels have been observed in
the theory of each. And the theorem states that the
parallels are in fact the results of a fundamental
underlying connection between the two.”
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Wiles strategy was defined in the following way by Nigel Boston in
2003 [4], in what he called “the big picture”:

“A counterexample to Fermat’s Last Theorem would
yield an elliptic curve (Frey’s curve) with remarkable
properties. This curve is shown as follows not to exist.
Associated to elliptic curves and to certain modular forms
are Galois representations. These representations share
some features, which might be used to define admissible
representations. The aim is to show that all such
admissible representations come from modular forms
(...). We shall parametrize special subsets of Galois
representations by complete Noetherian local rings and
our aim will amount to showing that a given map
between such rings is an isomorphism. This is achieved
by some commutative algebra, which reduces the
problem to computing some invariants, accomplished via
Galois cohomology.”
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A key idea of Wiles is to weaken TSW by considering it modulo p
and then to try to lift it p-adically to characteristic 0.

The transformed conjecture is called the “semi-stable modular
lifting conjecture”.

As pointed out by Kenneth Ribet ([46], p.18) :

“Wiles’s approach to the Taniyama-Shimura conjecture is
‘orthogonal’ to one based on consideration of the varying
ρE ,p.”
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He didn’t look, as Serre and Drinfeld suggested, for “a compatible
system of p-adic representations” but followed rather the
suggestion by Mazur and Fontaine to use restrictions on the
decomposition and inertia groups.

Instead of looking at all representations ρE ,p and try to prove that
an infinity of them are modular, he chose to focus on a single
prime p and to prove that the p-adic lifting

ρE ,p∞ : G = Gal
(
Q/Q

)
→ GL2 (Zp)

is modular.

This would be sufficient since

Trace ρE ,p∞ (Frobq) ≡ aq for every q 6= p, q - N
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Semi-stable modular lifting conjecture (SSML). Suppose that E is
semi-stable and that there exists a single prime p ≥ 3 s.t.

(a) ρE ,p is irreducible,

(b) E is modular but only mod p (where the ideal p lifts p in the
ring of integers Of of the extension Q (an) of Q by the
algebraic integers an with aq ≡ q + 1−#E (Fq)), i.e. there
exists a cusp eigenform g ∈ S2 (N), g =

∑
n≥1

bnκ
n, satisfying

bq ≡ q + 1−#Eq (Fq) mod p (very approximative equality)
for almost every prime q,

then E is really modular, i.e. there exists a cusp eigenform
f ∈ S2 (N), f =

∑
n≥1

anκ
n, satisfying aq = q + 1−#E (Fq) (exact

equality) for almost every prime q.
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Even if weaker than TSW the SSML conjecture remains highly
non trivial since, as was emphasized by Rubin and Silverberg ([51],
p.21):

“There is no known way to produce such a form in
general.”

It is why, as explained by Taylor in his Harvard interview [64]:

“The big problem has been to start with a representation
of the Galois group and try to produce a modular form.”

Wiles strategy is based on the fact that the SSLM conjecture for
the first two primes p = 3, 5 is sufficient to prove the semi-stable
TSW conjecture, which is itself sufficient for FLT .

The key reason is that the group PGL2 (F3) is isomorphic to the
symmetric group S4 of permutations of 4 elements and that for
this extremely special dihedral case there exists the
Langlands-Tunnell result of modularity.
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As Wiles explains in his paper regarding his “first real
breakthrough”([73], p.444):

“Suppose that ρp is the representation of Gal
(
Q/Q

)
on

the p-division points of an elliptic curve over Q, and
suppose for the moment that ρ3 is irreducible. The choice
of 3 is critical because a crucial theorem of Langlands
and Tunnell shows that if ρ3 is irreducible then it is also
modular. We then proceed by showing that under the
hypothesis that ρ3 is semi-stable at 3, together with
some milder restrictions on the ramification of ρ3 at the
other primes, every suitable lifting of ρ3 is modular.”

Theorem. Semi-stable modular lifting conjecture for
p = 3, 5⇒ semi-stable TSW ⇒ FLT . (The case p = 5 is needed
when ρE ,3 is reducible.)
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Sketch of the proof (see Rubin-Silverberg [51]). Let E be defined
over Q and semi-stable and suppose that the semi-stable modular
lifting conjecture is true for p = 3.

Semi-stability is here a key property. So Shimura’s theorem proving
STW in the complex multiplication case is of no help, since if E
has complex multiplication its modular j-invariant j (E ) is an
integer and semi-stability would imply good reduction everywhere
which is impossible for an E/Q.

Suppose first that the Galois representation ρE ,3 is irreducible
(hypothesis (a)). Then E will be modular via the semi-stable
modular lifting conjecture if hypothesis (b) is verified. For proving
(b) one relies upon a the Langlands-Tunnell theorem.
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To construct ρ in our case, we consider

ρE ,3 : G = Gal
(
Q/Q

)
→ GL2 (F3) .

It is irreducible by hypothesis. We use the key fact that GL2 (F3)
can be embedded in GL2 (C) through a well suited morphism ψ
which factorizes through GL2

(
iZ
√

2
)

and satisfies{
Trace (ψ(g)) = Trace (g) mod

(
1 + i

√
2
)

Det (ψ(g)) = Det (g) mod (3)
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If

(
−1 1
−1 0

)
and

(
1 −1
1 1

)
are generators of GL2 (F3), we

define explicitely ψ by ψ

((
−1 1
−1 0

))
=

(
−1 1
−1 0

)
and

ψ

((
1 −1
1 1

))
=

(
i
√

2 1
1 0

)
.

One shows that ρ = ψ ◦ ρE ,3 : G = Gal
(
Q/Q

)
→ GL2 (C) is

irreducible with odd determinant Det ρ(c) = −1 and that
Im (ρ) ⊆ PGL2 (F3) ' S4.
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ρ = ψ ◦ ρE ,3 : G =
(
Q/Q

)
→ GL2 (C) has odd determinant

Det ρ(c) = −1 since ρE ,3 is odd, Det ρ(c) ≡ Det ρE ,3 (c)
(mod 3) and −1 6≡ 1 (mod 3);

Im (ρ) ⊆ PGL2 (F3) ' S4 is solvable since S4 is solvable;

ρ is irreducible, since ρE ,3 is absolutely irreducible (see
Gelbart). Indeed as Det ρE ,3 (c) = −1, ρE ,3 (c) has two
different eigenvalues (1 and −1) in F3 and, as far as the only

matrices of M2

(
F3

)
commuting with

(
1 0
0 −1

)
and non

diagonal matrices ρE ,3 (g) are the λI , Schur’s Lemma implies

the irreducibility over F3. If ρ was reducible, then its image in
GL2 (C) would be abelian since, complex representations of a
compact group being completely reducible, ρ would be the
direct sum of two characters. But this would imply that ρE ,3,
which is absolutely irreducible, would have an image in
GL2

(
F3

)
which would be at the same time abelian and

irreducible, which is impossible.
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One can therefore apply Langlands-Tunnel.

There exist a level N and an eigenform g ∈ S1 (Γ1 (N) , ε),
g =

∑
n≥1

bnκ
n (with coefficients bn ∈ Z

[
i
√

2
]
), s.t. for almost

every prime q one has bq = Trace ρ (Frobq).

