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1 Introduction

In his Panorama des Mathématiques pures. Le choix bourbachique, Jean
Dieudonné classified theorems in six classes and focus on two of them:

1. “Les problèmes qui engendrent une méthode” as analytic number
theory or finite groups theory;

2. “Les problèmes qui s’ordonnent autour d’une théorie générale, féconde
et vivante” as Lie group theory or algebraic topology;

And he gave the example of modular forms :

“La théories des formes automorphes et des formes mod-
ulaires est devenue un extraordinaire carrefour où viennent
réagir les unes sur les autres les théories les plus variées :
Géométrie analytique, Géométrie algébrique, Algèbre homologique,
Analyse harmonique non commutative et Théorie des nom-
bres.”

With many creative mathematicians, Jean Dieudonné was convinced
that the mathematical interest of a proof depends upon its capacity of
circulating between many heterogeneous theories and of translating some
parts of theories into completely different other ones.

I want to develop this idea relating proofs to this very special type
of “inter-expression” Albert Lautman called the unity of mathematics.
As the best method is to scrutinize a good example, I will focus on
one of the most protypical examples of a “great” complex proof, namely
Wiles-Taylor’s proof of the Taniyama-Shimura-Weil conjecture on elliptic
curves, a corollary of which is, due to a theorem of Ribet, Fermat last
theorem (FLT). Of course the challenge is quite impossible to be taken
up in one hour, but I will try nevertheless to present some key ideas of
the proof.

We will arrive at the conclusion that the best would be to work in-
side the framework of category theory since “translations” are in general
functors from one category into another. Wiles’ proof is “complex” in
the sense that it contains an impressive density of functorial changes of
category.
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2 The first proof of FLT: the case n = 4, the

descent method and elementary arith-

metics

Consider Fermat equation xn + yn = zn and suppose that (x, y, z) is a
non trivial integral solution. We can suppose that x, y, z are relatively
primes and that n = 4 or n is an odd prime.

The case n = 4 was proved by Fermat himself using a “descent argu-
ment” based on the fact that if (a, b, c) is a Pythagorean triple (that is a
triple of positive integers such that a2 + b2 = c2), then the area ab/2 of
the right triangle of sides a, b, c cannot be a square.

The problem can be reduced to find non trivial integral solutions of
the equation

u4 + v4 =
(
u2
)2

+
(
v2
)2

= w2

with w a square, gcd(u, v) = 1, u odd and v even. But, in a Pythagorean
triple (a, b, c) the integers a and b cannot both be odd. So we can sup-
pose that a is odd and b even, and of course c > 0. But a theorem
of Diophantus (and in 1630 Fermat was precisely working on Diophan-
tus’ Arithmetica 1) says that there exist then integers m,n relatively
prime (m,n) = 1 and not both odd such that a = m2 − n2, b = 2mn,
c = m2 + n2.

Due to Diophantus’ theorem, there exist integers m,n relatively prime
(m,n) = 1 and not both odd such that u2 = m2 − n2, v2 = 2mn,w =
m2+n2. Therefore m2 = u2+n2 with u odd and we can apply Diophantus
again: there exist integers p, q relatively prime such that, u = p2 −
q2, n = 2pq,m = p2 + q2. Therefore v2 = 2mn = 4pq (p2 + q2). As v is

even
(
v
2

)2
= pq (p2 + q2) is a square. But as p, q, p2 + q2 are relatively

prime they must all be squares: p = r2, q = s2, p2 + q2 = k2. But then

r4 + s4 = k2 is a new solution and as
(
v
2

)2
= pq (p2 + q2) = r2s2 (r4 + s4)

implies v = 2rs
√
r4 + s4 we have r < v and s < v. The new integral

solution is therefore strictly smaller than the initial one and it is non
trivial since the initial solution is not trivial. Hence Fermat’s famous
“descent argument”: after a finite number of steps we would get negative
solutions⇒contradiction⇒ (u, v, w) can’t exist.

Fermat’s proof contains the deep idea of descent formalized later by
Mordell. But it is “elementary” in the sense it uses only elementary arith-
metic computations.

1It is in the margin of Diophantus’ treatise that Fermat wrote his remark: “I have
discovered a truly marvelous proof of this proposition that this margin is too narrow
to contain”.
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3 From Euler to Kummer, the case of reg-

ular primes.

3.1 A brief historical survey

The history of the successive proofs of FLT for odd primes p is a true
Odyssea. We cannot summarize it here. In a nutshell we can say that,
during what could be called an “Eulerian” period, many particular cases
where successively proved by Sophie Germain, Dirichlet, Legendre, Lamé,
etc. using a fundamental property of unique factorization of integers in
prime factors in algebraic extensions of Q. But this property is not always
satisfied. In 1844 Ernst Kummer was able to abstract the property for a
prime p to be regular, proved FLT for all regular primes and shew that
the irregularity of primes was the main obstruction to a natural algebraic
proof.

It must be strongly emphasized that it is for this proof that Kummer
invented the concept of “ideal” number which will become with Dedekind
the founding concept of ideal of a ring (the basis of commutative alge-
bra) and proved his outstanding result that unique factorization in prime
factors remains valid for “ideal” numbers.

After this breakthrough, a lot of particular cases of irregular primes
were proved which enabled to prove FLT up to astronomical p; a lot of
false proofs were also published, and a lot of computational verifications
were made; but no general proof was found. It is to its extraordinary
resistance to purely arithmetic and algebraic proofs than FLT owes his
legendary celebrity.

3.2 Kummer’s proof (a sketch)

Kummer’s basic idea was to factorize Fermat equation in the ring Z[ς]
where ς is a primitive pth root of unity and to work in the cyclotomic
extension Z[ς] ⊂ Q(ς) of the elementary arithmetic Z ⊂ Q. In Z[ς] we
have the factorization

xp − 1 =

j=p−1∏
j=0

(
x− ςj

)
,

the polynomial

Φ(x) = xp−1 + . . .+ x+ 1 =

j=p−1∏
j=1

(
x− ςj

)
is irreducible over Q and is the minimal polynomial defining ς. The con-
jugates of ς are ς2, . . . , ςp−1, Q(ς) is the splitting field of Φ(x) over Q and
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Q(ς)/Q is a Galois extension. We note that Φ(1) = p. The prime p is
ramified in Z[ς] (and in fact is the only ramified prime). More precisely,
(1− ς) is a prime ideal of Z[ς] and there exists some unit u s.t.

p = u(1− ς)p−1

In Z[ς] we have the decomposition

zp = xp + yp =

j=p−1∏
j=0

(
x+ ςjy

)
.

In Z[ς], unique factorization of an integer in prime factors is no longer
necessarily true. But Kummer shew it remains valid for ideals.

It is traditional to distinguish two cases in the tentative proof of FLT.
We suppose that a solution (x, y, z) exists and we look at its relations
with the prime power p.

3.2.1 Case I

Suppose first that x and y are prime to p. This implies that the ideals
(x+ ςjy) are relatively prime.

As the product of the (x+ ςjy) is the pth power (z)p, each (x+ ςjy)
is therefore a pth power and we have in particular

(x+ ςy) = ap

which shows that ap is a principal ideal.
It is here that the property of regularity arises.
Intuitive definition. p is a regular prime if when a pth power ap is

principal a is already itself a principal ideal.
Technical definition. p is a regular prime if it doesn’t divide the class

number hp of the cyclotomic field Q(ς).
As ap is principal, if p is a regular prime, a is principal: a = (t),

(x+ ςy) = (t)p and there exists therefore some unit u in Z[ς] s.t.

x+ ςy = utp.

The idea is then to compare x + ςy with its complex conjugate x + ςy
using congruences mod p in Z[ς].

Using the fact that {1, ς, . . . , ςp−2} is an integral basis of Z[ς] over
Z and developing t as t =

∑i=p−2
i=0 τ iς

i, one shows first that tp ≡ t̄p

mod pZ[ς]. Secondly, using a lemma of Kronecker, one shows that u
being a unit, there exists j s.t. u

ū
= ςj. One concludes that

x+ ςy = utp = ςjūtp ≡ ςjūt̄p mod pZ[ς] ≡ ςj (x+ ςy) mod pZ[ς] ((C))
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We get therefore mod pZ[ς] a linear relation between 1, ς, ςj, ςj−1 (we
use ςjς = ςj−1) with integral coefficients x, y coming from the supposed
solution (x, y, z) of Fermat equation.

But the congruence (C) is impossible. Indeed if 1, ς, ςj, ςj−1 are dif-
ferent powers then then they are independent in Z[ς] over Z. When it is
not the case (j = 0, j = 1, j = 2, j = p − 1), one proves the particular
cases.

3.2.2 Case II

The real difficulty is the case II when one of x, y, z is divided by p. We
will skip it here.

Kummer’s proof is marvelous and played a fundamental role in the
elaboration of modern arithmetical tools. Its essential achievement is to
do arithmetic no longer in Z but in the ring of integers Z[ς] of the cyclo-
tomic field Q(ς). But it remains a proof developed inside a single theory,
namely algebraic number theory.

4 Faltings theorem and the Mordell-Weil

conjecture

The natural context of a proof of FLT seems to be algebraic geometry
since Fermat equation

xn + yn = zn

is the homegeneous equation of a projective plane curve F. The equation
has rational coefficients and FLT says that for n ≥ 3 F has no rational
points. So FLT is a particular case of computing the cardinal |F (Q)|
of the set of rational points of a projective plane curve F defined over
the rational field Q. To solve the problem, one needs a deep knowledge
of the arithmetic properties of infinetely many types of projective plane
curves since the genus g of F is

g =
(n− 1)(n− 2)

2

and increases quadratically with the degree n. We note that for n ≥ 4
we have g ≥ 3. But of course it is extremely difficult to prove general
arithmetic theorems valid for infinitely many sorts of classes of curves.

The greatest achievement in this direction was the demonstration by
Gerd Faltings of the celebrated Mordell-Weil conjecture.

Theorem (Faltings). Let C be a smooth connected projective curve
defined over a number field K and let K ⊂ K ′ be an algebraic extension
of the base field K. Let g be the genus C.
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1. If g = 0 (sphere) and C (K ′) 6= ∅, then C is isomorphic over K ′

to the projective line P1 and there exist infinitely many rational
points over K ′.

2. If g = 1 (elliptic curve), either C (K ′) = ∅ (no rational points
over K ′) or C(K ′) is a finitely generated Z−module (Mordell-Weil
theorem, a deep generalization of Fermat descent method).

3. If g ≥ 2, C (K ′) is finite (Mordell-Weil conjecture, Faltings theo-
rem).

Faltings theorem is an extremely difficult one which won him the
Fields medal in 1986. But for FLT we need to go from “C (K ′) finite” to
“C (K ′) = ∅”.

5 Frey’s breakthrough

In 1986, Gerhard Frey introduced a completely new idea which led to
Wiles-Taylor proof in 1994. The idea is to use an hypothetic solution
ap + bp + cp = 0 of Fermat equation (p an odd prime) as parameters for
an elliptic curve E, namely what is now called a Frey curve:

y2 = x (x− ap) (x+ bp) .

The idea is that, as far as (a, b, c) is a solution of Fermat equation and
is supposed to be too exceptional to exist, the associated Frey curve E
must also be in some sense “too exceptional” to exist.

We meet here a spectacular example of a translation strategy which
consists in coding solutions of a first equation into parameters of a second
equation of a completely different type and using the properties of the
solutions of the second equation for gathering informations on those of
the first equation. G. Frey was perfectly aware of the originality of his
trick. In his paper he explains:

“In the following paper we want to relate conjectures about
solutions of the equation A−B = C in global fields with con-
jectures about elliptic curves.”

“An overview over various conjectures and implications
discussed in this paper (...) should show how ideas of many
mathematicians come together to find relations which could
give a new approach towards Fermat’s conjecture.”

And indeed, the advantages of Frey’s “elliptic turn” are multifarious:
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1. Whatever the degree p could be, we work always on an elliptic
curve and we shift therefore from the full universe of algebraic plane
curves to a single class of curves.

2. Elliptic curves are the best known of all curves and their fine Dio-
phantine and arithmetic structures can be investigated using non
elementary techniques from analytic number theory.

3. For elliptic curves we dispose of a strong criterion of “normal-
ity”: “good” elliptic curves are modular in the sense they can be
parametrized by modular curves.

4. A well known conjecture, the Taniyama-Shimura-Weil conjecture,
says in fact that every elliptic curve is modular.

From Frey’s idea we can derive a schema of proof for FLT:

1. Prove that Frey elliptic curves are not modular.

2. Prove the Taniyama-Shimura-Weil conjecture.

Step 1 was achieved by Kenneth Ribet who proved that Taniyama-
Shimura-Weil implies Fermat and triggered a revolutionary challenge,
and step 2 by Andrew Wiles and Richard Taylor for the so called “semistable”
case, which is sufficient for FLT.

