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1. INTRODUCTION

The purpose of this note is discussion in somewhat more detail

of an argument used by Zeeman, in [33] and elsewhere. Zeeman’s

paper being directed primarily at a non-mathematical audience, the

topological niceties of the argument were quite properly omitted:

and since the possibility of a detailed completion of the argument
is apparent to any experienced differential topologist, it has not

seemed necessary until now for anyone to elaborate it in writing.

However, there has now appeared a claim, by authors with creden-

tials as mathematicians, that no such argument is possible.

Much of the discussion in the papers [25, 26, 27, 31] of

Sussmann and Zahler is concerned in fact, though not in appearance,

with general questions of mathematical modelling rather than of

catastrophe theory; for example, whether it is legitimate in

principle to describe with a continuous variable an entity known

to be fundamentally discrete. (If it is not, most of population

dynamics, nuclear reaction rate theory etc. are illegitimate along

with some catastrophe theory.) To some extent their case may be

permitted to fall of its own weight: representative arguments

being appeal to the character of attack motivated by hunger ("a

tiger slowly jumping at a deer" [26§4a]) in discussing Zeeman’s

model of behaviour where Lorentz [13] had gone to great lengths
*

to make rage and fear outweigh all other factors; bald assertions ;

* ~Such as "The reader should try to imagine a continuous progression
from snarling to attacking... He will fail. No matter how good
his imagination is, the progression will be discontinuous: there
will be one instant where the dog jumps." [26§4a] (where exactly,
in the easily imagined progression snarling -~ circling close +
snapping at the heels - nipping at the heels + biting at the
ankles - biting hard at the upper legs - rearing up to bite the
arms -~ going for the jugular ?) ; "a dog A will not jump at ....
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and quotation from inaccurate brochures advertising encyclopaedias

[27].. (They do in [31] quote Stewart’s Britannica article [23]
itself - "Properly understood and exploited, this ever-expanding

web of concepts promises.... a profound insight into the universe"
- then say "We disagree" on the basis of [26] recapitulated plus a

detailed attack on a paper [10] in which they maintain catastrophe

theory is not properly understood since an inadmissible surface is

drawn, though Fig. 2 of [10] and its description should be compared
with their redrawing of it. Their disagreement would be better

based on the physical examples adduced as solid by Stewart than on

those which an encyclopaedic overview must describe, but for which

he remarks [23, 3rd p.] that "much criticism regarding their utility
has yet to be assessed".)

~ 

However when professional mathematicians claim, in a long

paper in a learned journal, that a major and systematic mathematical

error has been committed, more detailed discussion is needed than

for their response with questionable assertions to some tentative

models. I do not wish to argue the positive truth of all Zeeman’s

more speculative models, some of which I find almost as unconvincing

as the counter-models in [26] and some of which are certainly

.... another dog B, and sink its teeth onemillimetre deep into B’s
skin, having achieved nothing but getting B angry" [26§5] (the
only kind of dogfight I have ever witnessed, fights to the death

being uncommon) ; and in 126§13] "History presents us with many
cases of administrations that stubbornly refused to end a war

despite the fact that the majority of the population wanted it
ended... but few cases of governments that refused to go to war
despite strong pressure by public opinion." What book lists wars
that did not happen? Certainly peoples have pushed unwilling
governments to war. Pitt, hearing the popular rejoicing at
achieving war with the Dutchi said "They are ringing the bells
now: soon they will be wringing their hands" - but if he had
prevented the war no such memorable story would exist. Popular
’By Jingo’ feeling created in some measure the Crimean war, which
the government then conducted with such awesome incompetence as
to suggest to an analyst that "one is forced to consider the
hypothesis that at some level in the minds of those who direct
national aggression there lurks a contrary motive, a need to pull
their punches." [5p.66]



74

intended mainly to convey what kind of behaviour a cusp catastrophe,
if present, can imply. Like Sussmann [25] 1 am a "professional

sceptic" about mathematics in the behavioural sciences, and take

their methodological difficulties more seriously than I perceive

either Sussmann or Zeeman as doing. (For some exploration of

these difficulties in relation to catastrophe theory, see 

I am chiefly concerned in this paper with the legitimacy of mathe-

matical deductions from hypotheses once (by whatever means) these

are chosen, a necessary step in most sciences towards testing the

hypotheses themselves.

The point at issue is the following. Sussmann and Zahler

assert [26§7] that it is false that "by means of Thom’s theorem,

one can draw conclusions about the critical set even for those

values of [the control parameters] for which the hypotheses specify

nothing"; conclusions which Zeeman certainly claims to draw.