From g , one constructs then a cusp eigenform
f ∈ S2 (N) = S2 (Γ0 (N)) s.t. ∀n an ≡ bn mod p, where p is the
prime ideal of Q containing 1 + i

√
2 (and hence 3).

The congruences show that the eigenform f satisfies (b) (that is
modularity modulo a prime over p) for the ideal p′ = p ∩ Of and
therefore E is modular if SSML is true.
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The idea for passing from g to f is to multiply g by a non cuspidal
form of weight 1, h, which is ≡ 1 (mod 3). Then gh =

∑
n≥1

cnκ
n

will be of weight 2 with cn ≡ bn (mod p).

A possibility is to take the Eisenstein series

h (τ) = 1 + 6
∑
n≥1

∑
d |n

χ (d)κn

where χ is the odd Dirichlet character (mod 3) associated to the
imaginary quadratic extension Q

(
i
√

3
)
/Q (we have

χ (d) = 0, 1,−1 according to the cases d ≡ 0, 1,−1 (mod 3)).
h ∈ M1 (3, χ) and gh ∈ S2 (3N, εχ), the level N and the
Nebentypus ε being that of g .
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One cannot conclude directly the modularity of ρE ,3 because gh is
not an eigenform but only an eigenform (mod p). But, due to the
theorem of Deligne and Serre, there exists an eigenform
f ∈ S2 (3N, εχ), f =

∑
n≥1

anκ
n s.t. an ≡ cn (mod p′) for a p′ | p and

we are done.

At the end of the proof we used the fact that the restriction of
ρE ,3 to the subgroup Gal

(
Q
(
i
√

3
)
/Q
)

of Gal
(
Q/Q

)
is absolutely

irreducible, that is irreducible as a representation in GL2

(
F3

)
(see

Wiles and Boston).

If it was not the case, the image H would be different from the
permutation group S4 otherwise ρE ,3 would be surjective and the

image of Gal
(
Q
(
i
√

3
)
/Q
)

would be SL2 (F3) and

ρE ,3

∣∣∣Gal(Q(i
√

3)/Q) would be absolutely irreducible.

We consider therefore the subgroups of S4.
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Now,

H cannot be included into the subgroup A4 otherwise
Det

(
ρE ,3

)
would be trivial (and not odd).

H cannot be included into a subgroup S3 of S4 otherwise ρE ,3

would be reducible.

So H is necessarily a dihedral subgroup of order 8 or a
subgroup of index 2 of such a group.

As E is semi-stable, ρE ,3 can be ramified only at 3 (since the
inertia groups Iq for q 6= 3 in the splitting field of ρE ,3 have an
order dividing 3).

The abelianization Hab of H would then be an abelian Galois
extension of Q of degree 4 ramified only at 3. But this is
impossible.
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Suppose now that the representation ρE ,3 is reducible.

If the representation ρE ,5 is also reducible then E is modular.

Indeed, the group of points of E over Q contains a cyclic subgroup
of order 15 = 3.5 which is G -stable. But the pairs (E ,C ) are
classified by the rational points of the modular curve X0 (15).

Now, X0 (15) has only 4 rational points and it can be shown that
they all correspond to modular curves.

To show that, we use Mazur’s formula for the genus g (N) of
X0 (N) , and we find g (15) = 1, which means that X0 (15) is an
elliptic curve.
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Indeed (see Rubin [52]),

g (15) = 1 +
µ (Γ (15))

12
− ν2 (Γ (15))

4
− ν3 (Γ (15))

3
− ν∞ (Γ (15))

2

where µ (Γ (15)) = [SL (2,Z) : {±1} Γ (15)], ν i (Γ (15)) for i = 2, 3
is the number of elliptic points of order i , and ν∞ (Γ (15)) is the
number of cusps.

Computations give µ (Γ (15)) = 24, ν i (Γ (15)) = 0 for i = 2, 3,
and ν∞ (Γ (15)) = 4. Hence g (15) = 1 + 24

12 −
4
2 = 1.
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A Weierstrass equation of X0 (15) over Q is

y 2 = x
(
x + 32

) (
x − 42

)
X0 (15) has only 8 rational points including its 4 cusps which don’t
correspond to any elliptic curve. The other 4 points correspond to
elliptic curves of modular invariant

j ∈
{
−25

2
,−52 × 2413

23
,−5× 293

25
,

5× 2113

215

}
which possess a rational cyclic subgroup C15, are isogenous to

E0 : y 2 + xy + y = x3 − x − 2

and are all modular. As their conductor is N = 50, which is not
square free, these curves are not semi-stable.
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We can therefore suppose that ρE ,5 is irreducible , which implies as
before that the restriction of ρE ,5 to the subgroup

Gal
(
Q
(
i
√

5
)
/Q
)

of Gal
(
Q/Q

)
is absolutely irreducible since the

only non trivial extension of Q
(
i
√

5
)

unramified outside 5 is
Q
(
ζ5
)

which is abelian over Q.

In that case, Wiles method is to use a “3-5 switch” trick due to
Mazur and to construct another auxiliary elliptic curve E ′ defined
over Q and semi-stable s.t.

1 ρE ′,5 = ρE ,5, and

2 ρE ′,3 is irreducible.
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Let us suppose that E ′ is constructed. According to the case
explained before, E ′ is modular.

Let f ∈ S2 (N), f =
∑
n≥1

anκ
n, be the associated eigenform. For

almost every prime q we have aq = q + 1−#E ′ (Fq). But

q + 1−#E ′ (Fq) ≡ Trace ρE ′,5 (Frobq) mod 5.

And, as ρE ′,5 = ρE ,5, we have the congruence

Trace ρE ′ ,5 (Frobq) = Trace ρE ,5 (Frobq) ≡ q + 1−#E (Fq) mod 5

and f satisfies therefore the condition (b) of the semi-stable
modular lifting conjecture for p = 5.

We conclude that E is modular if the SSML conjecture is true.
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At this point, the main difficulty is to construct the auxiliary EC E ′.

The sarting point is that ECs E ′ satisfying ρE ′,p = ρE ,p are
classified by the rational points of the Riemann surface X (p)
(defined over Q) associated to Γ(p) the subgroup of integral
matrices of SL2 (Z) which are congruent to the identity matrix
modulo p:

Γ(p) = {γ ∈ SL2 (Z) | γ ≡ Id mod p}

We will use again a topological argument, namely that X (p) is of
genus g = 0 for p ≤ 5. But when g = 0, if there exists a rational
point (which is the case here with E ′ = E ) then there exist an
infinite number of rational points. One then shows:

Proposition. For an infinite number of rational points of X (5) ρE ′,3

is irreducible.
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One uses Serre’s result that if E ′ is a generic point (and therefore
not rational) of X (5) then its Galois group given by its p-torsion
points is “big” in the sense that the image of G = Gal

(
Q/Q

)
in

GL2 (Fp) is maximal (that is equal to GL2 (Fp)).

But a theorem due to Hilbert, called the irreducibility theorem,
says that “many” specializations of a generic point have the same
Galois group and we can conclude.

One shows next that E ′ can be chosen semi-stable. If the prime
q 6= 5 semi-stability reads on E ′[5] and as E ′[5] = E [5] and E is
semi-stable at q by hypothesis, E ′ is also semi-stable at q.

