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1 Introduction

1. Kant used to claim that

“philosophical knowledge is rational knowledge from concepts,
mathematical knowledge is rational knowledge from the con-
struction of concepts” (A713/ B741).

As I am rather Kantian, I consider that philosophy of mathematics has
to do with “rational knowledge from concepts” in mathematics, that is
with the constitutive role of concepts in mathematics.

2. But “concept” in what sense? Well, in the sense introduced by
Galois and deeply developped through Hilbert to Bourbaki. Galois said:
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“Il existe pour ces sortes d’équations un certain ordre de con-
sidérations métaphysiques qui planent sur les calculs et qui
souvent les rendent inutiles.”
“Sauter à pieds joints sur les calculs, grouper les opérations,
les classer suivant leur difficulté et non suivant leur forme,
telle est selon moi la mission des géomètres futurs.”

So, I use “concept” in the structural sense. In this perspective, philosophy
of mathematics has to do with the dialectic between, on the one hand,
logic and computations, and, on the other hand, structural concepts.

3. In mathematics, the context of justification is proof. It has been
tremendously investigated. But the context of discovery remains mys-
terious and is very poorly understood. I think that structural concepts
play a crucial role in it.

4. In this general perspective, my purpose is to investigate what could
mean “complex” in a conceptually complex proof. The only way is to look
at a relevant example.

At the end of August 1993 at the XIXth International Congress of
History of Science organized in Zaragoza by my colleague Jean Dhom-
bres, I gave a talk “Théorème de Fermat et courbes elliptiques modu-
laires” in a workshop organized by Marco Panza. It was about the re-
cent (quasi)-proof of the Taniyama-Shimura-Weil conjecture (TSW ) pre-
sented by Andrew Wiles in three lectures “Modular forms, elliptic curves,
and Galois representations” at the Isaac Newton Institute of Cambridge
on June 21-23, 1993 at the Conference “p-adic Galois representations,
Iwasawa theory, and the Tamagawa numbers of motives” organized by
John Coates.

But the proof, which, as you know, implies Fermat Last Theorem
(FLT) was not complete as it stood and contained a gap pointed out
by Nicholas Katz (who, by the way, was one of the unique colleagues
of Wiles at Princeton brougth into confidence), but was completed in a
joined work with Richard Taylor (September 19, 1994: “I’ve got it!” the
English version of Eureka!), sent to some colleagues (including Faltings)
on October 6, 1994 and submitted on October 25, 1994. Until 1997, I
attended the seminars of Serre and Oesterlé at the IHP and worked a lot
to understand this proof and I gave some seminar on it. I will use this
stuff today.

In a presentation of the proof, Ram Murty speaks of “Himalayan
peaks” that hold the “secrets” of such results. I will use this excellent
metaphor. The mathematical universe is like an Hymalayan mountain
chain surrounded by the plain of elementary mathematics. A proof is
like a path and a conjecture is like a peak or the top of a ridge to be
reached. Valleys are “natural” mono-theoretical paths. But, if the conjec-
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ture is “hard”, the peak cannot be reached along a valley starting from
scrach in the plain. One has to reach first internal “hanging valleys”
suspended over lower valleys. This corresponds to the abstraction of an
abstract structure. One has also to change valley using saddles, tunnels,
passes, canyons. One can also follow ridges between two valleys (two
theories). What is essential is that all these routes are internal to the
whole Himalayan chain, and it is here that Lautman’s concept of unity
of mathematics enters the stage (Lautman is my hero in philosophy of
mathematics). A conceptually complex proof is a very uneven, rough,
rugged multi-theoretical route.