6 Elliptic curves as projective plane cubics

6.1 Weierstrass normal form

As a plane algebraic curve, an elliptic curve E is a projective cubic of
equation

F (X, Y, T ) = CX3X3 + . . .+ CT 3T 3 = 0.

Its affine part in the complement of the line at infinity T = 0 is the affine
curve of affine coordinates x = X/T , y = Y/T :

F (x, y) = CX3x3 + . . .+ CT 3 = 0

We can simplify this expression and reduce it to what is called a Weier-
strass form by controlling the behavior of E at infinity and by using
appropriate changes of variables. We get:

y2 = x3 − c4

48
x− c6

864
(W3)
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which is of the form y2 = x3 + px + q, a typical cubic polynomial (p =
−c4/48, q = −c6/864).

The curve E is symmetric relative to the x axis. It will be singu-
lar at (x, y) if and only if the discriminant 4p3 + 27q2 = 0, that is if

1
12(48)2

(
− (c4)3 + (c6)2) = 0.

1. If the double root is not a triple root the singular point is a normal
crossing of two branches (ordinary double point or node) reducible
to the normal form y2 = x2(x+ 1);

2. if it is a triple root the singular point is a cusp reducible to the
normal form y2 = x3.

It must be emphasized that singular elliptic curves are “trivial” in the
sense they can be parametrized by a projection onto a line from the
singular point in such a way that rational points correspond to rational
points.

1. For y2 = x2(x + 1) take r = y/x which yields the parametrization
x = r2 − 1, y = r3 − r;

2. for y2 = x3 take the parametrization x = r2, y = r3.

Traditionally, the discriminant of the form W3 has been defined as
the (homogeneous of weight 12) expression −16 (4p3 + 27q2)

∆ =
1

1728

(
(c4)3 − (c6)2)

(note that 1728 = 123).
The discriminant of a Frey elliptic curve (which is not of the normal

form W3)

y2 = x (x− ap) (x+ bp) = x3 + (bp − ap)x2 − apbpx

is
∆ = 16 (apbpcp)2

6.2 Discriminant, j-invariant, conductor, and semi-
stability

The discriminant of an elliptic curve E defined over Q is particularly
important because it encodes the properties of the reduction of E modulo
a prime p. Let SE (S for “singular”) be the set of primes p s.t. E has
bad reduction at p (i.e. E is singular modulo p).

10



Proposition. SE = {p ∈ P | has bad reduction at p} is the set

{p ∈ P | p divides ∆} .

We will use also a finer invariant called the conductor of E.
Definition. NE =

∏
p|∆

pn(p) where

1. n(p) = 1 if Ep is a node;

2. n(p) = 2 if p > 3 and Ep is a cusp;

3. n(p) is given by Tate’s algorithm for p = 2, 3.

E is called semi-stable if its conductor NE is without square factors
i.e. if n(p) = 1 ∀p. If E is semi-stable its conductor has a very simple
form: NE =

∏
p|∆

p.

Another fondamental invariant of E is the modular invariant of weight
0 defined by

j =
c3

4

∆

6.3 The group structure

One of the fundamental properties of elliptic curves is to possess a struc-
ture of algebraic abelian group. One can define a commutative (additive)
group structure on their points using only algebraic operations. Let P
and Q be two points of E. As the equation is cubic, the line PQ inter-
sects E in a third point R. The group law is then defined by setting
P + Q + R = 0. The neutral element 0 is the point at infinity in the
y direction and the opposite −P of P is therefore the symmetric of P
relative to the x axis.

If we take the tangent to E at P and if it intersects E in R, we have
2P +R = 0 (limit case of the general formula when P = Q).

The points on the x axis are exactly the points of order 2 s.t. P = −P
or 2P = 0 (torsion points).

Fermat’s descent for n = 4 is a particular case of inverse duplication.
Write x4 + y4 = z4 as u4 + v4 = w2. With X = u

v
and Y = w

v2
the

equation becomes Y 2 = X4 +1. The new change of variables X = y
2x

and

Y = y2+8x
4x2 yields the elliptic curve

y2 = x3 − 4x

Let (r, s) be the new solution obtained from an initial solution (u, v)
by the descent method and let (c, d) be the point on E corresponding
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to (r, s). As (c, d) ∈ E we have d2 = c3 − 4c. If c = x(P ), the initial
solution (u, v) corresponds on E to the point P ′ = 2P . The descent
method consists therefore in starting with a point P ′ and in constructing
P = P ′/2: it is a division algorithm.

7 Elliptic curves as complex tori

There is a completely different way of looking at elliptic curves, the equiv-
alence of the two perspectives being one of the greatest achievements of
mathematics in the first half of the XIXth century (Abel, Jacobi, etc.).
It belongs to another theory, namely the theory of analytic complex func-
tions. The problem is to study doubly periodic analytic functions on the
complex plane C. Let (ω1, ω2) be the two periods. We look for analytic
functions f(z) such that f(z+mω1 +nω2) = f(z) for all m,n ∈ Z. As ω1

and ω2 cannot be colinear, Im (ω1/ω2) 6= 0 and changing eventually a sign
we can suppose Im (ω1/ω2) > 0. Let Λ be the lattice {mω1 + nω2}m,n∈Z
in C and E the quotient space E = C/Λ; E is a complex torus and f is
defined on E. f is called an elliptic function. E being compact, f cannot
be holomorphic without being constant according to Liouville theorem;
f can only be a meromorphic function if it is not constant.

Applying residue theorem successively to f , f ′/f , and zf ′/f we can
show:

1. f possesses at least 2 poles.

2. If the mi are the order of the singular points ai (poles and zeroes)
of f ,

∑
mi = 0 (this says that the divisor div(f) is of degree 0).

3.
∑
miai ≡ 0 mod Λ.

One elliptic function is of particular interest since it generates with its
derivative the field of all elliptic functions. It is the Weierstrass function
℘(z) which is the most evident even function having a double pole at the
points of the lattice Λ. Let Λ′ = Λ− {0}, the definition is:

℘(z) =
1

z2
+
∑
ω∈Λ′

(
1

(z − ω)2 −
1

ω2

)
The derivative ℘′(z) is an odd function possessing triple poles at the
points of Λ:

℘′(z) = −2
∑
ω∈Λ

1

(z − ω)3

Theorem. ℘(z) and ℘′(z) generate the field of elliptic functions on the
elliptic curve E = C/Λ.
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8 From complex tori to cubics

What are the relations between these two definitions of elliptic curves,
one algebraic and the other analytic? In one sense, from complex tori to
cubics, the relation is quite simple. Indeed ℘(z)3 and ℘′(z)2 have both a
pole of order 6 at 0 and must be related. Some (tedious) computations on
their Laurent expansions show that there exists effectively an algebraic
relation between ℘(z) and ℘′(z), namely

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

with g2 = 60G4 and g3 = 140G6, Gm being the Eisenstein series

Gm =
∑
ω∈Λ′

1

ωm

This means that (℘(z), ℘′(z)) is on the elliptic curve Ecub of equation2

y2 = 4x3 − g2x− g3

which discriminant is:

∆ = (g2)3 − 27 (g3)2

the lattice Λ corresponding to the point at infinity in the y direction.
One can verify that ∆ 6= 0 and that E is therefore regular.
One of the great advantage of the torus representation is that the

group structure become evident. Indeed Etor = C/Λ inherits the additive
group structure of C and through the parametrization by ℘(z) and ℘′(z)
this group structure is transfered to Ecub.

9 From cubics to complex tori

On the other direction, from projective regular plane cubics to complex
tori, the relation is deeper and comes from the theory of Riemann sur-
faces. Let E = Ecub a regular cubic. Topologically it is a torus and it is
endowed with a complex structure making it a compact Riemann surface.
Let γ1 and γ2 two loops corresponding to a parallel and a meridian of E
(they constitute a Z-basis of the first integral homology group H1(E,Z)).
Up to a factor, there exists a single holomorphic 1-form ω on E. Its pe-
riods ωi =

∫
γi
ω generate a lattice Λ in C and we can consider the torus

2We will generically note E an elliptic curve. When it will be necessary to distin-
guish between its cubic algebraic representation and its toric analytic representation
we will use the notations Ecub and Etor.
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Etor = C/Λ which is called the Jacobian of E. If a0 is a base point in E,
the integration of the 1-form ω defines a map

Φ : Ecub → Etor

a 7→
∫ a
a0
ω

(the map is well defined since two pathes from a0 to a differ by a Z-linear
combination of the γi and the values of ω differ by a point of the lattice
Λ).

Theorem. Φ is an isomorphism between Ecub and Etor.
This is the beginning of the great story of Abelian varieties.
In is in this context, where algebraic structures are translated and

coded in analytic ones, that one can develop an extremely deep theory
of arithmetic properties of elliptic curves. Its “deepness” comes from the
analytic coding of arithmetics.

10 Zeta function and Dirichlet L-functions

10.1 Riemann zeta function

One of the most beautiful way of encoding arithmetic properties in an-
alytic structures comes from the outstanding works of Riemann on the
zeta function ς(s). The initial definition of the zeta function is extremely
simple and gave rise to a lot of computations at Euler time:

ς(s) =
∑
n≥1

1

ns

which is a series absolutely convergent for integral exponents s > 1. Euler
already proved ς(2) = π2/6 and ς(4) = π4/90. A trivial expansion shows
that in the convergence domain the sum is equal to an infinite product,
called an Euler product, containing a factor for each prime p (we note P
the set of primes):

ς(s) =
∏
p∈P

(
1 +

1

ps
+ . . .

1

pms
+ . . .

)
=
∏
p∈P

1

1− 1
ps

.

The zeta function is a symbolic expression associated to the distribu-
tion of primes, which is well known to be a very mysterious structure.
But its fantastic strenght as a tool comes from the fact that it can be
extended by analytic continuation to the complex plane. First s can be
extended to reals > 1, secondly s can be extended to complex num-
bers s of real part <(s) > 1, and thirdly s can be extended by analytic
continuation to a meromorphic function on the entire complex plane C.
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10.2 Mellin transform and functional equation

The zeta function encodes very deep arithmetic properties. Riemann
proved in his celebrated 1859 paper “Über die Anzahl der Primzahlen
unter einer gegeben Grösse” (“On the number of prime numbers less than
a given quantity”) that it manifests beautiful properties of symmetry.
This can be made explicit noting that ς(s) is related by a transformation
called the Mellin transform to the theta function which possesses beau-
tiful properties of automorphy, where.“automorphy” means invariance of
a function f(τ) defined on the Poincaré plane H (complex numbers τ of
positive imaginary part =(τ)) relatively to a countable subgroup of the
group acting onH by homographies (also called Möbius transformations)
γ(τ) = aτ+b

cτ+d
.

The theta function Θ(τ) is defined on the half plane H as the series

Θ(τ) =
∑
n∈Z

ein
2πτ = 1 + 2

∑
n≥1

ein
2πτ

=(τ) > 0 is necessary to warrant the convergence of e−n
2π=(τ). We will

see later that Θ(τ) is what is called a modular form of level 2 and weight
1
2
. Its automorphic symmetries are

1. Symmetry under translation: Θ(τ+2) = Θ(τ) (level 2, trivial since
e2iπ = 1 implies ein

2π(τ+2) = ein
2πτ ).

2. Symmetry under inversion: Θ(−1
τ

) =
(
τ
i

) 1
2 Θ(τ) (weight 1

2
, proof

from Poisson formula).

If f : R+ → C is a complex valued function defined on the positive
reals, its Mellin transform g(s) is defined by the formula:

g(s) =

∫
R+

f(t)ts
dt

t

Let us compute the Mellin transform of Θ(it) or more precisely, using
the formula Θ(τ) = 1 + 2Θ̃(τ), of Θ̃(it) = 1

2
(Θ(it)− 1):

Λ(s) =
1

2
g
(s

2

)
=

1

2

∫ ∞
0

(Θ(it)− 1) t
s
2
dt

t
=
∑
n≥1

∫ ∞
0

e−n
2πtt

s
2
dt

t

In each integral we make the change of variable x = n2πt. The integral
becomes:

n−sπ−
s
2

∫ ∞
0

e−xx
s
2
−1dx

15



But
∫∞

0
e−xx

s
2
−1dx = Γ

(
s
2

)
where Γ (s) =

∫∞
0
e−xxs−1dx is the gamma

function, and therefore

Λ(s) = π−
s
2 Γ
(s

2

)(∑
n≥1

1

ns

)
= ς(s)Γ

(s
2

)
π−

s
2

This remarkable expression enables to use the automorphic symme-
tries of the theta function to derive a functional equation satisfied by the
lambda function, and therefore by the zeta function. Indeed, let us write
Λ(s) =

∫∞
0

=
∫ 1

0
+
∫∞

1
and use the change of variable t = 1

u
in the first

integral. Since i
u

= − 1
iu

and

Θ

(
i

u

)
= Θ

(
− 1

iu

)
=

(
iu

i

) 1
2

Θ (iu) = u
1
2 Θ (iu)

due to the symmetry of Θ under inversion, we verify that the
∫ 1

0
part of

Λ(s) is equal to the
∫∞

1
part of Λ(1− s) and vice-versa and therefore the

lambda function satisfies the functional equation

Λ(s) = Λ(1− s)

As ς(s) is well defined for <(s) > 1, it also well defined, via the functional
equation of Λ, for <(s) < 0, the difference between the two domains
coming from the difference of behavior of the gamma function Γ.