For q = 5 one chooses an E ′ which is “close” to E for the p-adic
metric and uses the fact that semi-stability is an open property. As
E is semi-stable at 5 by hypothesis, E ′ is also semi-stable at 5.
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Lifting to p-adic representations

Up to now, we have considered only representations of
G = Gal

(
Q/Q

)
into GL2 (Z/NZ) induced by the N-torsion

(N-division) Q-points E [N] ' Z
NZ ×

Z
NZ of ECs.

We will now look at all the representations associated to the
successive powers pk of a prime p. Taking their projective limit, we
get a continuous representation in the algebra Zp of p-adic integers

ρE ,p : G = Gal
(
Q/Q

)
→ GL2 (Zp)

which satisfies the properties (see Stevens [63], p. 6):
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1 Det ρE ,p = εp (where εp is the cyclotomic character
εp : G → Z×p ) and ρE ,p is odd;

2 ρE ,p is unramified outside pNE ;

3 for almost every prime q,
Trace ρE ,p (Frobq) = q + 1−#E (Fq) (exact equality);

4 If q 6= p, ρE ,p is unramified at q iff p divides the order of the
discriminant ∆E at q;

5 ρE ,p is “flat” at p (see the definition below) iff p divides the
order of ∆E at p.

Of course, through the quotient Zp → Fp, ρE ,p returns ρE ,p.
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Once again, we will say that a p-adic representation

ρ : G = Gal
(
Q/Q

)
→ GL2 (Zp)

is modular if there exists a cusp eigenform f ∈ S2 (N),
f =

∑
n≥1

anκ
n, s.t. Trace ρ (Frobq) = aq for almost every prime q

in a well suited extension of Zp (for instance a completion Of ,p for
p ∩ Z =pZ).

The semi-stable modular lifting conjecture says essentially that,
given E defined over Q and semi-stable and p ≥ 3, if ρE ,p is
irreducible and modular then ρE ,p is modular.

We see that this is a problem of lifting the modularity property
from the prime field Fp of characteristic p to the p-adic algebra Zp

which is the ring of integers of the local field Qp of characteristic 0.
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In this context the strategy has been pedagogically very well
explained by Allan Adler [1].

We have two p-adic Galois representation ρ1, ρ2 : G → GL2 (Zp),
ρ1 coming from E/Q and ρ2 from a cusp form.

We know that their residual representations mod p,
ρ1, ρ2 : G → GL2 (Fp), are equal and we want to gather some
informations on the spaces of ρ3 : G → GL2 (Zp) s.t.
ρ3 = ρ1 = ρ2.

In fact ρ1 and ρ2 share more properties than ρ1 = ρ2 : they are
unramified for almost every q (i.e. outside a finite set of “bad”
primes). We consider only such representations ρ : G → GL2 (Zp).
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At this point, we use the deep analogy between arithmetics and
geometry linking finite fields Fp and p-adic fields Qp: Fp is like
values of “functions” at the “point” p and the local algebra Zp is
like a “germs of functions”in the neighborhood of p.

Therefore a lifting ρ→ ρ is like to lift the value of a fonction at a
point to a germ of function near the point.

As you know, this deep longstanding analogy dates back to
Dedekind, Weber and Hensel who considered the integers n as
“functions” over the primes p, using the “valuation” vp(n) of n at
the “points” p, i.e. the power of p in the decomposition of n into
prime factors.
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To localize the “functions” n in the neiborhood of p we consider
first S = Z− (p) and make the elements of S invertible.

We get the local ring Z(p) with maximal ideal m(p) = pZ(p) and
residue field Z(p)/pZ(p) = Fp.

If n ∈ Z, to look at n “locally” at p is to look at n in Z(p). The
“value” of n at p is its class in Fp, i.e. n mod p and the local
structure of n at p can be read in Z(p).

In the local ring Z(p) every ideal is equal to some power pk of p.

The successive quotients Z(p)/pk+1Z(p) are like successive
approximations of order k of the elements Z(p) (expansion of
natural integers n in base p).

Indeed, to make pk+1 = 0 is to approximate n by a sum
∑i=k

i=0 nip
i

with all ni ∈ Fp.
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It is well known that |x |p = p−vp(x) is an ultrametric norm on Q.
The projective limit

Zp = lim←−
Z

pkZ
is a “profinite” local ring with maximal ideal pZp, residue field
Zp

pZp
= Z

pZ = Fp and fraction field Qp = Q⊗Z Zp = Zp

(
1
p

)
.

Zp is compact (due to Tychonoff theorem), totally discontinuous
(it is a Cantor set) as limit of discrete structures, and is the
completion of Z for the p-adic absolute value |x |p = p−vp(x).

Z is a dense subring of Zp and Q is a dense subfield of Qp.

For a polynomial P(x) ∈ Z [x ], to have a root in Zp is to have a
root mod pn for every n ≥ 1.
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In the p-adic topology of Zp, the ideal pnZp is analogous to the
closed ball of radius 1

pn .

An intuitive way of looking at p-adic integers a ∈ Zp is to consider
them as series in p

a =
k=∞∑
k=0

akpk

with ak ∈ Fp, the valuation vp(a) being the least power k such
that ak 6= 0.

This representation leads to an analogy with the Taylor expansion
of a smooth function.

J. Petitot The unity of mathematics



The geometric analogy can be rigourously justified using the
concept of scheme:

primes p are the points of the spectrum Spec(Z) of Z,

the finite prime fields Fp are the fibers of the structural sheaf
O of Z,

integers n are global sections of O,

Q is the field of fractions of O.

In this context, Zp and Qp correspond to the localization of global
sections, analog to what are called germs of sections in classical
geometry.
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We apply the analogy to the case where we have a finite algebraic
extension k of Fp and a Zp-algebra A which is

Noetherian (every prime ideal is finitely generated),

local (there is only one maximal ideal p),

complete (complete for the Krull topology defined by the
successive powers of p),

with residue field k .

These properties are the “good” ones for a Zp-algebra A in this
context.
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We start with a representation ρ : G = Gal
(
Q/Q

)
→ GL2 (k) and

we look for liftings ρ : G → GL2 (A) making the following diagram
commutative (i ◦ ρ = ρ⊗k k):

GL2 (A)

i
��

G
ρ⊗kk

//

ρ
<<yyyyyyyyy

GL2

(
k
)

where i : A→ k is a morphism and ρ⊗k k extends the field of
scalars from k to k.

This is what Wiles called the “ring theoretic version” of the
problem.
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Infinitesimal deformations

Following the geometric analogy, it is natural to ask what can be a
finite order “infinitesimal” deformation and in particular a
“tangent” deformation in this algebraic context.

The key idea, introduced a long time ago by Alexandre
Grothendieck, is to define a “tangent vector” of a K -algebra R as
a morphism t : R → K [ε] of R into the algebra of dual numbers

K [ε] = K [T ]
(T 2)

.