Similarly in [25] Sussnann, discussing behaviour over a range of

a parameter C , remarks correctl.y that Zeeman’s hypotheses concern

only values C  C1 or C &#x3E; C2 for some C1  Then "Zeeman

is assuming nothing about what happens for C1  C  C2 ’ and
claims to deduce the behaviour for C in this middle range. Such

a deduction is, however, impossible, since any behaviour whatever...

is compatible with Zeeman’s assumptions for C  C1 and C &#x3E; C2" .
Similar counter-assertions may be found at various other points
in Î/261 .

Now, given the general setting of differentiable functions*,
these statements are already remarkable. Few mathematicians,

informed analogously that a smooth function f had the value -1

* )Sussmann and Zahler also object to the use of continuous
variables and differentiable relationships,but these objections
are (i) explicitly distinct from their attack on Zeeman’s deduc-
tions within this setting (ii) a reality-modelling, not a mathe-
matical, question.
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at Ci = 1 , the value +5 at C 2 = 2 , would hesitate to assert
the existence of points C1  C  C2 where f takes the value C

or where df/dC takes the value 6 . (Few scientists looking at

particular systems would fail to adopt as a mild additional workin

hypothesis that such points are unique and distinct.) Zeeman is

using deeper mathematics than the Intermediate or Mean Value

Theorem, but this example, like the sophisticated use of fixed

point theorems in functional analysis, serves to illustrate that

topological argument from data at points to behaviour between

points is a cornerstone of modern mathematics, pure and applied.

Certainly there are instances where continuous systems beget dis-

continuity - indeed, an interesting case where Courant and Robbins

[4J appeal inappropriately to the Intermediate Value Theorem is

analysed in [16] - and the whole point of catastrophe theory is to
analyse this phenomenon for a wide class of systems. But this

still leaves some surprise at the proposition apparently being

made here, that topological deduction about behaviour in the middl

from information about the ends is inherently impossible.

However, since the completion of Zeeman’s argument is of

distinctly greater depth than an appeal to the Intermediate Value

Theorem - it does in fact require the full strength of the cluster

of results known as Thom’s theorem - it remains necessary to

establish that this particular form of argument ’inwards’ is

indeed possible. To do so I will take the instance in which

Zeeman’s mathematical hypotheses are most explicit, and to which

Sussmann and Zahler in [26] devote most space: the discussion of

frontier formation in [33]. But before considering this in detail

since the argument will require repeated appeal to the genericity

of transversality, it is necessary to separate this principle from

the misrepresentation of its character in [25] and [26].
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2. GENERICITY

It is certainly true that one aspect of genericity for a

property 9 in a space X is densit (that every P in X can

be arbitrarily closely approximated by P’ with property S) and

that this "approximation principle" is the aspect Isnard and

Zeeman [9] chose to explain in a footnote. It is also true, as

observed in [26§12} , that density of ~’ is not of itself a

justification for assuming S effectively true of all relevant

Ps . One relevant example is that the set of all irrational

numbers between 0 and 1 is dense - indeed, the countable

intersection of open dense sets, i.e. generic, and moreover of

measure 1 - but it would be absurd to argue that the qualitative

properties of irrationals are in some useful sense universal.

(Furthermore, within catastrophe theory one rapidly learns that
* 

, ,

often a designed ’ideal’ system is not generic . Since it can

then be approximated by many, qualitatively different, generic

systems the appropriate response is not to use any one as an

approximant - as [25§7a] would suggest that catastrophe theory

* ~ The abus de langage principle that "generic f" as distinct from

generic property, "is usually taken to mean that f has a lot of

generic properties" [21] appears in the paper that first suggested
’generic’ apply strictly only to properties, and has remained
standard in the technical literature (see, e.g. [2]). The cavils
in [26§12] at its use, in papers which try not to dazzle the non-
mathematician with too many technical definitions, are thus 

.

puzzling. A good case could be made for calling generic an object
possessing all natural generic properties, where these could be
proved countably many: indeed, one might require generic proper-
ties to be functorially natural, to exclude frivolous examples
like ’not getting up at 8 o’clock’ [26§12], and the fact that for
any sets Yx a topology can trivially be tailored to make
membership of Y generic. In most important cases naturality
is clear by inspection, as it is for Sussmann’s proof [24] that
certain systems are generically ’controllable’. (It is fair to
ask why this result was published: if "Thom’s theorem is inherently
uninformative" [26§7a], so by the same reasoning is Sussmann’s.)
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does - but to unfold it universally and so consider all possible

nearby systems. For an example where the traditional, unstable,

non-generic one-parameter functional analytic approach to compound

plate buckling is replaced by an 8-parameter structurally stable

treatment in this way, with new behavioural predictions, see [14].
For quantitatively successful examples in scattering theory, fluid

mechanics, laser optics etc. see [19] .) Genericity has thus often

seemed an unimpressive property to - for instance - physicists

hearing from topologists about new results in dynamical systems

theory or its subset, catastrophe theory. Many topologists have,

however, given immense attention to it: not out of failure to

perceive that genericity need not be informative, but from a clear

perception of why in the present context it is.