We can easily extend ς(s) to the domain <(s) > 0 using the fact that
ς(s) has a pole of order 1 at s = 1 and computing ς(s) as

ς(s) =
1

s− 1
+ · · ·

Λ(s) being now define on the half plane <(s) > 0, the functional equation
can be interpreted as a symmetry relative to the line <(s) = 1

2
, hence

the major role of this line which is called the critical line of ς(s).

10.3 Zeroes of Zeta, distribution of primes, and Rie-
mann hypothesis

Riemann zeta function is one the most beautiful objects in mathematics.
Since Euler times, an impressive amount of computations have been per-
formed by the greatest mathematicians and a universe of relations with
other functions has been discovered.

Due to the functional equation

ς(s)Γ
(s

2

)
π−

s
2 = ς(1− s)Γ

(
1− s

2

)
π−

1−s
2 ,
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the behavior of ς(s) depends upon that of the gamma function Γ (s) =∫∞
0
e−xxs−1dx which extended the factorial function Γ (n) = (n − 1)!.

Γ (s) has no zeroes but has poles exactly on negative integers −k (k ≥ 0)

where it has residue (−1)k

k!
.

For s = −2k with k > 1, the functional equation reads

ς(−2k)Γ (−k) πk = ς(1 + 2k)Γ

(
1 + 2k

2

)
π−

1+2k
2

and as the rhs is finite (the only pole of ς(s) is s = 1 ) while Γ (−k) is a
pole, we must have ς(−2k) = 0. These are called the trivial zeroes of the
zeta function.

The main interest of ς(s) is to have non trivial zeroes which encode
the distribution of primes in the following sense. For x a positive real,
let π(x) be the number of primes p ≤ x. From Gauss (1792, 15 years
old) and Legendre (1808) to Hadamard (1896) and De La Vallée Poussin
(1896) it has been proved the asymptotic formula called the prime number
theorem:

π(x) ∼ x

log(x)

A better approximation, due to Gauss (1849), is π(x) ∼ Li(x) where the
logarithmic integral is Li(x) =

∫ x
2

dx
log(x)

.3

The prime number theorem is a consequence of the fact that ς(s) has
no zeroes on the line 1 + it (recall that 1 is the pole of ς(s)). It as been
improved with better approximations by many great arithmeticians.

In his 1859 paper, Riemann proved the fantastic result that π(x) can
be computed as the sum of a series whose terms are indexed by the non
trivial zeroes of ς(s).

It can be proved easily that all the non trivial zeroes of ς(s) must
lie inside the critical strip 0 < <(s) < 1. Due to the functional equation
they are symmetric relatively to the critical line and it is known that
there exist an infinity of zeroes on the critical line and that the zeroes
“concentrate” in a precise sense on the critical line. An enormous amount
of computations from Riemann time to actual supercomputers (ZetaGrid:
more than 1012 zeroes in 2005) via Gram, Backlund, Titchmarsh, Turing,
Lehmer, Lehman, Brent, van de Lune, Wedeniwski, Odlyzko, Gourdon,
and others, shows that all computed zeroes lie on the critical line <(s) =
1
2
.

The celebrated Riemann hypothesis, one of the deepest unsolved prob-
lem (8th Hilbert problem), claims that in fact they all lie on the critical

3For small n, π(x) < Li(x), but Littelwood proved in 1914 that the inequality
reverses an infinite number of times.
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line. It is equivalent to the conjecture that for some constant c

|Li (x)− π(x)| ≤ c
√
x log(x)

that is

π(x) =

∫ x

2

dx

log(x)
+O

(√
x log(x)

)
(recall that the prime number theorem is equivalent to the fact that no
non trivial zeroes lie on the line <(s) = 1 limiting the critical strip).

10.4 Dirichlet series and Dirichlet L-functions

For many reasons, generalized zeta functions are important. They have
the general form ∑

n≥1

an
ns

and under some conditions on the an can be factorized in Euler products∏
p∈P

(
1 +

ap
ps

+ . . .
apm

pms
+ . . .

)
1. The condition is of course that the coefficients an are multiplicative

in the sense that a1 = 1 and, if n =
∏
prii , an =

∏
aprii .

2. Moreover if the an are strictly multiplicative in the sense that apm =
(ap)

m then the series can be factorized in a first degree (or linear)
Euler product ∏

p∈P

1

1− ap
ps

.

3. If a1 = 1 and if for every prime p there exists an integer dp s.t.

apm = apapm−1 + dpapm−2

then the series can be factorized in a second degree (or quadratic)
Euler product ∏

p∈P

1

1− ap
ps
− dp

p2s

The most important examples of Dirichlet series are given by Dirichlet
L-functions where the an are the values χ(n) of a character modm, that
is of a multiplicative morphism

χ : (Z/mZ)∗ → C

18



Lχ =
∑
n≥1

χ(n)

ns

As χ is multiplicative, the an are strictly multiplicative and the series
can be factorized in a first degree Euler product. The theory of the zeta
function can be straightforwardly generalized (theta function, automor-
phy symmetries, lambda function, functional equation).

11 Modular forms

11.1 Two classes of L-functions

We have just seen that L-functions such as Riemann zeta function en-
code in a very subtle way deep arithmetic informations. We will now see
that we meet naturally two classes of L-functions, those associated to
elliptic curves and those associated to what are called modular forms. A
great discovery of Shimura has been that in the case of modular elliptic
curves, the two L-functions are equal. The Taniyama-Shimura-Weil con-
jecture that every elliptic curve over Q is modular says therefore that the
two classes are identical. It is a conjecture on the equivalence between
two completely different ways of constructing objects of a certain type
(L-functions). Its deepness has been very well formulated by Anthony
Knapp who explained that XXth century mathematics discovered

“a remarkable connection between automorphy and arith-
metic algebraic geometry. This connection first shows up
in the coincidence of L-functions that arise from some very
special modular forms (“ automorphic” L-functions) with L-
functions that arise from number theory (“ arithmetic” or “
geometric” L-functions, also called “ motivic” ).”

“The automorphic L-functions have manageable analytic
properties, while the arithmetic L-functions encode subtle
number-theoretic information. The fact that the arithmetic
L-functions are automorphic enables one to bring a great deal
of mathematics to bear on extracting the number-theoretic
information from the L-function.”

“Automorphic L-functions have more manageable ana-
lytic properties, but they initially have little to do with alge-
braic number theory or algebraic geometry. The fundamental
objective is to prove that motivic L-function are automor-
phic.”

M. Ram Murty also emphasized the point:
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“In its comprehensive form, an identity between an au-
tomorphic L-function and a “motivic” L-function is called a
reciprocity law. (. . . ) The conjecture of Shimura-Taniyama
that every elliptic curve over Q is “modular” is certainly the
most intringuing reciprocity law of our time. The “Himalayan
peaks” that hold the secrets of this non abelian reciprocity
law challenge humanity.”

11.2 Modular functions for SL(2,Z)

We start from the representation of elliptic curves as complex tori E =
C/Λ with Λ a lattice {mω1 + nω2}m,n∈Z in C with Z-basis {ω1, ω2}. If
τ = ω2/ω1, we can suppose Im (τ) > 0, that is τ ∈ H where H is the
Poincaré upper half complex plane. To correlate univocally E and its
“module” τ we must look at the transformation of τ when we change

the Z-basis of Λ. Let {ω′2, ω′1} another Z-basis. We have

(
ω′2
ω′1

)
=(

a b
c d

)(
ω2

ω1

)
with γ =

(
a b
c d

)
an integral matrix. But γ must

be inversible and its inverse must therefore be also an integral matrix, so
γ ∈ SL(2,Z). γ acts on τ via Möbius transformations:

γ (τ) =
aτ + b

cτ + d

The concept of modular form arises naturally when we consider holo-
morphic SL(2,Z)-invariant differentials on the Poincaré half-plane H.
Let f(τ)dτ be a 1-form on H with f an holomorphic function and con-
sider f(τ ′)dτ ′ with τ ′ = γ (τ). We have

f(τ ′)dτ ′ = f

(
aτ + b

cτ + d

)
(cτ + d) a− (aτ + b) c

(cτ + d)2 dτ

= f

(
aτ + b

cτ + d

)
1

(cτ + d)2dτ since ad− bc = 1

We see that in order to get the invariance f(τ)dτ = f(τ ′)dτ ′ we need
f
(
aτ+b
cτ+d

)
1

(cτ+d)2
= f(τ), i.e. f (γ (τ)) = (cτ + d)2 f(τ). Hence the general

definition:
Definition. An holomorphic function on H is a modular function of

weight k if f (γ (τ)) = (cτ + d)k f(τ) for every γ ∈ SL(2,Z).
We note that the definition implies f = 0 for odd weights since −I ∈

SL(2,Z) and if k is odd

f(−Iτ) = f

(
−τ
−1

)
= f(τ) = (−1)k f(τ) = −f(τ)
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The weight 0 means that f is SL(2,Z)-invariant.
A modular function of weight k can also be interpreted as an homo-

geneous holomorphic function of degree −k defined on the lattices Λ. If
we define f̃(Λ) by f̃(Λ) = ω−k1 f(τ) we see that for f to be modular of
weight k is equivalent to f̃(αΛ) = α−kf(Λ).

To be modular f has only to be modular on generators of SL(2,Z),

two generators being the translation T =

(
1 1
0 1

)
acting by τ → τ + 1

and the inversion S =

(
0 1
−1 0

)
acting by τ → −1/τ . Therefore f is

modular of weight k iff {
f (τ + 1) = f(τ)

f
(
− 1
τ

)
= (−τ)k f(τ)

We already met modular functions in the theory of elliptic curves:
Eisenstein series G2k of weight 2k, the elliptic invariants which are the
coefficients g2 of weight 4 and g3 of weight 6 of the Weierstrass equation
associated to a complex torus, the discriminant ∆ = (g2)3 − 27 (g3)2 of
weight 12, the modular invariant j of weight 0.

11.3 Fourier expansion at infinity, modular forms,
and cusp (parabolic) forms

The fact that a modular function f is invariant by the translation τ →
τ + 1 means that it is periodic of period 1 and therefore can be expanded
in a Fourier series

f(τ) =
∑
n∈Z

cne
2iπnτ =

∑
n∈Z

cnq
n with q = e2iπτ

The variable q = e2iπτ uniformizes f at infinity. It is called the nome.
If we use this representation, the property of modularity f

(
− 1
τ

)
=

(−τ)k f(τ) imposes very strict constraints on the Fourier coefficients cn
and therefore modular functions generate very special series {cn}n∈Z.

For controlling the holomorphy of f at infinity one introduces two
restrictions for the general concept of a modular function of weight k.

Definition. f is called a modular form of weight k if f is holomorphic
at infinity, that is if its Fourier coefficients cn = 0 for n < 0.

Definition. Moreover f is called a parabolic modular form, or a cusp
form, if f vanishes at infinity, that is if c0 = 0 (then cn = 0 for n ≤ 0).

It is traditional to note Mk the space of modular forms of weight k,
and Sk ⊂Mk the space of cusp forms of weight k. Eisenstein series

Gk (τ) =
∑

(m,n)∈Z×Z−{0,0}

1

(mτ + n)k
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(the power k must be even (k = 2r) for if k is odd the (−m,−n) and
(m,n) terms cancel) are modular forms. The discriminant ∆ of elliptic
curves, ∆ (τ) = (g2 (τ))3−27 (g3 (τ))2 with g2 (τ) = 60G4 (τ) and g3 (τ) =
140G6 (τ), is a modular function of weight 12 which expands as

∆(τ) = q − 24q2 + 252q3 − 1472q4 + . . .

One can show that it is given by the infinite product

∆ (τ) = q
r=∞∏
r=1

(1− qr)24

It is therefore a cusp form ∆ ∈ S12. We note that ∆ (τ) = 0 exactly
for qr = 1, that is e2iπrτ = 1, that is rτ ∈ Z, that is τ ∈ Q, that is for
the rational points on the boundary of H (which are called cusp points).
∆ (τ) vanishes nowhere on H.