The idea (very old, as old as Leibniz Calculus and introduced by
Nieuwentijt) is that a tangent vector is a linear approximation of a
Taylor expansion and can be defined and computed using first
order nilpotent infinitesimal ε s.t. ε2 = 0.
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From infinitesimals to cohomology

Let us now proceed naively. Let ρ : G → GL2 (Zp). Its residual
representation ρ : G → GL2 (Fp) associates to every γ ∈ G a 2× 2
matrix (

a0 (γ) b0 (γ)
c0 (γ) d0 (γ)

)
∈ GL2 (Fp) .

Using the representation of p-adic integers as “Taylor series” we
can consider the lifting ρ of ρ as associating to every γ ∈ G a
2× 2 matrix

∑
n≥0

an (γ) pn
∑
n≥0

bn (γ) pn∑
n≥0

cn (γ) pn
∑
n≥0

dn (γ) pn

 ∈ GL2 (Zp)

with the a0 (γ), b0 (γ), c0 (γ), d0 (γ) returning ρ.
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The Taylor approximations consist in truncating the series at a
certain order and in particular the first order linear approximation
consists in a representation ρ1 : G → GL2

(
Z/p2Z

)
with matrices(

a0 (γ) + a1 (γ) p b0 (γ) + b1 (γ) p
c0 (γ) + c1 (γ) p d0 (γ) + d1 (γ) p

)
∈ GL2

(
Z/p2Z

)
where p2 = 0, that is where p is treated as an infinitesimal ε.
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Compute formally in Fp[ε] with ρ1 : G → GL2 (Fp[ε]).

ρ1 is close to ρ and to compare them we write
ρ1 (g) ρ (g)−1 = 1 + εa (g) with a (g) ∈ M2 (Fp).

We consider now the structure of G -module defined by ρ on
M2 (Fp). GL2 (Fp) acts on M2 (Fp) by conjugation: if α ∈ M2 (Fp)
and g ∈ GL2 (Fp), the action g ∗ α of g on α is given by
g ∗ α = gαg−1 (what is called the adjoint representation).

We write then that ρ1 (g) = (1 + εa (g)) ρ (g) is a representation,
that is ρ1 (gh) = ρ1 (g) ρ1 (h). This imposes drastic conditions on
the map a : G → M2 (Fp), namely

a (gh) = a (g) + ρ (g)−1 a (h) ρ (g) (∗)
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A key point is that this formula (∗) says that the map a is a
1-cocycle for the action of G on M2 (Fp) in the sense of group
cohomology.

There exists therefore a fundamental link between the first order
lifting of ρ : G → GL2 (Fp) and the cohomology group
H1 (G ,M2 (Fp)). As Barry Mazur explains ([39], p.245):

“First-order infinitesimal” information concerning the
universal deformation ring [see below] attached to a
representation ρ can be expressed in terms of group
cohomology (of the adjoint representation of ρ). This is
quite a general phenomenon, does not even depend upon
the representability of the deformation problem, and has
an appropriate variant for deformation problems subject
to conditions.”
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It is this idea which has been generalized at higher orders with an
extraordinary virtuosity by Barry Mazur, Andrew Wiles and Richard
Taylor.

As was emphasized by Lawrence Washington ([72], p.108)

“The main reason that Galois cohomology arises in
Wiles’ work is that certain cohomology groups can be
used to classify deformations of Galois representations.”

We will follow Washington’s presentation.

We look at representations ρ : G → GL2 (Fp) = Aut
(
F2

p

)
transforming F2

p into a G -module.
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The action of G on F2
p is naturally extended to

M2 (Fp) = EndFp

(
F2

p

)
via conjugation, g ∈ G acting on a matrix

A ∈ M2 (Fp) by

A 7→ g ∗ A = ρ (g) Aρ (g)−1

(change of basis in F2
p).

When endowed with this G -action, M2 (Fp) is called the adjoint
representation and is noted Ad (ρ), its restriction to matrices of
trace 0 being noted Ad0 (ρ).

Now we want to extend ρ to infinitesimal deformations
ρ : G → GL2 (Fp [ε]) (ρ is the ρ1 above), two infinitesimal
deformations ρ and ρ′ being equivalent when they are conjugated
via a change of basis B in F2

p congruent mod ε to the identity of
F2

p.

So ρ′ = BρB−1 with B ∈ GL2 (Fp [ε]), B ≡ IF2
p

(mod ε).
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Proposition (see Washington [72]). The three following sets are
isomorphic:

(a) The set H1 (G ,Ad (ρ)) of classes of cohomology of G in the
adjoint representation Ad (ρ),

(b) The set Ext1
(
F2

p,F2
p

)
of extensions of the G -module F2

p by
itself, that is the set of exact sequences

0→ F2
p
α→ F

β→ F2
p → 0,

(c) The set of isomorphism classes of infinitesimal deformations of
ρ.
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Let

0→ F2
p
α→ F

β→ F2
p → 0

be an extension of F2
p by itself. The surjection β admits a section

ϕ : F2
p → F s.t.

β ◦ ϕ = IF2
p

: 0→ F2
p
α→ F

β

�
ϕ

F2
p → 0.

If m = (x , y) is a point of the Fp-plane F2
p, we consider in the

extension F the difference between ϕ (m) and its conjugation by g :
g ∗ ϕ

(
g−1 ∗m

)
− ϕ (m). As the surjection β is a morphism of

Fp [G ]-modules,

g ∗ ϕ
(
g−1 ∗m

)
− ϕ (m) ∈ Ker (β) = α

(
F2

p

)
.
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If we apply α−1 (which is possible since α is injective) we get
a (g) : F2

p → F2
p defined by

a (g) (m) = α−1
(
g ∗ ϕ

(
g−1 ∗m

)
− ϕ (m)

)
= α−1

((
ρ (g) ◦ ϕ ◦ ρ (g)−1 − ϕ

)
(m)

)
where ρ (g) corresponds to the structure of G -module of F (ϕ

(
F2

p

)
is embedded in F).

The point is to verify that a satisfy the relation

a (gh) = a (g) + g ∗ a (h)

and is therefore a 1-cocycle of G in the adjoint representation
Ad (ρ).
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But

a (gh) = m 7→ α−1
((
ρ (g) ρ (h) ◦ ϕ ◦ ρ (h)−1 ρ (g)−1 − ϕ

)
(m)

)
while

a (g) + g ∗ a (h) = a (g) + ρ (g) a (h) ρ (g)−1

= m 7→

α−1
((
ρ (g) ◦ ϕ ◦ ρ (g)−1 − ϕ

)
(m)

)
+

ρ (g)
(
α−1

((
ρ (h) ◦ ϕ ◦ ρ (h)−1 − ϕ

)
(m)

))
ρ (g)−1

= m 7→

ρ (g)
(
α−1

((
ρ (h) ◦ ϕ ◦ ρ (h)−1

)
(m)

))
ρ (g)−1−

α−1 (ϕ (m))

The two expressions are trivially the same.
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Further, if we have two equivalent extensions defined by an
isomorphism γ : F→ F′ (making the diagram of exact sequences
commutative) with sections ϕ and ϕ′, then the difference between
the 1-cocycles a and a′ is given by g ∗ f − f for the element

f = α−1
(
γ−1

(
ϕ′ − γ ◦ ϕ

))
of Ad (ρ) and is therefore a coboundary.