Most genericity statements by topologists are closely related

to, or derivable from, the Thom transversality lemma (li-1, [11]
detail this relationship): the fact that in various circumstances

transversality is generic. It is a pity that, because genericity

is a formally provable expression of the way transversality is

typical, and its failure for some circumstances (symmetry, modality)

an excellent technical test for transversality’s ceasing to be

typical, genericity has generally been chosen as the means of

communication of this typicality to non-mathematicians. (One is

reminded of the French schoolchildren introduced to the ’angle’

concept by way of the inverse sine function, for Bourbachique tech-

nical convenience.) It is a pity because not only have physicists

already believed transversality typical, without topologically

expressing the fact, for generations: they have been extracting

quantitative consequences from it with spectacular regularity.

To prove the first of these assertions one could quote from

countless scientists: choosing Eddington as a representative, for

his usual clarity of expression, we find in a 1918 lecture [6] "In
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two dimensions any two lines are almost bound to meet sooner or

later; but in three dimensions, and still more in four dimensions,

they can and usually do miss one another altogether, and the

observation that they do meet is a genuine addition to knowledge."
This idea, quite exactly, underlies the typicality of ’nothing but

fold catastrophes’ for a 1-parameter family of functions: for a

detailed tracing of the connection in informal geometric language

see [18] or i19] . (The rest of Thom’s theorem relies on precisely
the same idea in higher dimensions.) This connection thus trans-

lates Eddington’s point about "a genuine addition to knowledge" to

Thom’s statement [29] on catastrophe theory’s predictions that "If

the prediction is realised, there is nothing to be surprised about.

If the prediction fails (that may happen) and a morphology M12
different from M 1 does appear, this is interesting, because it

shows that our original assumptions were too simple, and some new

element of complication has to be introduced into the picture."

The principle, not localisable in either science or mathematics

but rather an aspect of the strange resonance between the two, is

the same for Thom as for Eddington: the difference is only that

Thom has technical tools by which it may be pursued to draw con-

clusions beyond those accessible to Eddington. Both quotations

above treat it as susceptible to experiment, and in the same way.

Both are far from "claiming that the world can be deduced by pure

thought", as [26§7a] describes the transversality principle.

In [25§5] Sussmann cites an excellent warning by Thom [28]
against overconfident numerical modelling with catastrophes (which

given current practice in the soft sciences, could usefully be

extended to models with normal distributions, linear correlations,

or control theory)

"Many people, understandably eager to find for Catastrophe

theory an experimental confirmation (?), may embark into
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precarious quantitative modelling, where explicit observable

interpretations are given to unfoldi.ng parameters (even to

internal ones..). Needless to say, many (if not all) of these

interpretations will break down. This may cause - among

positivist-minded Scientists - a "backlash" reaction against

Catastrophe theory, a reaction already noticeable among some

scientists in UK. (In France and in the US, Catastrophe theory

is still too ignored to have provoked such a reaction.) In

the same line, I would also like to add a didactic warning:

when presenting CT to people, one should never state that, due

to such and such a theorem, such and such a morphology is

going unavoidably to appear."

omitting the three succeeding sentences, in which Thom (after a

remark about all mathematics in all sciences) restates the very

well tested principle we have been discussing:

"In no case has mathematics any right to dictate to reality.

, 
The only thing one might say is that, due to such and such a

theorem, one has to expect that the empirical morphology will

take such and such a form. If reality does not obey the

theorem - that may happen - this proves that some unexpected
constraints cause some lack of transversality, which makes

the situation all the more interesting."

Sussmann claims the part that he does quote as a "second proof"

that no deductions from the principle can be made about behaviour

in the middle range, and after a paragraph on genericity as an

approximation principle says "... hence CT is not testable. Thom

is clearly aware of this, as shown by his statement quoted above,

but Zeeman is not". Catastrophe theory is testable, and Thom’s

interest is explicit in the unexpected constraints that can be

revealed by such tests. (Compare the physicist’s interest in the

discovery of ’superselection rules’, revealing that more symmetry
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constraints had to be admitted to particle theory than had been

supposed.)