On the contrary, the modular invariant j of weight 0 expands as

j(τ) =
1

q
+ 744 + 196 884q + 21 493 760q2 + . . .

It has a pole at infinity and fails to be a modular form.
The fundamental importance of the Eisenstein series and the discrim-

inant is that they enables to determine the spaces Mk and Sk.
4

1. M0 ' C since an f which is SL(2,Z)-invariant and holomorphic on
H and at infinity is holomorphic on the quotient (H/SL(2,Z)) ∪
{∞} which is compact. f is therefore constant by Liouville theo-
rem.

2. Mk = 0 for k < 0 since if f 6= 0 ∈ Mk, then f 12 is of weight 12k,
∆−k is of weight −12k, and f 12∆−k ∈ M0 but is without constant
term. Therefore f = 0.

3. Mk = 0 for k odd since, if we take γ = −I, f (γ (τ)) = f (τ) =
−f (τ), and f ≡ 0.

4. Mk = 0 for k = 2.

5. For k even k > 2, Mk = CGk ⊕ Sk since Sk is of codimension 1 in
Mk and Gk has a constant term.

4We will see later that they are eigenvectors of the Hecke operators defined on the
spaces Mk and Sk.
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6. Sk ' Mk−12. Indeed if f ∈ Sk, f/∆ ∈ Mk−12. Since ∆ 6= 0, f/∆
(which is of weight k − 12) is holomorphic on H and, as cn = 0 for
n ≤ 0 for f and ∆, cn = 0 for n < 0 for f/∆ and f/∆ ∈ Mk−12.
Reciprocally, if g ∈ Mk−12 then g∆ ∈ Sk. Sk ' Mk−12 implies, via
(2), dim (Sk) = 0 for k < 12 and, via (5), dim (Mk) = 1 for k < 12.

It is therefore easy to compute the dimension of Mk: e.g. for k = 12,
via (6) and (1), dim (Sk) = dim (M0) = 1 and, via (5), dim (Mk) = 2.

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
dim (Mk) 1 0 0 0 1 0 1 0 1 0 1 0 2 0 1 0

Such dimensions imply a lot of deep arithmetical relations because every
time we can associate to d situations d modular forms of Mk and we have
d > dim (Mk), then, as was emphasized by Don Zagier,

“We get “for free” information – often highly non trivial –
relating these different situations.” (p. 240)

Moreover we will see that the Mk are spanned by modular forms whose
Fourier series have rational coefficients cn. As D. Zagier also explains:

“It is this phenomenon which is responsible for the richness of
the arithmetic applications of the theory of modular forms.”

We have seen that ∆ (τ) = (60G4 (τ))3 − 27 (140G6 (τ))2 . It is a
general fondamental fact:

Theorem. Every modular form can be expressed in a unique way as a
polynomial in G4 and G6.

11.4 L-functions of cusp forms

If f is a cusp form of weight k, f ∈ Sk, then f(τ) =
∑

n≥1 cnq
n with the

nome q = e2iπτ . We associate to f the L-function:

Lf (s) =
∑
n≥1

cn
ns

having the same coefficients. These L-functions encode a lot of arith-
metical information. They come essentially as Mellin transform of their
generating cusp form.
Paralleling the case of Riemann ς function for which the function

Λ(s) = ς(s)Γ
(s

2

)
π−

s
2
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was the Mellin transform of the theta function 1
2

(Θ(it)− 1), we introduce
the Mellin transform

Λf (s) =

∫ ∞
0

f (it) ts
ds

s

of the cusp form f on the positive imaginary axis and we compute

Λf (s) =
1

(2π)s
Γ(s)Lf (s)

The modular invariance of f and its good behavior at infinity imply
that the cn are bounded in norm by nk/2 and therefore Lf (s) is absolutely
convergent in the half-plane <(s) > k

2
+ 1.

As the Riemann ς function, the L-functions Lf (s) satisfy a functional
equation. It is the content of a deep theorem due to Hecke:

Hecke theorem. Lf (s) and Λf (s) are entire functions and Λf (s) satis-
fies the functional equation

Λf (s) = (−1)k/2Λf (k − s)

11.5 Hecke operators for SL (2,Z)

We have just seen that the L-functions Lf (s) of modular forms have a
behavior very similar to that of Riemann zeta function: they are Mellin
transforms of functions with SL (2,Z) symmetries, and they satisfy a
functional equation. But up to now, there exists a major difference: the
zeta function ς(s) is not only a series

∑
n≥1

1
ns

, it is also an Euler product∏
p∈P

1
1− 1

ps
and in that sense encodes information prime by prime. This

property is so important that it is natural to ask if and how it can be
generalized to Lf (s).

The problem is quite difficult. Hecke’s very beautiful idea was to solve
it in two steps:

1. find linear operators on the vector spaces Mk of modular forms
which satisfy the relations of an Euler product;

2. look at their eigenfunctions.

The simplest way of defining Hecke operator is to start with the free
group L generated by the lattices Λ of C (recall that it is the origin of the
SL (2,Z) action on the Poincaré half-plane H). If we consider a lattice Λ
and magnify it in the sublattice nΛ, there will exist intermediary lattices
Λ′ s.t. nΛ ⊆ Λ′ ⊆ Λ. In that case the larger torus C/nΛ projects onto
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the smaller one C/Λ′. We write [Λ : Λ′] = n. If {ω′1, ω′2} and {ω1, ω2} are
respective Z-basis of Λ′ and Λ we have(

ω′2
ω′1

)
=

(
a b
c d

)(
ω2

ω1

)
with

(
a b
c d

)
∈M(n) the set of integral matrices with determinant n.

SL (2,Z) acts on M(n) and decomposes it in orbits. We can choose

as representing elements for instance the matrices αi =

(
a b
0 d

)
with

ad = n, d ≥ 1, 0 ≤ b < d. There are ν (n) = σ1(n) =
∑
d|n
d of them and

we have

M(n) =

i=ν(n)⋃
i=1

SL (2,Z)αi

Hecke operators construct the sum of such Λ′:
Definition. The Hecke operator T (n) : L → L is the additive operator

associating to any lattice Λ the sum of the lattices Λ′ s.t. [Λ : Λ′] = n:

T (n) : L → L
Λ 7→ T (n) (Λ) =

∑
[Λ:Λ′]=n

Λ′

We have of course

T (n) =

i=ν(n)∑
i=1

αi (Λ)

It is easy to extend the definition of Hecke operators to modular
forms. Let us first consider homogeneous functions f̃ of degree −k on the
Λ: f̃ (αΛ) = α−kf̃ (Λ). We define

Tk(n)
(
f̃ (Λ)

)
= nk−1

∑
[Λ:Λ′]=n

f̃ (Λ′)

the factor nk−1 coming from homogeneity.
Modular functions f (τ) are related to f̃ (Λ) by f (τ) = f̃ (Λτ ) =

(ω1)k f̃ (Λ). Computations yield for the action of Hecke operators on
modular forms f (τ) ∈Mk, the following explicit frormulae:

Proposition. Let f (τ) ∈ Mk, f (τ) =
∑

n≥0 cnq
n, be a modular form

of weight k. Then Tk(m) (f (τ)) ∈Mk, Tk(m) (f (τ)) =
∑

n≥0 bnq
n with

b0 = c0σk−1(m) where σj(m) =
∑
d|m

dj

b1 = cm
bn =

∑
a|(n,m)

ak−1cnm
a2

for n > 1
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This result shows first that c0 = 0 ⇒ b0 = 0 and therefore if f (τ) ∈ Sk,
Tk(m) (f (τ)) ∈ Sk. On the other hand, if m = p is prime,

b0 = c0

b1 = cm
bn =

∑
a|(n,p)

ak−1cnp
a2

= cnp (only the term a = 1) for n > 1 if p - n

bn =
∑

a|(n,p)
ak−1cnp

a2
= cnp + pk−1cn

p
(the terms a = 1, a = p) for n > 1 if p | n

Hecke theorem. On Mk the Tk(m) constitue a commutative algebra
Tk generated by the Tk(p) and we have the product formulae

Tk(p
r)Tk(p) = Tk(p

r+1) + pk−1Tk(p
r−1)

Tk(m)Tk(n) =
∑

a|(n,m)

ak−1Tk
(
mn
a2

)
Tk(m)Tk(n) = Tk(mn) if (m,n) = 1

But these are precisely the equivalent for operators of the multiplicative
formulae for quadratic Euler products : aprap = apr+1 − dpapr−1 .

Now Hecke’s key idea is to look at simultaneous eigenvectors of the
Tk(m), which exist since the algebra Tk is commutative. These very
particular modular forms inherit very particular properties from those
of Hecke operators. Their coefficients cn are algebraic integers and sat-
isfy the multiplicative relation cnm = cncm if (m,n) = 1, the Dirichlet
L-function Lf (s) =

∑
n≥1

cn
ns

can be expressed as an Euler product, pos-
sesses an analytic continuation on H and satisfies a functional equation.

11.6 Petersson scalar product and Euler product of
cusp forms

We can be even more precise when we restrict Hecke operators to the
space of cusp forms Sk. Let τ = ρ + iσ. The measure dρdσ.

σ2 on H is
SL (2,Z)-invariant and, if R is a fundamental domain of SL (2,Z),

〈f, g〉 =

∫
R

f (τ) h̄ (τ)σk
dρdσ.

σ2

is a scalar product, called Petersson product, on Sk.
Petersson theorem. On Sk the Hecke operators Tk(n) are self-adjoint

for the Petersson scalar product 〈f, g〉.
Petersson theorem implies that Sk possesses an orthogonal basis of

simultaneous eigenvectors of the Hecke operators Tk(n). Let f (τ) ∈ Sk
be such a simultaneous eigenvector. For every n, Tk(n)f (τ) = λ(n)f (τ).
If f (τ) =

∑
r≥1 crq

r and Tk(n)f (τ) =
∑

r≥1 brq
r, we have therefore
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br = λ(n)cr for r ≥ 1. But we have seen that b1 = cn. So cn = λ(n)c1 and
br = λ(n)cr = λ(n)λ(r)c1. If we normalize f (τ) by setting c1 = 1, we get
cn = λ(n) and, as the λ(n) are eigenvalues of the Tk(n), the multiplicative
properties of Hecke operators become shared by the coefficients of the eigen
cusp form f (τ): 

cprcp = cpr+1 + pk−1cpr−1

cmcn =
∑

a|(n,m)

ak−1cmn
a2

cmcn = cmn if (m,n) = 1

and these multiplicative properties imply immediately that the Dirichlet
L-function Lf (s) of f can be expressed by a second order Euler product :

Lf (s) =
∏
p∈P

1

1− cp
ps

+ 1
p1−k+2s

which is of the standard form∏
p∈P

1

1− ap
ps
− dp

p2s

with ap = cp and dp = −pk−1. Lf (s) converges for <(s) > k
2

+ 1 and has
a single simple pole at s = k.

11.7 Fricke involution and generalization to the groups
Γ0(N)

All these results can be generalized to invariance groups smaller than
SL (2,Z). This corresponds to the introduction of the key concept of
level N of a modular function, the classical ones being of level 1. The
congruence subgroup Γ0(N) of SL (2,Z) is defined by a restriction on the
term c:

Γ0(N) =

{
γ =

(
a b
c d

)
∈ SL (2,Z) : c ≡ 0 modN

}
=

{(
a b
kN d

)
∈ SL (2,Z)

}

We note that

(
1 N
0 1

)
∈ Γ0(N). Of course Γ0(1) = SL (2,Z). Let

Γ0(1) =
⋃
j

βjΓ0(N), βj =

(
aj bj
cj dj

)
∈ SL (2,Z), be a decomposi-

tion of Γ0(1) in Γ0(N)-orbits. A fundamental domain RN of Γ0(N)
is RN =

⋃
j

β−1
j (R) where R is a fundamental domain of SL (2,Z),
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(
β−1
j =

(
dj −bj
−cj aj

))
, and the cusps of RN are the rational points

of the boundary of H image of the infinite point: β−1
j (∞) = −dj

cj
∈ Q.

1. A modular function of weight k and level N is an f (τ) satisfying
the invariance condition f (γ (τ)) = (cτ + d)k f(τ) ∀γ ∈ Γ0(N).

2. A modular function of weight k and level N is a modular form
f (τ) ∈Mk (N) if it is holomorphic not only at infinity but also at
the cusps.

3. A modular form of weight k and level N is a cusp form f (τ) ∈
Sk (N) if moreover it vanishes at infinity and at the cusps.

4. If f (τ) ∈ Mk (N), f (τ) is N -periodic (since γ =

(
1 N
0 1

)
∈

Γ0(N) and f (γ (τ)) = f (τ +N) = f(τ)) and can be developped at

infinity in a Fourier series f (γ (τ)) =
∑
n≥0

cnq
n with nome q = e

2iπτ
N .