0 → F2
p 3 f (m)

α
�
α−1

F
β

�
ϕ

F2
p → 0

γ−1 ↑↓ γ

0 → F2
p →

α′
F′

ϕ′

�
β′

F2
p 3 m → 0

We have therefore associated to the extension

0→ F2
p
α→ F

β→ F2
p → 0

the class of cohomology in the adjoint representation
a ∈ H1 (G ,Ad (ρ)).
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The link with infinitesimal deformations is done by interpreting the
extensions F as F2

p ⊗
Fp

Fp [ε] = F2
p ⊕ εF2

p,

the injection α being the inclusion of F2
p as second component

εF2
p,

the surjection β being the projection on the first component
F2

p,

and the section ϕ being simply the identity on this first
component.

To define the action of G on F = F2
p ⊕ εF2

p, we use a cocycle
a : g 7→ a (g) ∈ Ad (ρ) and define an infinitesimal deformation of ρ
by

ρ (g) = (I + εa (g)) ρ (g)
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The fact that a is a cocycle warrants the fact that ρ is a
representation. Indeed, on the one hand we have

ρ (gh) = (I + εa (gh)) ρ (gh)

=
(

I + ε
(

a (g) + ρ (g) a (h) ρ (g)−1
))

ρ (g) ρ (h)

= ρ (g) ρ (h) + εa (g) ρ (g) ρ (h) + ερ (g) a (h) ρ (g)−1 ρ (g) ρ (h)

= ρ (g) ρ (h) + εa (g) ρ (g) ρ (h) + ερ (g) a (h) ρ (h)

On the other hand, we have

ρ (g) ρ (h) = (I + εa (g)) ρ (g) (I + εa (h)) ρ (h)

= ρ (g) ρ (h) + ρ (g) εa (h) ρ (h) + εa (g) ρ (g) ρ (h)

since ε2 = 0

and the two expressions are trivially the same.
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We see conversely, that if ρ (g) is a representation, then a (g) is a
1-cocycle of Ad (ρ) given by

(I + εa (g)) = ρ (g) ρ (g)−1 .

The equivalence of extensions and infinitesimal deformations can
be shown in the following way. The 1-cocycle ã determined by the
extension F is given here by

ã (g) (m) = ε−1
((
ρ (g) ◦ ϕ ◦ ρ (g)−1 − ϕ

)
(m)

)
= ε−1

((
(I + εa (g)) ρ (g) ◦ ϕ ◦ ρ (g)−1 − ϕ

)
(m)

)
= ε−1 (I + εa (g)− I ) (m) since ϕ is the identity on F2

p

= a (g) (m)

and ã = a.
It is easy to verify the remaining details of the proposition.
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The previous elementary computations can be best expressed in
terms of the linear groups GL2 (Fp) and GL2 (Fp [ε]) (see Mazur).

If Γ is the kernel Ker (GL2 (Fp [ε])→ GL2 (Fp)) of the projection
ε→ 0, Γ = I + εM2 (Fp) ' EndFp

(
F2

p

)
and we have the short

exact sequence

1→ Γ→ GL2 (Fp [ε])→ GL2 (Fp)→ 1

splitted by the natural embedding GL2 (Fp) ↪→ GL2 (Fp [ε]).

This exact sequence transforms GL2 (Fp [ε]) in the semi-direct
product GL2 (Fp)× Γ ' GL2 (Fp)×M2 (Fp) coming from the
adjoint representation.

As det ((I + εa (g)) ρ (g)) = (1 + ε trace (a (g))) det (ρ (g)), we
see that if we want infinitesimal deformations with constant
determinant we must use cocyles of trace = 0 and work in the
representation Ad0 (ρ).
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We remark also the following “good” property of infinitesimal
deformations concerning ramification.

Ramification can be read on restricting G = Gal
(
Q/Q

)
to the

decomposition subgroups Gp = Gal
(
Qp/Qp

)
and their inertia

subgroups Ip.

If a is a 1-cocycle belonging to the kernel H1
(

Gp/Ip,Ad (ρ)Ip
)

of

the restriction map

H1 (G ,Ad (ρ))→ H1 (Gp,Ad (ρ))→ H1 (Ip,Ad (ρ))

then ρ |Ip = ρ |Ip and the ramification of ρ at p comes entirely from
that of ρ.

In particular, if ρ is unramified at p (ρ |Ip is trivial) then ρ is also
unramified at p.
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Deformation data and Mazur’s conjectures

We have seen how to handle first order infinitesimal deformations
of representations ρE ,p : G = Gal

(
Q/Q

)
→ GL2 (Fp) and how

Galois cohomology enters the stage.

Wiles wanted to show that modularity is a liftable property: if ρE ,p

is modular then its p-adic lifting

ρE ,p : G = Gal
(
Q/Q

)
→ GL2 (Zp)

is also modular.

His strategy was to make an induction on “Taylor expansions”,
that is to lift modularity to the successive nth-order infinitesimal
deformations and to pass to the limit.
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As comments Brian Conrad ([8], p.375):

“In order to carry out this procedure, there is an
extremely delicate balancing act to handle, with
(abstract) deformation rings on one side and (concrete)
Hecke rings on the other side. The latter provides a link
to modular forms and representations ‘coming from
modular forms’, whereas the former provides a link to the
particular representation of interest, ρE ,p, which we want
to prove ‘comes from a modular form’. The relation
between the two different types of rings – leading to the
proof that they’re isomorphic – is supplied by a numerical
criterion from commutative algebra. The hard part is to
check that this numerical criterion actually can be
applied! In order to do this, one has to prove highly
non-obvious theorems about the commutative algebra
properties of the rings in question. This requires a very
detailed understanding of both the deformation rings and
the Hecke rings.”
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Wiles consider liftings satisfying constraints called “deformation
data” D by Barry Mazur (this stuff is extremely technical). As he
said:

“Mazur had been developing the language of
deformations of Galois representations. Moreover, Mazur
realized that the universal deformation rings he found
should be given by Hecke rings, at least in certain special
cases. This critical conjecture refined the expectation
that all ordinary liftings of modular representations
should be modular.”

The concept of deformation comes from differential geometry and
extends the analogy between algebra and geometry.

For thechnical reasons, he needed to generalize the situation Fp,
Zp, Qp to finite extensions k of Fp and to integer rings O of finite
extensions K of Qp with residue field k .
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A deformation data is a pair D = (Σ,S) where

1 Σ is a finite set of “bad” primes q outside of which
representations are unramified, and

2 S is a set of relevant properties of representations ρ at p (to
be “ordinary”, to be “flat”, etc.).

Once again, a representation ρ : G → GL2 (k) is called D-modular
if there exists a cusp eigenform f ∈ S2 (N) and a prime ideal p over
p (p | p) in Of s.t. the representation ρf ,p associated to f by the
Eichler-Shimura construction is a D-lifting of ρ.