To illustrate the point that the transversality principle,

unformalised, is a longstanding quantitative tool of physics, let

us consider the following argument from Landau and Lifshitz [12
p. 436] :

"If B does not vanish identically [for symmetry reasons]
then the transition points are determined by the two equations:

A(P,T) = 0 , B(P~T) = 0 . Hence in this case the points of

continuous phase transition are isolated ones."

This "hence" is precisely an appeal to transversality, since if

the mapping (A,B) : R~2013~ R2 : (P,T) ~ (A(P,T),B(P,T)) is not

transverse the common zeros of A and B can be any

closed plane set whatever, from a logarithmic spiral to a portrait

of the physicist as a young man. But, given transversality, they
are isolated. The sense in which Thom’s theorem says "almost all"

is exactly that in which much physical writing says "all" for the

same reasons. I have sometimes been made uneasy by Zeeman’s use

of "all" in this context, feeling it could be misleading: Sussmann
and Zahler show that it can be equally misleading in nontechnical

exposition to .attempt greater precision, since they achieve a

deeper misunderstanding of the qualifier "almost" than I have yet

seen of the unqualified "all". On a tightrope between pure mathe-

matics and sociology, the level of rigour of a standard physics
text is perhaps a reasonable compromise.

Landau and Lifshitz go on to show, using heuristic Taylor

expansion truncations where a topologist would now use determinacy

and versality criteria,that the isolated points above are specifi-

cally what a catastrophe theorist would call cusp points. They
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then draw a number of quantitative conclusions from this, notably

in the form of ’critical exponents’. (Compare the relation "slope
° y , , ,

of recession = L(C-C ) )1/2 where L is a non-vanishing smooth

function of C" [34J about which Sussmann [25§5] says "Zeeman’s

error [of deducing a cusp present at all] is compounded" by a claim

that the cusp has the standard algebraic form in the original co-

ordinates. No such claim appears in [34] - the canonical formula
is quoted with reference to a figure,which must needs be described

by some coordinates - and the relation cited does not require it,

the asymptotic exponent ~ being an invariant of the cusp under

the smooth transformations admitted. Zeeman’s explanation of this

point is described in [25 95J as "he appears to withdraw the claim"

that he does not make: though he may seem to make it when the

above quotation from [34] is given, as Sussmann does, without the

words I have underlined.) These exponents are not only testable:

they caused a major crisis in the physics of condensed matter when

they turned out, experimentally, to be wrong!

The error, however, turned out to be not in the appeal to the

transversality principle but in the approximations assumed for the

behaviour of matter around a degenerate minimum like ( x4+0(5 ))
for a thermodynamic potential. The fluctuations at such points
are better treated by the new ’Renormalisation Group’ methods.

These apply with experimentally good results to obtaining informa-

tion both from ’exact’ statistical models and from smoothed

heuristic ones, in whose choice the transversality principle -

unformalised - plays the same rôle as in the Landau theory. More-

over the Landau theory remains an important tool in giving techno-

logists numbers, fairly reliably away from the close vicinity of

the transition point, and for much less computational effort than

the more refined Renormalisation Group approach.
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Note the warning of this case for overeager naive application

of catastrophes: getting right the differential topology which is

the ’pure mathematical’ end of catastrophe theory, even where

catastrophe theory is importantly applicable, does not guarantee

correct predictions unless the analysis of how the catastrophe

governs the matter (fluid, economy, foetus...) concerned is a good

theory in the scientific sense. (The relationship is equally

subtle for scattering problems: see [3] or [19] for accounts.)

Both ends matter; where phase transition involves higher singulari-
ties (as at ’tricritical points’) one must substitute the formal

tools of catastrophe theory for physical rule of thumb to get

mathematically correct results [19] .

3. THE EXISTENCE OF A CUSP

Consider now the details of deducing, for points where it is

not specified in advance, the singularity structure of the set of

equilibria. The general mathematical hypotheses are the trans-

versality principle, and that the equilib ria are invariably points

(not, e.g., limit cycles). This latter is not an automatic conse-

quence of transversality except in the setting of gradient dynamics,

but it is true often enough to be a common working hypothesis in

scientific theories, and is far more general than the gradient

assumption: one need not assume that the dynamics is driven by

minimisation. (Technical aside: the elementary catastrophes can

govern even non-point-attractor bifurcations, as in [7] ; but
language is complicated here by such examples as the Hopf bifur-

cation from ’gradient-like’ to ’non-gradient-like’ dynamics, which

can stably be reduced to the bifurcation of a Liapunov pseudo-

gradient function but not to an ordinary elementary catastrophe
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of finite codimension. Thus there can be no "appeal to Thom’s

theorem" as such where there are limit cycles, though the stable

phenomena it classifies remain important.) The bifurcation of

such attractors can commonly be shown equivalent to those of

minimisation problems, even if that of their basins of attraction

cannot. The choice of minimised function is not unique, but

the implications of the transversality principle correspond in

the two settings. Hence I shall argue in the case where ’equi-
librium’ means ’critical point of a real-valued function v’, 