It is this holistic nature of the proof which will be my main purpose. It
corresponds to the fact that, even if FLT is very simple in its formulation,
the deductive parts of its proof are widely scattered in the global unity of
the mathematical universe. As was emphasized by Israel Kleiner ([102],
p. 33):

“Behold the simplicity of the question and the complexity
of the answer! The problem belongs to number theory – a
question about positive integers. But what area does the
proof come from? It is unlikely one could give a satisfactory
answer, for the proof brings together many important areas –
a characteristic of recent mathematics.” (Our emphasis)

Wiles proof makes an extremely long detour to connect FLT with a
great conjecture on elliptic curves, the Taniyama-Shimura-Weil conjec-
ture (TSW ). As was emphasized by Barry Mazur ([28], p. 594):

“The conjecture of Shimura-Taniyama-Weil is a profoundly
unifying conjecture — its very statement hints that we may
have to look to diverse mathematical fields for insights or
tools that might leads to its resolution. (...) It does not
seem unatural to look to differential geometry for progress
with this conjecture, or to partial differential equations and
the study of the eigenvalue problem for elliptic operators,
or to the representation theory of reductive groups... . It
would be no surprise if ideas from the classical theory of one
complex variable and the Mellin transform were relevant, or
of Algebraic Geometry... . But perhaps one should also look
in the direction of Kac-Moody algebras, loop groups, or D-
modules, perhaps to ideas that have been, or will be, imported
from Physics... .” (Our emphasis).

In the same paper (p. 596), Mazur adds:
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“One of the mysteries of the Shimura-Taniyama-Weil conjec-
ture, and its constellation of equivalent paraphrases, is that
although it is indeniably a conjecture “about arithmetic”, it
can be phrased variously, so that: in one of its guises, one
thinks of it as being also deeply “about” integral transforms
in the theory of one complex variable; in another as being
also “about” geometry.”

All these quotations point out that the proof unfolds in the labyrinth
of many different theories.

In many cases, it is possible to formulate “translations” as functors
from one category to another (as in algebraic topology). One can say that
a “direct and simple” proof is a sequence of deductive steps inside a single
category, while an “indirect and complex” proof is a proof using many
functorial changes of category. But we need a lot of other conceptual
operations to reach a correct comprehension of what is travelling inside
the unity of mathematics. Albert Lautman was the first to investigate
this problem.

2 Kummer’s cyclotomic route

I will be extremely brief concerning the classical history of FLT. As you
know, the first great general result (“general” means here for an infinite
number of primes) is due to Kummer and results from the deep arithmetic
of cyclotomic fields.

2.1 FLT for regular primes

In a nutshell we can say that, during what could be called an “Eulerian”
period, many particular cases where successively proved by Sophie Ger-
main, Dirichlet, Legendre, Lamé, etc. using a fundamental property of
unique factorization of integers in prime factors in algebraic extensions
of Q. But this property is not always satisfied. In 1844 Ernst Kummer
was able to abstract the property for a prime l to be regular, proved FLT
for all regular primes and explained that the irregularity of primes was
the main obstruction to a natural algebraic proof.

As reminded by Henri Darmon, Fred Diamond and Richard Taylor in
their 1996 survey of Wiles [9]:

“The work of Ernst Eduard Kummer marked the beginning
of a new era in the study of Fermat’s Last Theorem. For the
first time, sophisticated concepts of algebraic number theory
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and the theory of L-functions were brought to bear on a ques-
tion that had until then been addressed only with elementary
methods. While he fell short of providing a complete solu-
tion, Kummer made substantial progress. He showed how
Fermat’s Last Theorem is intimately tied to deep questions
on class numbers of cyclotomic fields.” (p. 4)

It is for this proof that Kummer invented the concept of “ideal” num-
ber which will become with Dedekind the founding concept of ideal of
a ring (the basis of commutative algebra) and proved his outstanding
result that unique factorization in prime factors remains valid for “ideal”
numbers.

After this breakthrough, a lot of particular cases of irregular primes
were proved which enabled to prove FLT up to astronomical l; and a
lot of computational verifications were made. But no general proof was
found.