If f (τ) ∈ Sk (N) we can associate to it by Mellin transform a Dirich-
let L-function Lf (s). But we must be careful since for N > 1 the in-

version τ → − 1
τ

of matrix α =

(
0 −1
1 0

)
is no longer in Γ0(N). But

we can use the transformation τ → − 1
Nτ

and the operator wN (f (τ)) =

N−
k
2 τ−kf

(
− 1
Nτ

)
wich leaves stable Mk (N) and Sk (N). As wN is an

involution, called Fricke involution, the spaces Mk (N) and Sk (N) split
into eigenspaces M±

k (N) and S±k (N) of the eigenvalues ±1. Then, Hecke
theorem can be generalized to eigenvectors of the Fricke involution:

Hecke theorem. If f (τ) ∈ S±k (N), its L-function is an entire function
and Λf (s) = N

s
2

1
(2π)s

Γ(s)Lf (s) satisfies the functional equation

Λf (s) = ±(−1)k/2Λf (k − s)

So we have weakened the concept of cusp form in imposing less sym-
metries, but at the same time we have strengthen it in imposing its
vanishing at its cusps and its “parity” relative to Fricke involution wN .
We want now to generalize also Hecke operators and Euler products. The
problem is rather subtle since N has prime factors p | N and we cannot
control easily the relation between wN and the Hecke operators Tk(p) for
p | N .
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11.8 Hecke operators for Γ0(N) and Euler products

For the expansions at infinity, we find essentially the same formulae as
before. We get also the same multiplicative recurrence formulae for p - N ,
but for p | N we get another formula which is purely multiplicative:

Proposition. If p | N , Tk(p
r) = Tk(p)

r.
Hence the generalization of Hecke theorem:

Generalized Hecke theorem. On Mk(N) the Tk(m) constitute a com-
mutative algebra Tk generated by the Tk(p) and

Tk(p
r)Tk(p) = Tk(p

r+1) + pk−1Tk(p
r−1) if p - N

Tk(p
r) = Tk(p)

r if p | N
Tk(m)Tk(n) =

∑
a|(n,m)

ak−1Tk
(
mn
a2

)
Tk(m)Tk(n) = Tk(mn) if (m,n) = 1

Petersson’s theorem can also be generalized, the scalar product being
defined now by integration on a fundamental domain RN of Γ0(N).

Petersson theorem. Hecke operator Tk(n) is self-adjoint on Sk (N) if
(n,N) = 1.

Let f (τ) ∈ Sk (N) be a cusp form of weight k and level N which is a
commun eigenvector of all the Tk(n). Due to Hecke theorem, its Dirichlet
L-function Lf (s) can be expressed by a second order Euler product but
with a first order part corresponding to the primes p dividing N :

Lf (s) =
∏
p∈P
p|N

1

1− cp
ps

∏
p∈P
p-N

1

1− cp
ps

+ 1
p1−k+2s

Lf (s) converges for <(s) > k
2

+ 1 and has a single simple pole at s = k.

11.9 New forms and Atkin-Lehner theorem

As we have already noticed, the main difficulty encountered with these
generalizations of the case SL (2,Z) to the case Γ0(N) concerns the con-
trol of the relation between wN and Tk(p) when p | N . It has been solved
by Atkin and Lehner with the concept of newform. Among the cusp
forms of level N , some come from a cusp form of sublevel N/r. They are
called “old” forms. Sk (N) is the orthogonal sum of the subspaces of old
and new (i.e. non old) forms: Sk (N) = Sold

k (N)⊕ Snew
k (N).

If f (τ) ∈ Snew
k (N) is a new form, everything is fine: f (τ) possesses

at the same time an Euler product and a functional equation.
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12 L-functions of elliptic curves and Eichler-

Shimura theory

12.1 Encoding geometrico-arithmetic information into
L-functions

ς and L-functions of eigenforms encode a lot of deep arithmetic informa-
tion. As was emphasized by Anthony Knapp,

“This is part of a general pattern in algebraic number theory
and algebraic geometry, that L functions are used to encode
information prime by prime and that properties of these L
functions are expected to yield deep insights into the original
problem being studied.”

We have just seen how to associate, via a Mellin transformation, to each
eigen cusp form an L-function satisfying a functional equation and ex-
pressible as an Euler product by means of Hecke operators.

We will now see how to associate to an elliptic curve E defined over Q
a L-function LE which counts the number of integer points of E mod Z.
Such LE

“encode geometric information, and deep properties of the
elliptic curve come out (partly conjecturally) as a consequence
of properties of these functions”.(Knapp)

And as for the zeta function:

“It is expected that deep arithmetic information is encoded
in the behavior of L(s, E) beyond the region of convergence”.

It is then very natural to try to compare these two kinds of L-
functions. The situation is perfectly described by A. Knapp:

“We have two kinds of L functions, the kind from cusp forms
that we understand very well and the kind from elliptic curves
that contains a great deal of information.”

Of course it would be a “miracle” that two L functions belonging to these
two completely different classes will be the same. But it is precisely such
an astonishing result which was proved by Eichler et Shimura for a set
of cusp forms which can be parametrized by what are called modular
curves X0(N) and are called for that modular elliptic curves. As Knapp
explains:
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“Two miracles occur in this construction. The first miracle is
that X0(N), E, and the mapping can be defined compatibly
over Q. (...) The second miracle is that the L function of E
matches the L function of the cusp form f .”

12.2 The L-function of an elliptic curve E

Let E be an elliptic curve defined over Q. It has an infinity of points over
C (but can have no points on Q). But if we reduce E mod p, its reduction
Ep will necessarily have a finite number of points Np = #Ep (Fp) over the
finite field Fp = Z/pZ. The most evident arithmetic data on E consists
therefore in combining these local data Np depending on primes p in
an Euler product. We must be cautious here since for p dividing the
discriminant ∆ of E, the reduction is “bad”, i.e. Ep is singular.

The numbers Np can be computed using the Frobenius morphism ϕ
of degree p which fixes the points of E modulo p that is the points of
Ep (Fp). The Frobenius morphism is defined on the algebraic closure Fp of
Fp as Frobp : x→ xp; it is the generator of the Galois group Gal

(
Fp/Fp

)
.

It acts on E by acting on the coordinates of the points of E.
We have the equivalence

x ∈ Ep (Fp)⇔ x ∈ Ker (1− ϕ)

and as # Ker (1− ϕ) = deg (1− ϕ) we have

Np = #Ep (Fp) = deg (1− ϕ)

For technical reasons on which we will return, it is better to use the
difference ap = p + 1 − Np. The good choice of an Euler product is the
following which defines the L-function LE(s) of the elliptic curve E:

LE(s) =
∏
p|∆

1

1− ap
ps

∏
p-∆

1

1− ap
ps

+ 1
p1−2s

We note the similarity with the L-function of a modular form of level ∆
and weight k = 0.

As 1 ≤ Np ≤ 2p + 1 (we count the point at infinity), |ap| ≤ p, and
LE(s) converges for <(s) > 2. In fact a theorem due to Hasse asserts
that |ap| ≤ 2

√
p and therefore LE(s) converges for <(s) > 3/2.

12.3 The modular curve X0 (N) and its Jacobian
J0 (N)

Let H be the completion of H at infinity and at the cusps, H = H ∪
Q ∪ {i∞}. The modular group SL2 (Z) and the congruence subgroups
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Γ0 (N) act on H. Let Y be the quotient H/Γ0 (N). One can construct a
well behaved compactification of Y , X0 (N). X0 (N) is called the modular
curve of level N and classifies pairs (Λ, C) of a lattice Λ and a cyclic
subgroup C of order N . For the lattice Λτ (τ ∈ H), Cτ is simply the
cyclic subgroup generated by 1/N .

Barry Mazur proved a beautiful theorem on the genus g of the mod-
ular curve X0 (N). For low genus he got:

genus g level N
0 1, . . . , 10, 12, 13, 16, 18, 25
1 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49
2 22, 23, 26, 28, 29, 31, 37, 50

Let g be the genus of the modular curve X0 (N) and let (c1, . . . , c2g)
be a Z-basis of its integral homology H1 (X0 (N) ,Z). Let (ω1, . . . , ωg) be
the dual C-basis of the cohomology group H1 (X0 (N) ,Z) and (f1, . . . , fg)
the associated basis of S2(N). One defines a map Φ from the modular
curve X0 (N) on Cg by

Φ (τ) =

{∫ τ

τ0

fj (z) dz

}
j=1,...,g

where τ 0 is a base point on X0 (N). Φ (τ) is well defined modulo the
lattice Λ (X0 (N)) generated over Z by the 2g points of Cg

uk =

{∫
ck

fj (z) dz

}
j=1,...,g

The Jacobian J0 (N) is the quotient Cg/Λ (X0 (N)).

12.4 Modular elliptic curves

The great success of Eichler and Shimura was to look at the possibility
of expressing LE(s) as an Lf (s) for a certain modular form f . The
good objects are Γ0 (N)-invariant holomorphic differentials f(z)dz on
the modular curve X0 (N). But for that f must be a cusp form of level
N and weight 2 for Γ0 (N). Let therefore f ∈ S2 (N). We integrate the
differential f(z)dz and get the function on H

F (τ) =

∫ τ

τ0

f(z)dz

where τ 0 is a base point in H. Let now γ ∈ Γ0 (N) . Since f(z)dz is
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Γ0 (N)-invariant, we have:

F (γ (τ)) =

∫ γ(τ)

τ0

f(z)dz =

∫ γ(τ0)

τ0

f(z)dz +

∫ γ(τ)

γ(τ0)

f(z)dz

=

∫ γ(τ0)

τ0

f(z)dz +

∫ τ

τ0

f(z)dz

= F (τ) + Φf (γ) with Φf (γ) =

∫ γ(τ0)

τ0

f(z)dz

Φf is a map Φf : Γ0 (N)→ C and we see that if its image Φf (Γ0 (N)) is
a lattice Λ in C then the primitive F (τ) becomes a map

F : X0 (N)→ E = C/Λ

which yields a parametrization of the elliptic curve E by the modular
curve X0 (N). In that case E is called a modular elliptic curve.

12.5 The Eichler-Shimura construction

Eichler-Shimura rather technical construction shows that if f is a new-
form (in the sense of Atkin and Lehner) then

1. Λ is a lattice in C;

2. X0 (N), E and F are defined over Q in a compatible way;

3. and the L-functions of the elliptic curve E and the cusp form f are
equal: LE(s) = Lf (s).

The construction is mediated by the Jacobian curve J0 (N) of the
modular curve X0 (N), the elliptic curve E being a quotient of its Jaco-
bian.

13 From Taniyama-Shimura-Weil to Fer-

mat: Ribet theorem.

We have just seen that in the case of a modular elliptic curve E parametrized
by a modular curve X0 (N) the Dirichlet L-function LE(s) encoding the
arithmetic properties of E shares all the good automorphy properties of
the L-function Lf (s) s.t. LE(s) = Lf (s). The Taniyama-Shimura-Weil
conjecture says essentially that every elliptic curve is modular.

Taniyama-Shimura-Weil conjecture. Every elliptic curve is isogenous
(that is a covering of finite degree) with a modular elliptic curve coming
from an X0 (N) and a f ∈ Snew

2 (N) by the Eichler-Shimura construction.
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A result due to Carayol says that in that case the level N must be
equal to the conductor NE of E.

We arrive now at the turning point of the whole Odyssea.
Theorem. Taniyama-Shimura-Weil conjecture implies Fermat

theorem.
Let al + bl + cl = 0 be an hypothetic solution of Fermat theorem for

a prime l ≥ 5 and a, b, c relatively prime non vanishing integers. We
consider the associated Frey elliptic curve E of equation

y2 = x
(
x− al

) (
x+ cl

)
We know that the discriminant is ∆ = 16(abc)2l and it can be shown
that the conductor is N =

∏
p|abc

p. Ribet proved that these values forbid

E to be modular.
The idea is to show that the level N can be reduced to the case N = 2

and then to use the fact that S2(2) = 0 which shows that a parametriza-
tion associated to a modular form f cannot exist. The reduction to level
2 is a consequent of a theorem of Ribet.

Ribet theorem. Let E be an elliptic curve defined over Q having
discriminant ∆ with prime decomposition ∆ =

∏
p|∆

pδp and conductor

N =
∏
p|∆

pfp . If E is a modular elliptic curve of level N associated to a

cusp form f ∈ S2(N), if l is a prime dividing the power δp of p in ∆ and
if fp = 1 (that is if p ‖ N in the sense p | N but p2 - N) then modulo l
the modular parametrization can be reduced to level N ′ = N/p mod l in
the sense that there exists a cusp form f ′ ∈ S2(N ′) s.t. the coefficients
of f and f ′ are equal modulo l: cn ≡ c′n mod l ∀n ≥ 1.