~
bearing in mind that V may be a construct to help analyse a Î
bifurcating differential equation, rather than a quantity with

quasi-independent physical ’meaning’ (like wave phase, free energy,

or utility) for which applicability of Thom’s theorem is more

obvious. 
1 1

We are concerned to show that

if for control values (a,b) on

the boundary 3D of the rectangle

D in Fig. 1 there is a continuum

C of stable equilibria with a

discontinuity at k in the state

variable x E X (X is drawn 1-

dimensional for graphical reasons),

then there is a cusp point for

some control value (a,b) inside

D . (For definitions of ’catas-

trophe theoretic’ terms see [351 Ir
[191 or even [26].) Let us denote the equilibrium set, for all

(a,b)eD , by S and its boundary, containing C , by 9S . It

is part of Thom’s theorem, or easily derived directly from the

transversality principle, that S is a surface, 3S a curve. (In

[26§7a] we are told Thom’s theorem "is not much better than the
tautologous statement that an equilibrium surface is a surface",

Fig. 1
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but if transversality is "inherently uninformative" there are no

grounds for supposing there is a surface to make a statement about.

"The equilibrium set is a surface" is importantly nontautologous

and fails when transversality does, e.g. if symmetries are present:

for many examples see ~19~ . ) I assume that for any (a,b) there

are finitely many equilibria and that no equilibrium ’goes off to

infinity’: with Thom’s theorem forbidding local pathologies, this

means that I suppose S a compact surface. The ’catastrophe map’

X,v that projects S to D must certainly have some singularities:

if S had only nondegenerate equilibria the local description of
*

it via the Implicit Function Theorem as the graph of a function

x = f(a,b), could be pieced together (D being simply connected)

to describe it globally as the graph(s) of one or more smooth

functions, contradicting the discontinuity at k . What must the

singularities be?

In some sense, the presence of a cusp is obvious. [indeed,,
it might be argued that footnote 7 of [26J accepts -

not merely attributes to Zeeman - that "it follows that there must

be at least one cusp". But then either one can draw conclusions

as denied elsewhere in [26§7] (see Introduction above) or "there

must be at least one cusp" is not a conclusion although "it

follows".] But the Jordan Curve Theorem, for instance, is rather

more "obvious" and is not only beyond most undergraduates to prove

but has an equally "obvious" generalisation to three dimensions

which - to general surprise - turned out false. The treatment of

the presence of a cusp that follows is as simple as I can devise,

but it does need the full strength of the cluster of results (on

*)This result is used in 25 and 26 without explanation or
reference, apparently assumed not "mystificatory" ([26 § 8] ) , though
known by name in my experience to rather few scientists, even
among the more mathematical groups such as theoretical engineers.
An informal account may be found in ~19~ , a proof in e.g., [20] .
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transversality, reduction of Taylor series to polynomial form,
enumeration of possibilities, etc.) that make up the omnibus entity
"Thom’s genericity, structural stability and classification

theorem". 
’

1 1

First I must make explicit

one more boundary assumption, T :

for no are there more

than three equilibria. This

rules out S as in Fig. 2, which

is generic and in which no cusp

point appears. (Assumption T is

clearly made in some of the papers

where Zeeman deduces a cusp,

notably in discussions of ’bi-

modality’ : in others Fig. 2 could

be excluded by invoking other

hypotheses he states. In any

case my concern here is less with particular models - to some of

which I have independent objections - than with the general alle-

gation in r26§7a] that "The claim that Thom’s theorem can be used

to infer the shape of a surface from some partial knowledge of it 

is false". It would be interesting to know, if Sussmann and Zahler

as quoted in the previous paragraph were indeed agreeing that "it

follows", by what specific hypotheses they agreed to rule out

Fig. 2.)

Now,suppose that we can assume without loss of generality that

X is one-dimensional. (Sussmann and Zahler describe this in

[26§12a] as "probably the only step in the entire "proof" that can

be given a sound justification", but see below.) By the transver-

sality principle via Thom’s theorem (from now on I will shorten

this to ’by Thom’s theorem’), as has only regular and fold points.