For l a prime number > 2, Kummer’s basic idea was to factorize
Fermat equation in the ring Z[ζ] where ζ is a primitive l-th root of unity
and to work in the cyclotomic extension Z[ζ] ⊂ Q(ζ). This route was
opened by Gauss for l = 3 (ζ = j). In Z[ζ] we have the factorization

xl − 1 =

j=l−1∏
j=0

(
x− ζj

)
,

the polynomial

Φ(x) = xl−1 + . . .+ x+ 1 =

j=l−1∏
j=1

(
x− ζj

)
(beware: j = 1)

is irreducible over Q and is the minimal polynomial defining ζ (Φ(ζ) = 0).
The conjugates of ζ are ζ2, . . . , ζ l−1, Q(ζ) is the splitting field of Φ(x) over
Q and Q(ζ)/Q is a Galois extension. Z[ζ] has for Z-base 1, ζ, . . . , ζ l−2.
We note that Φ(1) = l. The prime l is totally ramified in Z[ζ] (and in
fact is the only ramified prime). More precisely, (1− ζ) is a prime ideal
of Z[ζ], the quotient Z[ζ] is the finite field Fl and there exists some unit
u s.t.

l = u(1− ζ)l−1 (product of elements)

(l) = (1− ζ)l−1 (product of ideals)

since the uj = (1− ζj)/(1− ζ) = 1 + ζ + . . .+ ζj−1 are units.
Z[ζ] is a unique factorization domain for l ≤ 19 but not for l = 23.
More generally, let K/Q be an algebraic, finite, Galois extension of

degree d and L a prime ideal of OK , the ring of integers of K, over l (i.e.
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L ∩ Z = (l), notation L | l). Polynomials irreducible over Q can become
reducible and factorize over K. If (l) splits in OK as a product of primes

l =

j=r∏
j=1

L
ej
j with Lj | l

the exponents ej are called the degrees of ramification of the Lj in K/Q.
The extension K/Q is said unramified at Lj if ej = 1, and K/Q is said
unramified at l if it is unramified at any Lj | l, i.e. if all ej = 1. The
residue field OK/Lj is an algebraic extension of Fl of degree fj called the
residue degree and we have

∑j=r
j=1 ejfj = d.

A very useful geometric intuition is to think of the extension OK/Z
as a geometric projection of schemes Spec (OK) → Spec (Z) with fibers
over the primes l.

In Z[ζ] we get the decomposition

zl = xl + yl =

j=l−1∏
j=0

(
x+ ζjy

)
.

If, in Z[ζ], the unique factorization of an integer in prime factors (UF)
were valid, then we would use the fact that all the factors

(
x+ ζjy

)
are

l powers and we would conclude. But, in Z[ζ], UF is not necessarily true.
However, Kummer proved it remains valid for ideals.

To prove FLT in this context, we suppose that a non trivial solution
(a, b, c) exists and we look at its relations with the prime power l. In
the computations the property of “regularity” enters the stage to derive
impossible congruences.

The property of regularity is the following:
Intuitive definition. l is a regular prime if when a l-th power al of an

ideal a is principal a is already itself a principal ideal.
Technical definition. l is a regular prime if it doesn’t divide the class

number hl of the cyclotomic field Q(ζ), the class number hl “measuring”
the failure of UF in Z[ζ].

Characterization. In summer 1847, Kummer not only proved FLT for
l regular but, reinterpreting a formula of Dirichlet, gave a deep criterion
for a prime l to be regular. As emphasizes Edwards [16], this

“must be regarded as an extraordinary tour de force.”

Kummer theorem (1847, paper sent to Dirichlet). A prime l is regular
iff it doesn’t divide the numerators of any of the Bernouilli numbers
B2, B4, . . . , Bl−3. For instance 37 is an irregular prime since 37 divides
the numerator of B32.
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Introduced in 1713 in Ars Conjectandi, Bernouilli numbers are defined
by the series

x

ex − 1
=

n=∞∑
n=0

Bn
xn

n!

or by the recurrence relations B0 = 1, 1 + 2B1 = 0, 1 + 3B1 + 3B2 = 0,
1 + 4B1 + 6B2 + 4B3 = 0, 1 + 5B1 + 10B2 + 10B3 + 5B4 = 0

(n+ 1)Bn = −
k=n−1∑
k=0

(
n+ 1

k

)
Bk

where the binomial coefficients
(
n
k

)
= n!