Let us apply Ribet theorem to the Frey curve. As a, b, c are relatively
primes, for p 6= 2 we have δp = 2l and fp = 1 and we can apply the
theorem. For p = 2 the situation is different since δp = 4 + 2l and l - δp
and the reduction of levels leads to N ′ = 2. So there exists f ′ ∈ S2(2)
such that cn ≡ c′n mod l ∀n ≥ 1. We apply the lemma:

Lemma. S2(2) = 0.
Indeed, in the N = 2 case, the modular curve X0(2) is of genus

g = 0 (it is a sphere) and there exist therefore no non trivial holomorphic
differential ω on X0(2) (the differential dz has a pole at infinity). As an
f ∈ S2(2) corresponds to an ω, S2(2) = 0. As S2(2) = 0, we get for n = 1
the congruence (c1 = 1) ≡ (c′n = 0) mod l which is clearly impossible and
TSW ⇒ Fermat. So under the TSW conjecture, the proof of Fermat
theorem amounts to the topological obstruction that a torus of genus 1
cannot be parametrized by a sphere of genus 0.
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14 Encoding information in Galois repre-

sentations

To prove the Tanyama-Shimura-Weil conjecture, Andrew Wiles used deep
works of Jean-Pierre Serre and Barry Mazur on a specific class Galois rep-
resentations naturally associated to elliptic curves. We meet here another
extraordinary example of encoding informations of a theory into another
theory. The arithmetic informations we will focus on are associated to
torsion points of elliptic curves.

14.1 Torsion points and Galois representations

Let E be an elliptic curve and consider its Jacobian J which is a complex
torus J = C/Λ. The torsion points of order N of E correspond in
J to those of the smaller lattice 1

N
Λ that is those satisfying Nx = 0.

Their set TN in J is the kernel of the scale magnification x → Nx,
TN = Ker (x→ Nx), and is isomorphic to Z

NZ ×
Z

NZ . So, through the
isomorphism E ' J , the torsion points of E constitute a group EN '

Z
NZ×

Z
NZ . If {ω1, ω2} is a Z-basis of Λ, {ω1/N, ω2/N} is a Z-basis of Λ/N

and if xi corresponds to ωi/N by the isomorphism, {x1, x2} is a Z-basis
of EN .

Suppose now that E is defined over a field k. We can consider the
extension k (EN) of the base field k defined by the adjunction of the
coordinates of the N -torsion points which are algebraic over k (look at
the formulae of division on E). If the characteristic of k doesn’t divide N
(we will have to use fields of characteristic l when we will work modulo
l), k (EN) is an algebraic Galois extension of k and the elements σ ∈
Gal (k (EN) /k) act on k (EN). In the Z-basis {x1, x2} of EN any such
automorphism σ of k (EN) over k is represented by a 2 × 2 matrix and
we get therefore a representation, called a Galois representation,

ρ : G = Gal (k (EN) /k)→ GL2

(
Z
NZ

)
More generally, if K is an extension of k containing k (EN), we get a
representation ρ : Gal (K/k) → GL2

( Z
NZ

)
. In particular, for the case

k = Q and K = Q we get a Galois representation

ρ : G = Gal
(
Q/Q

)
→ GL2

(
Z
NZ

)
and in the case N = p a prime, we get a Galois representation

ρE,p : G = Gal
(
Q/Q

)
→ GL2 (Fp)
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It is “continuous” in the sense it factorizes through the Galois group
Gal (K/Q) of a finite algebraic Galois extension K/Q.

The Galois group G = Gal
(
Q/Q

)
is one of the deepest object of

Arithmetics and a lot of work have been devoted to its comprehension.
There exist deep links between the Galois representations ρE,p of G =

Gal
(
Q/Q

)
and the L-functions. It is due to the remarkable following

theorem:
Theorem. Let E an elliptic curve defined over Q. Its Galois represen-

tation ρE,p satisfies the following properties:

1. Trace ρE,p (Frobq) ≡ q+ 1−#E (Fq) = aq mod p (this is the reason
why we use aq instead of #E (Fq) for counting the points of E mod
q).

2. Det ρE,p = εp where εp : G→ F×p is the cyclotomic character giving
the action of G on the pth roots of unity.

14.2 Modular representations and Deligne theorem

We have encode a lot of arithmetic informations on elliptic curves in
Galois representations ρE,p : Gal

(
Q/Q

)
→ GL2 (Fp). Now, due to a

fundamental work of Pierre Deligne, one can also associate such Galois
representations to modular forms. Hence the strategic idea of proving
TSW conjecture by proving that the ρE,p are modular.

Let Sk(N, ε) be the space of cusp forms of weight k, level N and
character ε. Hecke operators Tk (p) act on Sk(N, ε) and commute between
them. Let λ(p) be the eigenvalues of a common eigenform f of the Tk (p),
let R be the ring generated by the λ(p) and the ε (p) and let ∼: R→ Fp
be a morphism of R into the finite field Fp.

Deligne theorem. Under these hypotheses there exists a representation
ρf : G = Gal

(
Q/Q

)
→ GL2 (Fp) associated with f which is continuous,

semi-simple and unramified outside lN s.t.

1. Trace ρf (Frobp) = ãp ∀p - lN .

2. Det ρf (Frobp) = pk−1ε̃ (p).

3. Det ρf (c) = −1 where c is the complex conjugation (the character
Det ρf is odd).

15 Wiles side story

Andrew Wiles gave three lectures at the Isaac Newton Institute in Cam-
bridge the 21-23 June 1993 presenting his proof of the Taniyama-Shimura-

36



Weil conjecture. The proof was not complete as it stood but was com-
pleted in a joint work with Richard Taylor and sent by Wiles to colleagues
(including Faltings) on October 6, 1994. An excellent introduction to
Wiles work is the text of Rubin and Silverberg. We will use it as our
main reference.

15.1 Semi-stable modular lifting conjecture for p =
3, 5

Let E be an elliptic curve defined over Q and consider the Galois repre-
sentations yielded by its torsion points:

ρE,p : G = Gal
(
Q/Q

)
→ GL2 (Fp)

We have seen that Trace ρE,p (Frobq) ≡ q + 1 − #E (Fq) = aq mod p
for almost every prime q and Det ρE,p = εp : G → F×p (the cyclotomic
character giving the action of G on the pth roots of unity).

A first key idea of Wiles is to weaken TSW by considering it modulo
p and to relativize it to a single prime p. The transformed conjecture is
called the “semi-stable modular lifting conjecture”:

Semi-stable modular lifting conjecture (SSML). Suppose that E is
semi-stable (that is if E is singular mod p then E mod p is a node and
not a cusp) and that there exists a prime p ≥ 3 s.t.

(a) ρE,p is irreducible,

(b) E is modular but only mod p (where the ideal p lifts p in the ring of
integers Of of the extension Q (an) of Q by the algebraic integers
an), i.e. there exists an eigenform f ∈ S2 (N), f =

∑
n≥1

anq
n, satis-

fying aq ≡ q+ 1−#E (Fq) mod p (very approximative equality) for
almost every prime q,

then E is really modular, i.e. there exists an eigenform f ∈ S2 (N),
f =

∑
n≥1

anq
n, satisfying aq = q+ 1−#E (Fq) (exact equality) for almost

every prime q.
Wiles proof is based on the fact that the semi-stable modular lifting

conjecture for the first two primes p = 3, 5 is sufficient to prove the semi-
stable TSW conjecture, which is itself sufficient for FLT . The key reason
is that the group PGL2 (F3) is isomorphic to the symmetric group S4 of
permutations of 4 elements and that for this extremely special dihedral
case there exists a result of modularity.

Theorem. Semi-stable modular lifting conjecture for p = 3, 5⇒ semi-
stable TSW ⇒ FLT .
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Sketch of the proof. Let E be defined over Q and semi-stable and
suppose that the semi-stable modular lifting conjecture is true for p = 3.
Suppose first that the Galois representation ρE,3 is irreducible (hypoth-
esis (a)). Then E will be modular via the semi-stable modular lifting
conjecture if hypothesis (b) is verified. For proving (b) one relies upon
a fundamental theorem of Langlands and Tunnell concerning Galois rep-
resentation ρ of G = Gal

(
Q/Q

)
in GL2 (C) (and not in GL2 (Fp)). This

theorem is one of the few results constructing an eigen cusp form from a
Galois representation. To formulate it we need to define the congruence

group Γ1 (N) =

{
γ ∈ SL2 (Z) | γ ≡

(
1 ∗
0 1

)
modN

}
.

Langlands-Tunnell theorem. Let ρ : G = Gal
(
Q/Q

)
→ GL2 (C) be

a continuous irreducible representation with odd determinant Det ρ(c) =
−1 (c = complex conjugation). Suppose that the image ρ (G) is a sub-
group of S4 (fondamental hypothesis of diehedrality). Then there exist a
level N and an eigenform g ∈ S1 (Γ1 (N)), g =

∑
n≥1

bnq
n, s.t. for almost

every prime q one has bq = Trace ρ (Frobq).
To construct ρ in our case, we consider ρE,3 : G = Gal

(
Q/Q

)
→

GL2 (F3). It is irreducible by hypothesis. We use the key fact that
GL2 (F3) can be embedded in GL2 (C) through a well suited morphism
ψ which factorizes through GL2

(
Z
√
−2
)

and satisfies{
Trace (ψ(g)) = Trace (g) mod

(
1 +
√
−2
)

Det (ψ(g)) = Det (g) mod (3)

If

(
−1 1
−1 0

)
and

(
1 −1
1 1

)
are generators of GL2 (F3), we define ex-

plicitely ψ by ψ

((
−1 1
−1 0

))
=

(
−1 1
−1 0

)
and ψ

((
1 −1
1 1

))
=( √

−2 1
1 0

)
.One shows that ρ = ψ ◦ ρE,3 : G = Gal

(
Q/Q

)
→ GL2 (C)

is irreducible with odd determinant Det ρ(c) = −1 and that Im (ρ) ⊆
PGL2 (F3) ' S4. One can therefore apply Langlands-Tunnel. There ex-
ist a level N and an eigenform g ∈ S1 (Γ1 (N)), g =

∑
n≥1

bnq
n, s.t. for

almost every prime q one has bq = Trace ρ (Frobq). From g, one con-
structs then an eigenform f ∈ S2 (N) = S2 (Γ0 (N)) s.t. ∀n an ≡ bn
mod p, where p is the prime ideal of Q containing 1 +

√
−2. The congru-

ences show that the eigenform f satisfies (b) for the ideal p′ = p ∩ Of
and therefore E is modular.

Suppose now that the representation ρE,3 is reducible. If the repre-
sentation ρE,5 is also reducible then E is modular. Indeed, the group of

points of E over Q contains a cyclic subgroup of order 15 = 3.5 which
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is G-stable. But the pairs (E,C) are classified by the rational points of
the modular curve X0 (15). But X0 (15) has only 4 rational points and it
can be shown that they all correspond to modular curves.

We can therefore suppose that ρE,5 is irreducible. In that case, Wiles
method is to construct another auxiliary elliptic curve E ′ defined over Q
and semi-stable s.t.

1. ρE′,5 = ρE,5, and

2. ρE′,3 is irreducible.

Let us suppose that E ′ is constructed. According to the case explained
before, E ′ is modular. Let f ∈ S2 (N), f =

∑
n≥1

anq
n, be the associated

eigenform. For almost every prime q we have aq = q+ 1−#E ′ (Fq). But
q + 1 − #E ′ (Fq) ≡ Trace ρE′,5 (Frobq) mod 5. And, as ρE′,5 = ρE,5, we
have the congruence

Trace ρE′ ,5

(
Frob
q

)
= Trace ρE,5

(
Frob
q

)
≡ q + 1−#E (Fq) mod 5

and f satisfies therefore the condition (b) of the semi-stable modular
lifting conjecture for p = 5. We conclude that E is modular.

15.2 The construction of the auxiliary elliptic curve

At this point, the main difficulty is to construct the auxiliary elliptic
curve E ′. The sarting point is that elliptic curves E ′ satisfying ρE′,p =
ρE,p are classified by the rational points of the Riemann surface X(p)
(defined over Q) X(p) = H/Γ(p) where

Γ(p) = {γ ∈ SL2 (Z) | γ ≡ Id mod p}

is the subgroup of integral matrices of SL2 (Z) which are congruent to
the identity matrix modulo p. We will use again a topological argument,
namely that X(p) is of genus g = 0 for p ≤ 5. But when g = 0, if there
exists a rational point (which is the case here with E ′ = E) then there
exist an infinite number of rational points. One then shows:

Proposition. For an infinite number of rational points of X(5) ρE′,3 is
irreducible.