For technical reasons, Wiles needed to introduce local conditions
which are essentially constraints on the p-adic representations
ρE ,p = ρE ,p∞ which lift local constraints defined on the residual
representations ρE ,p. They mean that ρ is unramified outside Σ
and has the same behavior as its residual representation ρ.
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They are remarkably commented by Ken Ribet ([46], p.20):

“There is flexibility and tension implicit in the choice of
these conditions. They should be broad enough to be
satisfied by ρE ,p and tight enough to be satisfied only by
lifts that can be related to modular forms. Roughly
speaking, in order to prove the modularity of all lifts
satisfying a fixed set of conditions, one needs to specify
in advance a space of modular forms S so that the
normalized eigenforms in S satisfy the conditions and
such that, conversely, all lifts satisfying the conditions are
plausibly related to forms in S. It is intuitively clear that
this program will be simplest to carry out when the
conditions are the most stringent and progressively harder
to carry out as the conditions are relaxed.”
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“A theme which emerges rapidly is that there are at least
two sets of conditions of special interest. Firstly, one is
especially at ease when dealing with the most stringent
possible set of conditions which are satisfied by ρE ,p; this
leads to what Wiles calls the “minimal” problem.
Secondly, one needs at some point to consider some set
of conditions which allows treatment of the lift ρE ,p —
this lift is, after all, our main target. It would be natural
to consider the most stringent such set. The two sets of
conditions may coincide, but there is no guarantee that
they do; in general, the second set of conditions is more
generous than the first.”
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“Wiles provides a beautiful “induction” argument which
enables him to pass from the minimal set of conditions to
a non-minimal set. Heuristically, this argument requires
keeping tabs on the set of those normalized eigenforms
whose Galois representations are compatible with an
incrementally relaxing set of conditions. As the conditions
loosen, the set of forms must grow to keep pace with the
increasing number of lifts. The increase in the number of
lifts can be estimated from above by a local
cohomological calculation. A sufficient supply of modular
forms is then furnished by the theory of congruences
between normalized eigenforms of differing level.”
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Mazur conjecture 1. Let ρ : G → GL2 (k) (k an extension of Fp)
be absolutely irreducible (that is ρ⊗k k is irreducible) and
D-modular, then every D-lifting of ρ to the integer ring O of a
finite extension of Qp with residue field k is modular.

Wiles theorem. Mazur 1⇒ Semi-stable modular lifting conjecture.
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Indeed let E be an EC defined over Q, which is semi-stable and
satisfies the conditions (a) and (b) of the SSML conjecture for p
and let ρ be the representation ρ = ρE ,p.

According to hypothesis (a) ρ is irreducible. One shows that it is
also absolutely irreducible. The hypothesis (b) means that ρ is
modular. Let D = (Σ,S) be the deformation data defined by

Σ = {p} ∪ {q | E has bad reduction at q}

and S means “ordinary” if E has ordinary or bad reduction at q
(ordinary reduction means good reduction and E [q] has a subgroup
of order q which is Iq-stable) and “flat” if E has supersingular
reduction at q (supersingular reduction means good reduction and
E [q] has no subgroup of order q which is Iq-stable).

One shows that ρE ,p is a D-lifting of ρ and that ρ is D-modular.
Mazur 1 implies that ρE ,p is modular and therefore E is modular.
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In a second step, following once again the geometric analogy, one
reformulates the first Mazur conjecture

“as a conjecture that the algebras which parametrize
liftings and modular liftings of a given representation are
isomorphic. It is this form of Mazur’s conjecture that
Wiles attacks directly.” (Rubin-Silverberg)

The reformulation is done in terms of universal deformations for
(D,O)-deformations, O being the p-adic ring of integers of a finite
extension of Qp

GL2 (A)

i
��

G
ρ
//

ρ
<<xxxxxxxxx

GL2 (k)

where A is a local, Noetherian, complete O-algebra of residue field
k . The concept of universal deformation is then associated to the
existence of a very special algebra R.
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Mazur-Ramakrishna theorem. There exists a universal
(D,O)-lifting ρR : G → GL2 (R) of ρ, that is for every
(D,O)-lifting ρ : G → GL2 (A) there exists one and only one
morphism of algebras ϕρ : R→ A s.t. the following diagram is
commutative:

GL2 (A)

ϕ∗ρ
��

G ρR

//

ρ
;;xxxxxxxxx

GL2 (R)

i
��

G
ρ
//

;;xxxxxxxxx
GL2 (k)
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This fundamental theorem means that the functor A L (A)
which associates to every O-algebra A as above the set of liftings
of ρ : G → GL2 (k) to A is representable by R .

There exists therefore an isomorphism

L (A) ' Homcont (R,A)

where Homcont (R,A) is the set of continuous homomorphisms
from R to A.
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The theorem can be proved first without conditions and then
relativized to representations ρ “with particularly desirable
properties”. As Barry Mazur explains:

“The recipe for cutting down the “universal deformation”
to these more specifically desirable Galois representations
is (surprisingly enough!) at last conceptually nothing
more than the “imposition” of local conditions at the
ramified primes, and sometimes with the additional
prescription of the appropriate global determinant.”

But if ρ is D-modular with an eigenform f and a prime ideal p of
Of s.t. ρf ,p is a D-lifting of ρ and ρf ,p ⊗Of

O is a (D,O)-lifting of
ρ then there exists also a modular universal deformation in the
following sense:
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T1 The O-algebra A is a generalized Hecke algebra T of
operators satisfying the expected properties.

T2 There exists a level N divisible only by “bad” primes q ∈ Σ
s.t. T is generated over O by the images T ′q of the Tq of
T (N) for q /∈ Σ.

T3 There exists a (D,O)-lifting of ρ, ρT : G → GL2 (T), s.t.

Trace ρT (Frobq) = j (Tq) for every “good” prime q .

T4 If ρ is a modular (D,O) -lifting of ρ to an A, then there exists
one and only one O-morphism ψρ : T→ A s.t. the following
diagram is commutative:

GL2 (T)

ψ∗ρ
��

G ρ
//

ρT

;;xxxxxxxxx
GL2 (R)
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As ρT is a (D,O)-lifting of ρ, Mazur-Ramakrishna theorem implies
that there exists one and only one morphism of algebras
ϕ : R→ T s.t. ρT = ϕ ◦ ρR. The map ϕ is surjective since

∀q /∈ Σ, ϕ (Trace ρR (Frobq)) = Trace ρT (Frobq) = T ′q

and the T ′q generate T by (T2).

Following the key idea that the general case is always modular,
Mazur introduced a second conjecture saying intuitively that
parametrizations of ordinary liftings and modular liftings are
equivalent or that “universal” is equivalent to “modular universal”,
which is clearly a translation of the TSW conjecture in the context
of universal deformations.

Mazur conjecture 2. ϕ : R→ T is an isomorphism.

Theorem. Mazur conjecture 2 implies Mazur conjecture 1.
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Sketch of the proof. Let ρ : G → GL2 (k) be absolutely irreducible
and D-modular. If ρ is a D-lifting of ρ to A, we want to show that
ρ is modular.

We first extend ρ and ρ to O and ρ becomes a (D,O)-lifting. Let
ψρ : R → A be the morphism of algebras asserted by
Mazur-Ramakrishna theorem. If ϕ : R → T is an isomorphism we
can consider the inverse map ϕ−1 : T → R and the composed map
ψ = ψρ ◦ ϕ−1 : T → A

ψ : T
ϕ−1

→ R
ψρ→ A

We deduce from (T3) that ψ (Tq) = Trace ρ (Frobq) for almost
every prime q. Shimura results imply then the existence of an
eigenform f ∈ S2 (N), f =

∑
n≥1

anqn, s.t.

aq = Trace ρ (Frobq) = ψ (Tq) for almost every prime q. But this
implies that the representation ρ is modular.
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Complete intersections and Gorenstein property

We get universal local algebras R associated to deformation data
D = (Σ,S). As we have noted, R represents the functor L which
associates functorially to every local algebra A as above the set of
deformations L(A) = {lifting of ρ to A}.