(n−k)!k!
. We have B1 = −1

2
, B2 = 1

6
,

B3 = 0, B4 = − 1
30

, B5 = 0, B6 = 1
42

, B7 = 0, B8 = − 1
30

, VERIFIER
B8 etc. All the Bn for n > 1 odd vanish. A theorem due to Von Staudt
and Claussen asserts that the denominator Dn of the Bn are the product
of the primes such that (p− 1) | n. In fact, B2k +

∑
p s.t. p−1|2k

1
p

is a

rational integer and p | D2k iff (p− 1) | 2k and then pB2k ≡ −1 mod p.
Bernouilli numbers are ubiquitous in arithmetics and closely related

to the values of Riemmann Zeta function at even integers 2k and negative
odd integers 1− 2k (k > 0):

ζ(2k) = (−1)k−1 (2π)2k B2k

2(2k)!
, ζ(1− 2k) = −B2k

2k

For instance, in the case k = 1, we find ζ(2) =
∑

n≥1
1
n2 = 4π2

2.2
B2 = π2

6

and in the case k = 2, we find ζ(4) =
∑

n≥1
1
n4 = −16π4

2.24
B4 = π4

90
, values

Euler already knew.
Kummer theorem, which in that sense is deeply linked with Riemann

ζ function, follows from the fact that if K+ is the maximal real sub-
field Q

(
ζ + ζ

)
(ζ = ζ−1) of Q(ζ) and h+ the class number of K+ then

h = h+h−, h+ being computable in terms of special units (it is a diffi-
cult computation) and h−, called the relative class number, in terms of
Bernouilli numbers: l | h− iff l divides the numerators of the Bernouilli
numbers B2, B4, . . . , Bl−3. If l is regular l - h and therefore l - h−. Kum-
mer proved also that l | h+ implies l | h− and therefore l2 | h and also
l | h ⇔ l | h−. The Kummer-Vandiver conjecture claims that in every
case l - h+ and that l is irregular iff l | h−. It has been verified up to
l < 227 = 134 217 728 by David Harvey.

2.2 Further advances along the cyclotomic route

After Kummer’s intensive and extensive computations and theoretical
breakthrough, many people devoted a lot of works to the incredibily more
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complex irregular case, trying to deepen the knowledge of the structure
of cyclotomic fields (see Washington’s book [45] and Rosen’s survey [37]).

Kummer himself weakened his regularity condition and succeeded in
proving FLT for l < 100 because the irregular primes < 100, namely 37,
59, and 67 satisfy these weaker criteria. But such criteria are extremely
computation consuming. This point is particularly interesting at the
epistemological level. Kummer’s systematic computations for l regular
opened the way to abstract structural algebra à la Dedekind-Hilbert.
Tackling the irregular case has been computationally quite inaccessible
for a long time and one had to wait until the construction of the first
computers before resuming Kummer and Dirichlet’s style.

A particularly important work on the cyclotomic route were that of
Harry Schultz Vandiver (1882-1973) who proved in the late 1920s that
if the Bernouilli numbers Bi for i = 2, 4, . . . , l − 3 are not divisible by l3

and if l - h+
l then the second case of FLT is true for l.

The two “cases” of FLT are:

1. the first case is when l is supposed relatively prime to x, y, z.

2. the second case is when l is supposed to divide exactly one of x, y, z
(l cannot divide the three since they are relatively prime and cannot
divide two of them since it would then divide the three).

Vandiver proposed also a key conjecture:
Vandiver conjecture: l - h+

l .
Vandiver began to use such criteria “to test FLT computationnally”

(Rosen [37], p. 516) and, with the help of Emma and Dick Lehmer
for computations, proved FLT up to l ∼ 4.000 and, in Case I, for
l < 253.747.889.