Fi . 2



86

If it has no fold points,

assumption T and the jump at k

imply that 38 is either a loop

(containing C) wound twice onto

3D , perhaps with another, single,

loop, or a loop wrapped three times

around. (This last would require
that for each (a,b ) E a D there

are three stable equilibria and

no others. A little surprisingly,
this is possible; V(x,y) defined

on the plane can have exactly
three critical points,all non-

degenerate minima.) These con-

figurations are realisable for a

control space like aD , topolo-

gically a circle, but not under

our présent hypothesis that X

ma.y be assumed one-dimensiona.l,

which would force as to cross

itself: the reasoning leading to

Thom’s theorem includes the

information that the catastrophe
manifold sits above the control

space without self-intersections.

(Nor are they realisable ever as 35

for S over simply connected D 1

unless S has cusp as well as

fold points, but I shall not prove 
i

this here.) It follows easily that

as must fold back on itself as

in Fig. 3, perhaps with discon-

nected loops as shown. These may Fiq. 5
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be ’pinched off’ as in Fig. 4 (since the universality of the

unfolqings given by aD as control implies that ’collars’ as in

Fig. 4a must always exist) without introducing a cusp. Thus with-

out loss of generality I may argue in the case shown in Fig. 5

(where D is taken as a disc to avoid irrelevancies with the

positions of p and q relative to the corners, which may be

removed by obvious smoothing arguments.)

There are four natural ’pieces’ now to 8S: the curve M of

minima, the curve N of maxima folded between them, and the two

fold points P , Q . Now, if we do not permit orientation-reversing

changes of variable, we see that V at P must be equivalent to

+x3 since in approaching the minimum at P’ from P both x

and V decrease, and V at Q must be equivalent to -x3 since V

decreases to V(Q’) by increasing x ; we know the general form

x by Thom’s theorem. (The signs would reverse if x increased

’downward’ in the figure, but would remain opposite.) Then if at

each point s = (a,b,x) of as we Taylor expand Va b around x
a jD

to order 4 , we get a polynomial
-

with coefficients depending on s , the

linear term vanishing by the equilibrium

condition. Discarding the s-dependent

constant, we define a map

0 : s 2013~ from DS into the

space Il of polynomials

px2 + qx3 + rx4. Then M is mapped

to points with p &#x3E; 0 , N to p  0

and P , Q to points 0 (P) , 0 (Q) on

the plane p = 0 where q has

opposite signs (since one reduces to Fig. 6
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x3 the other to -x 3) . Hence the image 8 C aS ) is linked (Fig. 6)

with the r-axis L , with linking number one. (Adding a point at

Co to compactify I4 1 and get the usual linking number of closed

curves, either half of the p = 0 plane will serve as a spanning

surface for L , to prove this technically.) Therefore any

spanning surface for will meet L at least once - gener-

ically, it will meet L transversely at a finite number of points,
odd by link theory , and will not meet 0 . But S is a surface

spanning as, and its image in ri under the same construction

is a surface s(S) spanning 0(~S) . Thus S has at least one

point where the expansion of V begins with rx4 r 0 ; that
is, a cusp point. (Cusp geometry requires that 8(S) meet L

transversely, which generically it does: we are using the trans-

versality principle again, plus the subtle results - notably the

preparation theorem - which imply the equivalence of versal un-

foldings and hence the possession of particular geometry: see [19]
for a long account aimed at the general scientist.)

I have described the above argument for its accessibility
(the reader unacquainted with linking numbers can probably here

intuit the fact and implications of linking) particularly to those

acquainted with [18] or [19] , in which Thom’s theorem is discussed

in a closely related way. Furthermore it suggests the promise of

a generalised approach of the same type, using deeper relatives of

the ’linking number’ invariant,, as well as allowing one here to

’see’ the necessity of a cusp. (But note that the subdivision of

ri into the seven pieces tp &#x3E; 0} {p  01 , {p = 0  ql

{p = 0 &#x3E; q} , {p = q = 0  r} , {p = q = 0 &#x3E; r} , {p = q = r = 0 1

apparent in Fig. 6 is the beginning of the natural stratification

of the space of smooth families of functions, at whose mention we

are told [26§13.8.2] that "even the most sophisticated physicist
or engineer will prefer to give up". Should it, therefore, have

been inciuded in papers add.ressed to biologists and economists?
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The depth of Thom’s theorem is significant, not as the misdirection

alleged in [26§7], but as more of a barrier to communication than
Zeeman in his more optimistic moments is inclined to recognise.)

However, Thom’s theorem does not permit us here to suppose
the state space X one-dimensional.