The problem is to measure in some sense the “size” of R. The
simplest way to do that is to compute the dimension of its
“(co)tangent space” at its maximal ideal mR.

As explains Barry Mazur ([39], p.271):

“The intuition behind this definition is that if one thinks
of R as being “functions on some base-pointed space”,
then mR may be thought of as those functions vanishing
at the base point, and T ∗R is the quotient of mR by the
appropriate ideal (of “higher order terms” of these
functions) so as to isolate the “linear parts” of these
functions.”
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Complete intersections and Gorenstein property

The problem is now to prove that ϕ : R→ T is an isomorphism.
There are two steps:

1 prove the isomorphism at the (co)tangent level;

2 prove that R and T have the property that (co)tangent
isomorphism implies isomorphism.

Surjectivity is “easy”. For injectivity, Wiles introduced a
fundamental numerical criterion. The idea is to find a bound for
the order of “(co)tangent spaces” at prime ideals of R.

If ρ is D-modular, there exists a cusp eigenform f ∈ S2 (N) and a
prime ideal p | p (p ∈ p) of Of such that ρf ,p is a D-lifting of ρ. If
Of ⊂ O (with K the field of fractions of O), then ρf ,p

⊗
Of

O is a

(D,O)-lifting of ρ.

J. Petitot The unity of mathematics



As the Galois representation ρf ,p

⊗
Of

O is modular by construction,

due to the universality property (T4), there exists one and only one
morphism πT : T→ O s.t. ρf ,p

⊗
Of

O factorizes through ρT, i.e. the

composed map

G
ρT−→ GL2 (T)

πT−→ GL2 (O)

satisfies

πT ◦ ρT = ρf ,p

⊗
Of

O .

Let pT = Ker (πT). Consider ϕ : R→ T and

pR = Ker (πT ◦ ϕ) = ϕ−1 (pT) = Ker (πR)

where πR is the (unique) map πR : R→ O given by the universal
property of R.
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We have therefore:

R
ϕ−1

//

πR   @
@@

@@
@@

T
ϕ

oo

πT��~~
~~

~~
~

O

The property (T2) of T (to be generated over O by the Hecke
operators Tq for “good” q) and the fact that, for almost every
prime q, Trace ρf ,p (Frobq) = aq imply that, for almost every
prime q, πT (Tq) = aq.
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The cotangent spaces of the schemes Spec (R) and Spec (T) at
the points pR = Ker (πR) and pT = Ker (πT) are respectively pR

p2
R

and pT

p2
T
.

At this point Wiles uses a special property of the Hecke algebra T,
namely to be a Gorenstein ring.

This result due to by Barry Mazur means that there exists a (non
canonical) isomorphism of T-modules between T and
HomO (T,O) . As explained Wiles,

“The turning point in this and indeed in the whole proof
came in the spring of 1991. (...) I had already needed to
verify that the Hecke rings were Gorenstein in order to
compute the congruences developed in Chapter 2. This
property had first been proved by Mazur in the case of
prime level and his argument had already been extended
by other authors as the need arose.”
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The morphism πT : T→ O corresponds to an element ξ of T and,
via πT itself, to an element πT (ξ) of the ring O:

HomO (T,O) →̃ T
πT→ O

πT 7→ ξ 7→ πT (ξ)

Let η be the ideal (πT (ξ)) of O (η is well defined idependently of
the isomorphism HomO (T,O) ' T).

Wiles gave a sufficient condition for ϕ : R→ T to be an
isomorphism in terms of order of the “cotangent space” pR/p

2
R.

As ϕ is onto, we already have

#

(
pR

p2
R

)
≥ #

(
pT

p2
T

)
.
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Theorem (Wiles).

#
(
O
η

)
≤ #

(
pT

p2
T

)
≤ #

(
pR

p2
R

)
.

If #
(

pT

p2
T

)
(and therefore #

(
O
η

)
) are finite, then T and R

are complete intersections iff #
(

pT

p2
T

)
= #

(
O
η

)
.

Further, if #
(

pR

p2
R

)
= #

(
O
η

)
, then ϕ : R→ T is an

isomorphism of complete intersection rings.

An O-algebra A is a complete intersection if
A ' O [[T1, . . . ,Tr ]] / (f1, . . . , fr ) (as many relations as variables).
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So, if #
(

pR

p2
R

)
≤ #

(
O
η

)
, then we get the equalities

#

(
pR

p2
R

)
= #

(
pT

p2
T

)
= #

(
O
η

)
and ϕ induces an isomorphism of the “cotangent spaces” of R and
T at the corresponding “points” pR and pT.

Due to the fact that T is a complete intersection over O, this
“tangent isomorphism” implies that ϕ is an isomorphism. And we
are done...
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Indeed, as Darmon, Diamond and Taylor explain in [12]:

“The usefulness of the notion of complete intersections
comes from the following two (vaguely stated) principles:

1. Isomorphisms to complete intersections can often
be recognized by looking at their effects on the tangent
spaces.

2. Isomorphisms from complete intersections can
often be recognized by looking at their effects on the
invariants η.”

The last difficulty in the proof of the TSW conjecture is then to

bound the order #
(
O
η

)
. The new idea is to give a cohomological

interpretation of “tangent spaces” in terms of Selmer groups. It is
the most technical and difficult part of the proof!
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Selmer groups

Selmer groups enter the stage because the classical local/global
Hasse-Minkowski principle for solving Diophantine problems does
not apply to ECs.

One considers solutions in the “local” fields Qp and R as local
solutions, and solutions in the “global” field Q as global solutions.

Of course, if global solutions on Q exist they can be localized and
local solutions exist for every prime p, their coherence being
ensured by the underlying global solution.

The main problem is to solve the inverse problem, that is when
local solutions imply the existence of global solutions. It is highly
non trivial.

J. Petitot The unity of mathematics



Many classical theorems say that if a Diophantine equation f = 0
has “local” solutions at every “point” p (i.e. mod p) and a
solution over R (point at infinity) then it has a “gobal” solution
over Z. The best known is Minkoswki’s theorem that proves this
assertion for quadratic forms with rational coefficients.

But this Hasse principle is not verified by algebraic curves. In 1951,
Selmer gave the famous counterexample of the projective cubic C
over Z of equation

3x3 + 4y 3 + 5z3 = 0

which has solutions modulo every prime p and over R but has no
rational point at all.
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Let E be an elliptic curve defined over Q . It is also trivially defined
over Qp and R since Q is a subfield of Qp and R.

The main question is to know in what exact sense the “local”
elliptic curves E/Qp and E/R determine the “global” one E/Q.