One uses the fact that if E ′ is a generic point (and therefore not
rational) of X(5) then its Galois group given by its p-torsion points is
“big” in the sense that the image of G = Gal

(
Q/Q

)
in GL2 (Fp) is

maximal (that is equal to GL2 (Fp)). But a theorem due to Hilbert,
called the irreducibility theorem, says that “many” specializations of a
generic point have the same Galois group and we can conclude.
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One shows next that E ′ can be chosen semi-stable. If the prime q 6= 5
semi-stability reads on E ′[5] and as E ′[5] = E[5] and E is semi-stable at
q by hypothesis, E ′ is also semi-stable at q. For q = 5 one choose an E ′

which is “close” to E for the p-adic metric and use the fact that semi-
stability is an open property. As E is semi-stable at 5 by hypothesis, E ′

is also semi-stable at 5.

15.3 Lifting to p-adic representations: from charac-
teristic p to characteristic 0

Up to now, we have considered only representations of G = Gal
(
Q/Q

)
into GL2 (Z/NZ) induced by the N -torsion points E [N ] ' Z

NZ ×
Z
NZ of

elliptic curves. We will now look at all the representations associated to
the successive powers pn of a prime p. Taking their projective limit, we
get a continuous representation in the algebra Zp of p-adic integers

ρE,p : G = Gal
(
Q/Q

)
→ GL2 (Zp)

which satisfies the properties:

1. Det ρE,p = εp (where εp is the cyclotomic character εp : G→ Z×p ),

2. for almost every prime q, Trace ρE,p (Frobq) = q + 1 − #E (Fq)
(exact equality).

(of course, through the quotient Zp → Fp, ρE,p returns ρE,p).
Once again, we will say that a p-adic representation

ρ : G = Gal
(
Q/Q

)
→ GL2 (Zp)

is modular if there exists an eigenform f ∈ S2 (N), f =
∑
n≥1

anq
n, s.t.

Trace ρ (Frobq) = aq for almost every prime q in a well suited extension
of Zp (for instance a completion Of,p for p ∩ Z =pZ). The semi-stable
modular lifting conjecture says essentially that, given E defined over Q
and semi-stable and p ≥ 3, if ρE,p is irreducible and modular then ρE,p is
modular. We see that this is a problem of lifting the modularity property
from the prime field Fp of characteristic p to the p-adic algebra Zp which
is the ring of integers of the local field Qp of characteristic 0.

We generalize the lifting problem to the case where we have a finite
algebraic extension K/k of k = Fp or of k and a Zp-algebra A Noetherian,
local, complete with residual field k . We start from a representations
ρ : G = Gal

(
Q/Q

)
→ GL2 (k) and we look for liftings ρ : G→ GL2 (A)
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making the following diagram commutative (i ◦ ρ = ρ⊗k k):

GL2 (A)
ρ

↗ ↓ i
G −→

ρ⊗kk
GL2

(
k
)

where i : A → k is a morphism and ρ ⊗k k extends the field of scalars
from k to k..

We use now the deep analogy between arithmetics and geometry link-
ing finite fields Fp and p-adic fields Qp: k is like a “point” and A like
a “germ of deformation” and therefore a lifting ρ → ρ is like to lift the
value of a fonction at a point to a germ of function near the point.

15.4 Deformation data and Barry Mazur conjec-
tures

We consider liftings satisfying constraints called “deformation data” by
Barry Mazur. A deformation data is a pair D = (Σ, t) where Σ is a
finite set of primes q outside of which representations are unramified
(which means that if q /∈ Σ then ρ (Iq) = 1, where Iq is the inertia
group of q, that is the subgroup of Gal (K/Q) constituted by the σ which
fix q and induce the identity on OK/q) and t is a set of properties of
representations ρ at p (to be “ordinary”, to be “flat”, etc.). Once again,
a representation ρ : G → GL2 (k) is called D-modular if there exists an
eigenform f ∈ S2 (N) and a prime ideal p over p (p | p) in Of s.t. the
representation ρf,p associated to f by the Eichler-Shimura construction
is a D-lifting of ρ.

Mazur conjecture 1. Let ρ : G → GL2 (k) be absolutely irreducible
(that is ρ ⊗k k is irreducible) and D-modular, then every D-lifting of ρ
to the integer ring O = A of a finite extension of Qp with residual field
k is modular.

Wiles theorem. Mazur 1⇒ Semi-stable modular lifting conjecture.
Indeed let E be an elliptic curve defined over Q and semi-stable which

satisfies the conditions (a) and (b) of the semi-stable modular lifting
conjecture for p and let ρ be the representation ρ = ρE,p. According
to hypothesis (a) ρ is irreducible. One shows that it is also absolutely
irreducible. The hypothesis (b) means that ρ is modular. Let D = (Σ, t)
be the deformation data defined by

Σ = {p} ∪ {q | E has bad reduction at q}

and t means “ordinary” if E has ordinary or bad reduction at q (ordi-
nary reduction means good reduction and E[q] has a subgroup of order
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q which is Iq-stable) and “flat” if E has supersingular reduction at q (su-
persingular reduction means good reduction and E[q] has no subgroup
of order q which is Iq-stable). One shows that ρE,p is a D-lifting of ρ and
that ρ is D-modular. Mazur 1 implies that ρE,p is modular and therefore
E is modular.

In a second stage, one reformulates the first Mazur conjecture in terms
of universal deformations for (D,O)-deformations

GL2 (A)
ρ

↗ ↓ i
G −→

ρ
GL2 (k)

where A is a local, Noetherian, complete O-algebra of residual field k, O
being the ring of integers of a finite extension of Qp.

Mazur-Ramakrishna theorem. There exists a universal (D,O)-lifting
ρR : G→ GL2 (R) of ρ, that is for every (D,O)-lifting ρ : G→ GL2 (A)
there exists one and only one morphism of algebras ϕρ : R→ A s.t. the
following diagram is commutative:

GL2 (A)
ρ

↗ ↓ ϕ∗ρ
G −→ GL2 (R)

||
ρR
↗ ↓ i

G −→
ρ

GL2 (k)

But if ρ is D-modular with an eigenform f and a prime ideal p of Of
s.t. ρf,p is a D-lifting of ρ and ρf,p⊗Of is a (D,O)-lifting of ρ then there
exists also a modular universal deformation in the following sense:

T1 The algebra A is a generalized Hecke algebra T.

T2 There exists a level N divisible only by “bad” primes q ∈ Σ and a
morphism j : T (N) → T from the Hecke algebra T (N) acting on
S2 (N) to T s.t. T is generated over O by the images j (Tq)of the
Hecke operators Tq for q /∈ Σ.

T3 There exists a (D,O)-lifting of ρ, ρT : G→ GL2 (T ), s.t.

Trace ρT

(
Frob
q

)
= j (Tq)∀q /∈ Σ.

T4 If ρ is a modular (D,O) -lifting of ρ to an A, then there exists one
and only one O-morphism ψρ : T → A s.t. the following diagram
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is commutative:
GL2 (T )

ρT
↗ ↓ ψ∗ρ

G −→
ρ

GL2 (R)

As ρT is a (D,O)-lifting of ρ, Mazur-Ramakrishna theorem implies
that there exists one and only one morphism of algebras ϕ : R → T s.t.
ρT = ϕ ◦ ρR. The map ϕ is surjective since

∀q /∈ Σ, ϕ

(
Trace ρR

(
Frob
q

))
= Trace ρT

(
Frob
q

)
= j (Tq)

and the j (Tq) generate T by (2).
Mazur introduced a second conjecture saying intuitively that parametriza-

tions of ordinary liftings and modular liftings are equivalent or that “uni-
versal” is equivalent to “modular universal”, which is clearly a translation
of the TSW conjecture in the context of universal deformations.

Mazur conjecture 2. ϕ : R→ T is an isomorphism.
Theorem. Mazur conjecture 2 implies Mazur conjecture 1.
Sketch of the proof. Let ρ : G → GL2 (k) be absolutely irreducible

and D-modular. If ρ is a D-lifting of ρ to A, we want to show that ρ is
modular. We first extend ρ and ρ toO and ρ becomes a (D,O)-lifting. Let
ψρ : R→ A be the morphism of algebras asserted by Mazur-Ramakrishna
theorem. If ϕ : R → T is an isomorphism we can consider the inverse
map ϕ−1 : T → R and the composed map ψ = ψρ ◦ ϕ−1 : T → A

ψ : T
ϕ−1

→ R
ψρ→ A

We deduce from (T3) that ψ (Tq) = Trace ρ (Frobq) for almost every
prime q. Shimura results imply then the existence of an eigenform f ∈
S2 (N), f =

∑
n≥1

anq
n, s.t. aq = Trace ρ (Frobq) = ψ (Tq) for almost every

prime q. But this implies that the representation ρ is modular.

15.5 Gorenstein rings and “cotangent spaces”

The problem is now to prove that ϕ : R → T is an isomorphism. The
idea is to bound the order of “tangent spaces” at a prime ideal of R in the
following sense. If ρ is D-modular, there exists an eigenform f ∈ S2 (N)
and a prime ideal p | p of Of such that ρf,p is a D-lifting of ρ. If Of ⊂ O,
ρf,p

⊗
Of
O is a (D,O)-lifting of ρ. As the Galois representation ρf,p

⊗
Of
O

is modular by construction, (T4) implies that there exists one and only
one morphism π : T → O s.t. π ◦ ρT = ρf,p

⊗
Of
O. Let pT = Ker (π)
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and pR = Ker (π ◦ ϕ) = ϕ−1 (pT ). (T2) and the fact that for almost
every prime q Trace ρf,p (Frobq) = aq imply that for almost every prime
q, π (Tq) = aq.

At this point Wiles uses a special property of the Hecke algebra T ,
namely to be a Gorenstein ring. This result due to by Barry Mazur means
that there exists a (non canonical) isomorphism of T -modules between
T and HomO (T,O) . The morphism π : T → O corresponds therefore to
an element ξ of T and, via π itself, to an element π (ξ) of the ring O:

HomO (T,O) →̃ T
π→ O

π 7→ ξ 7→ π (ξ)

Let η be the ideal (π (ξ)) of O (η is well defined idependently of the
isomorphism HomO (T,O) ' T ). Wiles gave a sufficient condition for
ϕ : R → T to be an isomorphism in terms of order of the “cotangent
space” pR/p

2
R.

Theorem (Wiles). If #
(

pR
p2
R

)
≤ #

(
O
η

)
is finite, then ϕ : R→ T is an

isomorphism.

As ϕ is onto, #
(

pR
p2
R

)
≥ #

(
pT
p2
T

)
. Wiles shows #

(
pT
p2
T

)
≥ #

(
O
η

)
and

therefore, if #
(

pR
p2
R

)
≤ #

(
O
η

)
we get the equalities

#

(
pR

p2
R

)
= #

(
pT

p2
T

)
= #

(
O
η

)
and ϕ induces an isomorphism of the “tangent spaces” of R and T at the
corresponding “points” pR and pT . Due to the properties of T (namely to
be a complete intersection over O), this “tangent isomorphism” implies
that ϕ is an isomorphism.

The last difficulty in the proof of the TSW conjecture is then to bound

the order #
(
O
η

)
. The new idea is to give a cohomological interpretation

of “tangent spaces” in terms of Selmer groups. It is the most technical
and difficult part of the proof.

15.6 Wiles own description of his proof

In his reference paper, Wiles summarizes the story of his proof. We will
quote this passage in its integrality.

“The following is an account of the origins of this work
and of the more specialized developments of the 1980’s that
affected it. I began working on these problems in the late
summer of 1986 immediately on learning of Ribet’s result.
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For several years I had been working on the Iwasawa con-
jecture for totally real fields and some applications of it. In
the process, I had been using and developing results on l-adic
representations associated to Hilbert modular forms. It was
therefore natural for me to consider the problem of modular-
ity from the point of view of l-adic representations. I began
with the assumption that the reduction of a given ordinary
l-adic representation was reducible and tried to prove under
this hypothesis that the representation itself would have to
be modular. I hoped rather naively that in this situation I
could apply the techniques of Iwasawa theory. Even more
optimistically I hoped that the case l = 2 would be tractable
as this would suffice for the study of the curves used by Frey.
From now on and in the main text, we write p for l because
of the connections with Iwasawa theory.

“After several months studying the 2-adic representation,
I made the first real breakthrough in realizing that I could
use the 3-adic representation instead: the Langlands-Tunnell
theorem meant that ρ3 , the mod 3 representation of any given
elliptic curve over Q, would necessarily be modular. This
enabled me to try inductively to prove that the GL2(Z/3nZ)
representation would be modular for each n. At this time I
considered only the ordinary case. This led quickly to the
study of H i(Gal(F∞/Q),Wf ) for i = 1 and 2, where F∞ is
the splitting field of the m-adic torsion on the Jacobian of
a suitable modular curve, m being the maximal ideal of a
Hecke ring associated to ρ3 and Wf the module associated to
a modular form f described in Chapter 1. More specifically,
I needed to compare this cohomology with the cohomology of
Gal(QΣ/Q) acting on the same module.