Nor indeed does Zeeman make the

false step of assuming we can,

which is an invention introduced

by Sussmann and Zahler (see above)

into their account of ~33~. Zeeman

does, at the end of [33§81, explain
how in the neighbourhood of a cusp

we may reduce X effectively to

one dimension for many purposes,

but only after deducing that the

cusp is there. This local result

cannot always be globalised. For

example, consider the following

family of functions on the plane

(state variables (x,y) , controls

(a,b) ) :

a 2-dimensional family with bifur-

cation set visible as cusped folds

in Fig. 7a. This is stable,

generic etc. and obeys the con-

clusions of Thom’s theorem: the

only singularities are folds and

cusps. Around any point the state

space X = R 2 can be reduced to
Fig. 7
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one dimension plus an ’inessential variable’ but this cannot be

done globally. Over the unit circle S1 in the (a,b) plane

there is a double loop of equilibria (saddles) which compressed
*

to one state dimension is forced to cross itself as in Fig. 7b.

(If ’states’ could be defined in a Môbius strip as in Fig. 7c, it

could be one-dimensional over points of S1 - but such a state
’bundle’ cannot be extended over the disc.) In fact no 2-dimen-

sional generic bifurcation geometry with a fold loop that has an

odd number of cusps can be globally realised with a one-dimen-

sional state variable. (I do not know of a published general

upper bound on the state dimension needed for r controls. For

r = 1 , it is clear that two state variables suffice. For r = 2 ,

taking three avoids self-intersection problems, and even two may

be enough.)

I have been unable to find an elementary proof, comparable

to the one above, for the presence of a cusp in the general

case dimX = n : all approches 1 have considered have thrown up

enough topologists’ technicalities to render proofs lengthy
and unperspicuous in an account for nonspecialists. At the

level of this paper it is more convenient, having established

the point at issue under the restriction dimX = 1 , to leave

the n-dimensional case aside : for a general proof, see [36].
At a more technical level, there is a clear need for development of

systematic and general methods,for the ’topological boundary
value problems’ presented by catastrophe theory. Recent work by

du Plessis [15] is clearly relevant, though concerned with

individual maps with a fixed manifold as domain. Here our concern

may be described either as with the singularities of the catas-

trophe map (the global topology of whose domain, the equilibrium

* )The same dimensional problems force the apparent self-inter-
sections in pictures like those mislabelled in the incompetent
Newsweek article (19 Jan. 76) quoted in all of [25, 26, 27], so

that such pictures can be misleading if not considered with care.
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set, is not known a priori) or with those of the fami of maps

V : X ~ R for various controls c .
c 

.

4. ONLY ONE CUSP? 

~Jt)The boundary conditions clearly do not imply that there ~t)
cannot be, say, three cusps (though by the linking number ’

argument above for dimX = 1 , like the general proof in [36J,
parity clearly forbids exactly two). Hence if transversality

were only an approximation principle , saying no more than

that any ’true’ surface can be arbitrarily well fitted by enough

cusps, the "ad-hoc hypothesis" L26§71 that there is only one would

be as unreasonable as Sussmann and Zahler wish it to appear.

However, as a natural ’semi-local’ working hypothesis it has, like

transversality, solid precedents in successful physics. When

Eddington speaks of lines missing "altogether" as in §2 above, he

does not mean that they fail by a microunit to coincide. Landau

and Lifshitz clearly do not expect to find common zeros of A and

B scattered like dust in the (P,T) plane (though no laws are

overthrown by occasionally finding two close to each other.) In

common scientific experience, most isolated zeros are not merely 
’

technically but comfortably isolated: clustering is possible, but

gives almost as much of a feeling "now why should that be?" as

exact nontransversality, partly because it is so close to it. Most

scientists would feel that any one of Figs 27A,B,C of [26], here
reproduced as Fig. 8, required some special explanation, despite

the way that C is (just) stable and B has only folds. (Contrary
to [~6§13.4~, B is not "nice and generic’ " . Global structural

stability is generic by the fullest statements of Thom’s theorem

if the catastrophe manifold can have, as here, only finitely many
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layers. The structure of B

is perturbed, in a way not

removable by equivalence, by

an arbitrarily small movement

of the vertically stacked

folds to separate bifurcation ---

points.) 
’

In close analogy, con-

sider the vibration and elec-

tronic spectra of crystals.