An elliptic curve E ′/Q such that E ′/Qp ' E/Qp and E ′/R 'E/R
is called a companion of E/Q and the main problem is to compute
what is called the Selmer group S (E ) of the classes of
isomorphisms of the companions of E .
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This fondamental concept is commented in the following way by
Barry Mazur for any algebraic variety V ([38], p.21):

“One can think of the cardinality of S (V ) as roughly
analogous to a class number, i.e., a measure of the
extent to which local data (in this case, the isomorphism
classes of V /Qp for all p, and V /R) determine or fail to
determine global data (the isomorphism class of V /Q).
One might say that the local-to-global principle holds for
a class of varieties V if S (V ) consists of the single
isomorphism class {V } for each member V of V.”
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Using deep results of Rubin and Kolyvagin, Mazur proved the

Theorem (Mazur). The set S (C ) of the non isomorphic
companions of the Selmer curve C is constituted by the 5 curves
defined over Z: 3x3 + 4y 3 + 5z3 = 0, 12x3 + y 3 + 5z3 = 0,
15x3 + 4y 3 + z3 = 0, 3x3 + 20y 3 + z3 = 0, 60x3 + y 3 + z3 = 0,
and the last curve J is the common Jacobian of the four other
curves and is the only one to have a Q-rational point ({0, 1,−1},
it is unique).

In fact the natural interpretation of Selmer groups is
cohomological.
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Conclusion

Jean Dieudonné liked to claim in a rather provocative way:

“Vouloir faire des mathématiques une partie de la logique
est une affirmation aussi absurde que celle qui
consisterait à dire que les œuvres de Shakespeare ou de
Goethe font partie de la grammaire!”

Of course, literary works are made up of sentences. But besides
their linguistic structure they have also a narrative structure.

It is the same thing in mathematics. Complex proofs have a
conceptual “narrative” structure and, for me, philosophy of
mathematics is prominently concerned with it.

Beside the logical context of justification, we need a “semiotic”
investigation of the context of discovery to understand why
“great” proofs are artworks.
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Some developements since 1994
General TSW conjecture

Fred Diamond generalized Wiles result to the case of elliptic curves
E defined over Q which are semi-stable only at p = 3 and p = 5.
A corollary (Rubin-Silverberg) was that if the 2-division points of
E/Q are rational then E is modular.

And finally in 1999 Christian Breuil, Brian Conrad, Diamond and
Taylor generalized it to all elliptic curves E/Q.

This final achievement required a lot of hard computations made
possible by new techniques introduced by Breuil.

It is interesting to emphasize that these new translations show how
the reinterpretation is a never-ended open process.
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As the authors claim [5], p.848):

“In the key computation of the local deformation rings,
we now make use of a new description (due to Breuil) of
finite flat group schemes over the ring of integers of any
p-adic field in terms of certain (semi)-linear algebra data.
(...) It seems miraculous to us that these long
computations with finite flat group schemes (...) give
answers completely in accord with predictions made from
much shorter computations with the local Langlands
correspondence and the modular representation theory of
GL2(Q3). We see no direct connection, but cannot help
thinking that some such connection should exist.”
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Serre’s conjecture

Serre’s modularity conjecture has been proved in 2005 by
Chandrashekhar Khare in the level 1 case, and later on in 2008 by
Khare and Jean-Pierre Wintenberger.
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Swinnerton-Dyer conjecture

A lot of deep results “à la Fermat” on Diophantine equations
proceed from these extraordinary achievements.

Other very important consequences concern the theory of elliptic
curves, e.g. the celebrated Birch and Swinnerton-Dyer conjecture
saying that LE (s) is analytic on the whole complex plane C (in
particular at s = 1) with ords=1L = r , where r is the rank of E .

Due to the Mordell-Weil theorem, the group of rational points
E (Q) is a finitely generated abelian group and is therefore of the
form E (Q) = T + Zr . We have Mazur’s theorem for the torsion
subgroup T and r is the rank.
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As Henri Darmon explains ([12], p.1399):

“Knowing that E is modular also gives control on the
arithmetic of E in other ways, by allowing the
construction of certain global points on E defined over
abelian extensions of quadratic imaginary fields via the
theory of complex multiplication. Such analytic
constructions of global points on E actually play an
important role in studying the Birch and
Swinnerton-Dyer conjecture through the work of
Gross-Zagier and of Kolyvagin.”
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Q-curves

Other generalizations concern the situation of ECs defined not over
Q but over an extension of Q such as Q (i) (imaginary quadratic
field) or Q

(√
2
)

(totally real field). They are extremely difficult.

Of particular interest are what are called Q-curves. They are
elliptic curves E/K defined over a Galois extension K of Q having
the property of being isogenous to all their Galois conjugates. As
explains Jordan Ellenberg in ([21]), they constitute

“the ‘mildest possible generalization’ of the class of
elliptic curves over Q.”

Kenneth Ribet proposed the conjecture that an elliptic curve over
C is modular iff it is a Q-curve.
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Abelian varieties

Another conjecture asserts that if A is an abelian variety over Q for
which End (A)⊗

Z
Q is a number field of degree equal to dim A,

then there exists an hyperbolic uniformization of A defined over Q.
As explains Ribet ([46], p.383) :

“It is natural to regard Conjecture 1 and Conjecture 2 as
generalizations of the Taniyama-Shimura conjecture. The
first conjecture pertains to elliptic curves which are not
necessarily defined over Q, while the second pertains to
abelian varieties over Q which are not necessarily elliptic
curves. Neither of these conjectures is proved.”
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Langlands program

Another line of generalization consists in studying higher
dimensional representations ρ : G → GLn

(
Fp

)
with n > 2. See e.g.

the works of Avner Ash.

The TSW conjecture is part of the research program on the
relations between Galois representations and automorphic forms
known as Langlands program. Langlands conjectures have been
proved in 1998 for local fields by Harris and Taylor and in 1999 for
function fields by Louis Lafforgue (who won for that the Fields
medal in 2002).
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Bourbaki, Astérisque, 237 (1996), 333-355. COMPLETER
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[48] Riemann, R., Über die Anzahl der Primzahlen unter einer
gegebenen Grösse, Monatsberichte der Berliner Akademie,
1859. Gesammelte Werke, Teubner, Leipzig, 1892. (“On the
number of prime numbers less than a given quantity”).

[49] Rosen, M., “Remarks on the History of Fermat’s Last
Theorem 1844 to 1984”, Modular Forms and Fermat’s Last
Theorem, (G. Cornell, J. H. Silverman, G. Stevens eds),
New-York, Springer, 1997, 505-525.

[50] Rohrlich, D. F., “Modular Curves, Hecke Correspondences,
L-Functions”, Modular Forms and Fermat’s Last Theorem,
(G. Cornell, J. H. Silverman, G. Stevens eds), New-York,
Springer, 1997, 41-100.

[51] Rubin, K., Silverberg, A., “A report on Wiles’ Cambridge
lectures”, Bulletin of the AMS, 31, 1, 15-38, 1994.

J. Petitot The unity of mathematics



[52] Rubin, K., “Modularity of Mod 5 Representations”, Modular
Forms and Fermat’s Last Theorem, (G. Cornell, J. H.
Silverman, G. Stevens eds), New-York, Springer, 1997,
463-474.

[53] Serre, J-P., “Propriétés galoisiennes des points d’ordre fini des
courbes elliptiques”, Invent. Math., 15 (1972), 259-331.

[54] Serre, J-P., “Sur les représentations modulaires de degré 2 de
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