In his beautifuls papers [6], [7], Leo Corry analyzed the computational
aspects of FLT after the introduction of computers. In 1949 John von
Neumann (1904–1957) constructed the first modern computer ENIAC.
As soon as 1952 E. and D. Lehmer used softwares implementing the
largest criteria for proving FLT, first with ENIAC, then at the NBS (Na-
tional Bureau of Standards) with SWAC (Standards Western Automatic
Computer), the fastest computer of the time (1.600 additions and 2.600
multiplications per second). They discovered new irregular primes such
as 389, 491, 613, and 619. To prove that 1693 is irregular took 25mn.
In 1955, to prove FLT for l < 4, 000 took hundred hours of SWAC. In
1978, Samuel Wagstaff succeeded up to l < 125, 000. In 1993, just before
Wiles’ proof, FLT was proved up to l ∼ 4 000 000 (Buhler) and, in Case
I, for l < 714 591 416 091 389 (Grandville).

But in spite of deep results of Stickelberger, Herbrand, etc. there
remain apparently intractable obstructions on the cyclotomic route for
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irregular primes. It seemed that such a purely algebraic strategy didn’t
succeed to break the problem. As was emphasized by Charles Daney ([8])

“Despite the great power and importance of Kummer’s ideal
theory, and the subtlety and sophistication of subsequent de-
velopments such as class field theory, attempts to prove Fer-
mat’s las theorem by purely algebraic methods have always
fallen short.”

We will see that Wiles’ proof uses a very strong “non abelian” gen-
eralization of the classical “abelian” class field theory.

3 Mordell-Weil-Faltings’ general algebraic

route

One can consider that the natural context of a proof of FLT is general
algebraic geometry since Fermat equation

xl + yl = zl

is the homegeneous equation of a projective plane curve F. The equation
has rational coefficients and FLT says that, for l ≥ 3, F has no rational
points. So FLT is a particular case of computing the cardinal |F (Q)|
of the set of rational points of a projective plane curve F defined over
Q. To solve the problem, one needs a deep knowledge of the arithmetic
properties of infinetely many types of projective plane curves since the
genus g of F is

g =
(l − 1)(l − 2)

2

and increases quadratically with the degree l. We note that for l ≥ 4
we have g ≥ 3. But of course it is extremely difficult to prove general
arithmetic theorems valid for infinitely many sorts of classes of curves.

A great achievement in this direction was the demonstration by Gerd
Faltings of the celebrated Mordell-Weil conjecture.

Theorem (Faltings). Let C be a smooth connected projective curve
of genus g defined over a number field K and let K ′/K be an algebraic
extension of the base field K.

1. If g = 0 (sphere) and C (K ′) 6= ∅, then C is isomorphic over K ′

to the projective line P1 and there exist infinitely many rational
points over K ′.
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2. If g = 1 (elliptic curve), either C (K ′) = ∅ (no rational points
over K ′) or C(K ′) is a finitely generated Z−module (Mordell-Weil
theorem, a deep generalization of Fermat descent method).

3. If g ≥ 2, C (K ′) is finite (Mordell-Weil conjecture, Faltings theo-
rem).

Faltings theorem is an extremely difficult one which won him the
Fields medal in 1986. But for FLT we need to go from “C (K ′) finite”
to “C (K ′) = ∅”. The difference is too huge. We need to take another
route.

4 Hellegouarch and Frey: opening the el-

liptic route

In 1969 Yves Hellegouarch introduced an “elliptic trick”. His idea was to
use an hypothetical solution al + bl + cl = 0 of Fermat equation (l prime
≥ 5, a, b, c 6= 0 pairwise relatively prime) as parameters for an elliptic
curve (EC) defined over Q, namely the curve E:

y2 = x
(
x− al

) (
x+ bl

)
= x3 +

(
bl − al

)
x2 − (ab)l x

Hellegouarch analyzed the l-torsion points of E (see below) and found
that the extension of Q by their coordinates had very strange ramification
properties (it is unramified outside 2 and l) (see below).

Seventeen years later, in 1986, Gerhard Frey refined this key idea
which led to Wiles-Taylor proof in 1994.