“I tried to apply some ideas from Iwasawa theory to this
problem. In my solution to the Iwasawa conjecture for totally
real fields, I had introduced a new technique in order to deal
with the trivial zeroes. It involved replacing the standard
Iwasawa theory method of considering the fields in the cyclo-
tomic Zp-extension by a similar analysis based on a choice of
infinitely many distinct primes qi ≡ 1 mod pni with ni →∞
as i→∞. Some aspects of this method suggested that an al-
ternative to the standard technique of Iwasawa theory, which
seemed problematic in the study of Wf , might be to make a
comparison between the cohomology groups as Σ varies but
with the field Q fixed. The new principle said roughly that
the unramified cohomology classes are trapped by the tamely
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ramified ones. After reading the paper [Gre1]5, I realized that
the duality theorems in Galois cohomology of Poitou and Tate
would be useful for this. The crucial extract from this latter
theory is in Section 2 of Chapter 1.

“In order to put ideas into practice I developed in a naive
form the techniques of the first two sections of Chapter 2.
This drew in particular on a detailed study of all the congru-
ences between f and other modular forms of differing levels,
a theory that had been initiated by Hida and Ribet. The out-
come was that I could estimate the first cohomology group
well under two assumptions, first that a certain subgroup of
the second cohomology group vanished and second that the
form f was chosen at the minimal level for m. These assump-
tions were much too restrictive to be really effective but at
least they pointed in the right direction. Some of these ar-
guments are to be found in the second section of Chapter 1
and some form the first weak approximation to the argument
in Chapter 3. At that time, however, I used auxiliary primes
q ≡ −1 mod p when varying Σ as the geometric techniques I
worked with did not apply in general for primes q ≡ 1 mod
p. (This was for much the same reason that the reduction of
level argument in [Ri1]6 is much more difficult when q ≡ 1
mod p.) In all this work I used the more general assumption
that ρp was modular rather than the assumption that p = −3.

“In the late 1980’s, I translated these ideas into ring-
theoretic language. A few years previously Hida had con-
structed some explicit one-parameter families of Galois rep-
resentations. In an attempt to understand this, Mazur had
been developing the language of deformations of Galois rep-
resentations. Moreover, Mazur realized that the universal de-
formation rings he found should be given by Hecke rings, at
least in certain special cases. This critical conjecture refined
the expectation that all ordinary liftings of modular repre-
sentations should be modular. In making the translation to
this ring-theoretic language I realized that the vanishing as-
sumption on the subgroup of H2 which I had needed should
be replaced by the stronger condition that the Hecke rings
were complete intersections. This fitted well with their be-
ing deformation rings where one could estimate the number of
generators and relations and so made the original assumption
more plausible.

5A paper of R. Greenberg on Iwasawa theory for p-adic representations.
61990 Ribet’s paper in the bibliography.
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“To be of use, the deformation theory required some de-
velopment. Apart from some special examples examined by
Boston and Mazur there had been little work on it. I checked
that one could make the appropriate adjustments to the the-
ory in order to describe deformation theories at the minimal
level. In the fall of 1989, I set Ramakrishna, then a student
of mine at Princeton, the task of proving the existence of a
deformation theory associated to representations arising from
finite flat group schemes over Zp. This was needed in order to
remove the restriction to the ordinary case. These develop-
ments are described in the first section of Chapter 1 although
the work of Ramakrishna was not completed until the fall
of 1991. For a long time the ring-theoretic version of the
problem, although more natural, did not look any simpler.
The usual methods of Iwasawa theory when translated into
the ring-theoretic language seemed to require unknown prin-
ciples of base change. One needed to know the exact relations
between the Hecke rings for different fields in the cyclotomic
Zp-extension of Q, and not just the relations up to torsion.

“The turning point in this and indeed in the whole proof
came in the spring of 1991. In searching for a clue from com-
mutative algebra I had been particularly struck some years
earlier by a paper of Kunz [Ku2]. I had already needed to
verify that the Hecke rings were Gorenstein in order to com-
pute the congruences developed in Chapter 2. This property
had first been proved by Mazur in the case of prime level and
his argument had already been extended by other authors
as the need arose. Kunz’s paper suggested the use of an in-
variant (the η-invariant of the appendix) which I saw could
be used to test for isomorphisms between Gorenstein rings.
A different invariant (the p/p2-invariant of the appendix) I
had already observed could be used to test for isomorphisms
between complete intersections. It was only on reading Sec-
tion 6 of [Ti2]7 that I learned that it followed from Tate’s
account of Grothendieck duality theory for complete inter-
sections that these two invariants were equal for such rings.
Not long afterwards I realized that, unlike though it seemed
at first, the equality of these invariants was actually a cri-
terion for a Gorenstein ring to be a complete intersection.
These arguments are given in the appendix.

“The impact of this result on the main problem was enor-

7Tilouine’s paper on Iwasawa’s theory and Hecke algebras.
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mous. Firstly, the relationship between the Hecke rings and
the deformation rings could be tested just using these two
invariants. In particular I could provide the inductive argu-
ment of section 3 of Chapter 2 to show that if all liftings with
restricted ramification are modular then all liftings are mod-
ular. This I had been trying to do for a long time but with-
out success until the breakthrough in commutative algebra.
Secondly, by means of a calculation of Hida summarized in
[Hi2] the main problem could be transformed into a problem
about class numbers of a type well-known in Iwasawa theory.
In particular, I could check this in the ordinary CM case8

using the recent theorems of Rubin and Kolyvagin. This is
the content of Chapter 4. Thirdly, it meant that for the first
time it could be verified that infinitely many j-invariants were
modular. Finally, it meant that I could focus on the minimal
level where the estimates given by me earlier Galois coho-
mology calculations looked more promising. Here I was also
using the work of Ribet and others on Serre’s conjecture (the
same work of Ribet that had linked Fermat’s Last Theorem
to modular forms in the first place) to know that there was a
minimal level.

“The class number problem was of a type well-known in
Iwasawa theory and in the ordinary case had already been
conjectured by Coates and Schmidt. However, the traditional
methods of Iwasawa theory did not seem quite sufficient in
this case and, as explained earlier, when translated into the
ring theoretic language seemed to require unknown princi-
ples of base change. So instead I developed further the idea
of using auxiliary primes to replace the change of field that
is used in Iwasawa theory. The Galois cohomology estimates
described in Chapter 3 were now much stronger, although at
that time I was still using primes q ≡ −1 mod p for the ar-
gument. The main difficulty was that although I knew how
the η-invariant changed as one passed to an auxiliary level
from the results of Chapter 2, I did not know how to esti-
mate the change in the p/p2-invariant precisely. However,
the method did give the right bound for the generalised class
group, or Selmer group as it often called in this context, un-
der the additional assumption that the minimal Hecke ring
was a complete intersection.

“I had earlier realized that ideally what I needed in this

8CM means “complex multiplication”.
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method of auxiliary primes was a replacement for the power
series ring construction one obtains in the more natural ap-
proach based on Iwasawa theory. In this more usual setting,
the projective limit of the Hecke rings for the varying fields
in a cyclotomic tower would be expected to be a power series
ring, at least if one assumed the vanishing of the η-invariant.
However, in the setting with auxiliary primes where one would
change the level but not the field, the natural limiting process
did not appear to be helpful, with the exception of the closely
related and very important construction of Hida [Hi1]. This
method of Hida often gave one step towards a power series
ring in the ordinary case. There were also tenuous hints of a
patching argument in Iwasawa theory ([Scho]9, [Wi4, §10]10),
but I searched without success for the key.

“Then, in August, 1991, I learned of a new construction of
Flach [Fl] and quickly became convinced that an extension of
his method was more plausible. Flach’s approach seemed to
be the first step towards the construction of an Euler system,
an approach which would give the precise upper bound for
the size of the Selmer group if it could be completed. By the
fall of 1992, I believed I had achieved this and begun then to
consider the remaining case where the mod 3 representation
was assumed reducible. For several months I tried simply to
repeat the methods using deformation rings and Hecke rings.
Then unexpectedly in May 1993, on reading of a construction
of twisted forms of modular curves in a paper of Mazur [Ma3],
I made a crucial and surprising breakthrough: I found the
argument using families of elliptic curves with a common ρ5

which is given in Chapter 5. Believing now that the proof
was complete, I sketched the whole theory in three lectures
in Cambridge, England on June 21-23. However, it became
clear to me in the fall of 1993 that the construction of the
Euler system used to extend Flach’s method was incomplete
and possibly flawed.

“Chapter 3 follows the original approach I had taken to
the problem of bounding the Selmer group but had aban-
doned on learning of Flach’s paper. Darmon encouraged me
in February, 1994, to explain the reduction to the complete
intersection property, as it gave a quick way to exhibit in-
finite families of modular j-invariants. In presenting it in a
lecture at Princeton, I made, almost unconsciously, critical

9Schoof’s paper on the minus class groups of abelian number fields.
10Wiles’ paper on the Iwasawa conjecture for totally real fields.
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switch to the special primes used in Chapter 3 as auxiliary
primes. I had only observed the existence and importance of
these primes in the fall of 1992 while trying to extend Flach’s
work. Previously, I had only used primes q ≡ −1 mod p as
auxiliary primes. In hindsight this change was crucial because
of a development due to de Shalit. As explained before, I had
realized earlier that Hida’s theory often provided one step to-
wards a power series ring at least in the ordinary case. At
the Cambridge conference de Shalit had explained to me that
for primes q ≡ 1 mod p he had obtained a version of Hida’s
results. But excerpt for explaining the complete intersection
argument in the lecture at Princeton, I still did not give any
thought to my initial approach, which I had put aside since
the summer of 1991, since I continued to believe that the
Euler system approach was the correct one.

“Meanwhile in January, 1994, R. Taylor had joined me in
the attempt to repair the Euler system argument. Then in
the spring of 1994, frustrated in the efforts to repair the Euler
system argument, I begun to work with Taylor on an attempt
to devise a new argument using p = 2. The attempt to use
p = 2 reached an impasse at the end of August. As Taylor
was still not convinced that the Euler system argument was
irreparable, I decided in September to take one last look at
my attempt to generalise Flach, if only to formulate more
precisely the obstruction. In doing this I came suddenly to
a marvelous revelation: I saw in a flash on September 19th,
1994, that de Shalit’s theory, if generalised, could be used
together with duality to glue the Hecke rings at suitable aux-
iliary levels into a power series ring. I had unexpectedly found
the missing key to my old abandoned approach. It was the
old idea of picking qi’s with qi ≡ 1 mod pni and ni → ∞
as i → ∞ that I used to achieve the limiting process. The
switch to the special primes of Chapter 3 had made all this
possible.

“After I communicated the argument to Taylor, we spent
the next few days making sure of the details. the full argu-
ment, together with the deduction of the complete intersec-
tion property, is given in [TW]11.

“In conclusion the key breakthrough in the proof had been
the realization in the spring of 1991 that the two invariants
introduced in the appendix could be used to relate the defor-

11Taylor-Wiles’ paper.
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mation rings and the Hecke rings. In effect the η-invariant
could be used to count Galois representations. The last step
after the June, 1993, announcement, though elusive, was but
the conclusion of a long process whose purpose was to replace,
in the ring-theoretic setting, the methods based on Iwasawa
theory by methods based on the use of auxiliary primes.

“One improvement that I have not included but which
might be used to simplify some of Chapter 2 is the observa-
tion of Lenstra that the criterion for Gorenstein rings to be
complete intersections can be extended to more general rings
which are finite and free as Zp-modules. Faltings has pointed
out an improvement, also not included, which simplifies the
argument in Chapter 3 and [TW]. This is however explained
in the appendix to [TW].”

16 Conclusion: the categorical complexity

of a proof

We have tried to present briefly the elements of Wiles’ proof of the
Taniyama-Shimura-Weil conjecture and we emphasized the fact that its
main steps consist in translating parts of theories into another theories in
order to make explicit and tractable some pieces of information. To say
that the proof is not “direct and elementary” but “indirect and complex”
is to say that the amount of such translational steps is very high. The
problem would be now to try to formalize this type of complexity.

I think that there would be a possibility working in the framework
of category theory. Indeed “translations” are in general functors from
one category into another and we can say that a “direct and elementary”
proof is a sequence of deductive steps (in the sense of proof theory) inside
a single category, while an “indirect and complex” proof is a proof using
also many functorial changes of category.
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Séminaire Bourbaki 694(1987-1988), Astérisque 161/162, 165-186,
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