Physicists initially took it

for granted that such spectra

had no singularities until

these began to appear in the (difficult) exact calculations made

for simple models, with important effects on derived thermodynamic

quantities like specific heats. Their surprise was dissipated by

van Hove [8] , who used the Morse inequalities to show that singu-
larities of various types topologically must be present in at least

certain specified numbers - they are not accidents of particular

crystals or models. This work could give neither the positions of

the singularities, nor any upper bound on their number. But a

assuming that there are oniy as many as van Hove’s work requires
(and that, thanks quite exactly to the transversality principle,

they have the nondegenerate types appropriate) has become a

standard, and commonly successful initial hypothesis in investi-

gating the physics of a particular crystal. Is then the explicit

use of a similar ’minimal singularity’ hypothesis unreasonable in

biology? Perhaps Zeeman should have listed it separately in [33]
from the hypothesis of his potentials being a smooth family, or

at least expressed both simultaneously as mathematical aspects of

his "Hypothesis II. Continuity", but this is a minor point of style

(Euclid’s and Bourbaki’s ’Eléments’, and many journal papers, state

Fige 8
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all hypotheses very technically at the start, to the despair of

readers unfamilar with the kind of statement involved. Hilbert’s

axiomatisation of Euclidean geometry - the first complete one,

after millenia of geometric work - is only comprehensible by

working back from the familiar pictures. In teaching, or in

communication with nonspecialists, there are advantages in adducing

hypotheses as the need for them becomes clear.) Certainly in the

large one must expect to often find several cusps - indeed Zeeman’s

gastrulation model [33] involves multi-cusp structure - but we are

here considering the local ’elements’ not the global ’compounds’

[17] of morphological change, where ’local’ means in scientific

practice not ’arbitrarily small’ but ’at the level of distinguish-

able phenomena’. If we follow the physicists’ lead in expecting

cusps usually to be comfortably isolated unless there are definite

reasons otherwise, we can use the same ideas in discussing a single

free-energy-minimising ’event’, whether this is a phase transition

or a biological frontier formation.

Some caveats about Zeeman’s biological wave model are dis-

cussed in [191, and I would certainly oppose his use of ’theorem’

as a word applying to matter - Pythagoras’s theorem a lies to

triangles, but only uïdes us in thinking about rods. This is

Thom’s point, quoted in §2 above, about mathematics having no right

to dictate to reality. (A better case could be made, on precedent,
for the word ’law’. For example "Resistance obeys Ohm’s Law,

except for non-ohmic resistances" is a much more important fact

in practice than its tautologous nature might suggest.) The choice

of words is definitely unreasonable in Zeeman’s "Corollary 1.

Initially, when the frontier first forms, it is moving at constant

speed." [33§9] as a way of stating that it has a speed immediately

which is neither zero nor infinite. (The latter is not merely a

geometric possibility, though nongeneric for cusps; in the ’fast-

jump’ limit for delay convention it happens stabl for the
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discontinuity of Fig. 9, barred by

Zeeman’s Hypothesis II, in which

asymptotic speed goes - invariantly
- as ( t-t 2 after onset at

o

t .) A strict adherence to
o

’perfect’ delay makes initially

infinite acceleration a consequence

of the invariant infinite curvature

of the cusp at its tip, so in the

idealisation where the frontier

has a point origin the velocity

is, invariantly, not constant

there. Perfect delay is at its

most physically dubious there in

any case [19], so that this

idealisation becomes least useful.

As such points illustrate

Zeeman’s work is no more entirely

without flaw than Sussmann and

Zahler’s is without value. In particular, as regards Zeeman’s

nerve impulse model [32J some of the discussion in [26] is both

excellent and salutary. (Indeed, I presented some of the same

strong objections, and some others at the 1975 Mathematical

Biology conference at Oberwolfach ; Stewart [22] remarked in the

same year on its lack of experimental success. A detailed

critique of both the model and its treatment in [26] is in pre- 
’

paration by Woodcock and Stewart. I can find no reference since

then to justify calling it "considered by the catastrophists them-

selves to be especially successful" [26§11 though it has remained

important for its ideas and - not least - for the questions clarified

by the manner of its failure. There is better evidence that

catastrophe theory is a discipline with internal criticism of

errors than that "untruth is transformed into truth by repetition" :
indeed, the "good example" of the latter given in [26§l3.8.4] is an

Fige 9
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incorrect 1972 statement by Abraham of which, however, no

repetitions are cited. If Zeeman were to correct all misstatements

about his work published by those not collaborating with him, as

footnote 12 of [26] seems to demand , his overload of un-

productive writing would include some weeks’ labour on [26].) But

the light of the nerve impulse model analysis in [26] is somewhat

hidden under a bushel of incorrect allegations of gross mathematical

error and/or dishonesty in Zeeman’s professional field of differen-

tial topology, with such terms of scientific debate as "sorcery",

"orgy", "hocus-pocus", "sleight-of-hand", "incantations" and

"catastrophe theory myth", delivered from the pulpit of the

professor of mathematics. To borrow a phrase from [2697J, "most

readers will be so intimidated by such words that the mathematical

incorrectness will go unnoticed."
...
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