The EC E is regular. Indeed its equation is of the form

F (x, y) = y2 − f (x) = y2 − x
(
x− al

) (
x+ bl

)
= 0

and a singular point must satisfy ∂F
∂x

= ∂F
∂y

= 0. The condition ∂F
∂y

= 0

implies y = 0 and therefore f (x) = 0, while the condition ∂F
∂x

= 0
implies f ′ (x) = 0. So the x coordinate of a singular point must be a
multiple root of the cubic equation f (x) = 0, but this is impossible for
f (x) = x

(
x− al

) (
x+ bl

)
.

A Frey curve E is given in the Weierstrass form y2 = x3 + b2
4
x2 +

b4
2
x+ b6

4
. Its discriminant is given by the general formula

∆ = − (b2)2 b8 − 8 (b4)3 − 27 (b6)2 + 9b2b4b6

with 4b8 = b2b6 − (b4)2. We have b2 = 4
(
bl − al

)
, b4 = −2albl, b6 = 0,

b8 = −a2lb2l and therefore
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∆ = 16
(
alblcl

)2

E is regular, iff ∆ 6= 0 and it the case here.
But, if we reduce E mod p (which is possible since the coefficients of

E are in Z), the reduction Ep will be singular if p | ∆. But since a and b
are relatively prime, we cannot have at the same time al ≡ 0 mod p and
bl ≡ 0 mod p, and so we cannot have a triple root. The singularity of Ep
can only be a normal crossing of two branches (a node). ECs sharing this
property are called semi-simple.

Another extremely important invariant of an EC is its conductor N
which, according to Henri Darmon, is

“an arithmetically defined quantity that measures the Dio-
phantine complexity of the associated cubic equation.′′1

In the semi-simple case (where all singular reductions Ep are nodes) N
is rather simple: it is the square free the product

N =
∏
p|∆

p =
∏
p|abc

p .

As ∆ is proportional to
(
alblcl

)2
while N ≤ abc, we see that ∆ ≥ CN2l

for a constant C. This property is in fact quite “extraordinary” since
it violates the very plausible following Szpiro conjecture saying that the
discriminant is bounded by a fixed power of the conductor.

Szpiro Conjecture. If E is any elliptic curve defined over Q, for every
ε > 0 there exists a constant D s.t. |∆| < DN6+ε.

Another fondamental invariant of E is the modular invariant j defined
by

j =

(
(b2)2 − 24b4

)3

∆

Hellegouarch and Frey idea is that, as far as (a, b, c) is a solution
of Fermat equation and is supposed to be too exceptional to exist, the
associated curve E must also be in some sense “too exceptional” to exist.

We meet here a spectacular example of a translation strategy which
consists in coding solutions of a first equation into parameters of a second
object of a completely different nature and using the properties of the
second object for gathering informations on the solutions of the first
equation.

In the Himalayan metaphor, this type of methodological move consists
in finding a sort of “tunnel” or “canyon” between two valleys.

1Darmon [9], p. 1398.
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G. Frey was perfectly aware of the originality of his method. In his
paper he explains:

“In the following paper we want to relate conjectures about
solutions of the equation A − B = C in global fields with
conjectures about elliptic curves.”
“An overview over various conjectures and implications dis-
cussed in this paper (...) should show how ideas of many
mathematicians come together to find relations which could
give a new approach towards Fermat’s conjecture.” (Our em-
phasis.)

Frey’s “come together” is like Kleiner’s “bring together” and emphasizes
the holistic nature of the proof.

The advantages of Frey’s strategic “elliptic turn” are multifarious:

1. Whatever the degree l could be, we work always on an elliptic
curve and we shift therefore from the full universe of algebraic plane
curves xl + yl = zl to a single class of curves. It is a fantastic
reduction of diversity.

2. Elliptic curves are by far the best known of all curves and their fine
Diophantine and arithmetic structures can be investigated using
non elementary techniques from analytic number theory.

3. For elliptic curves a strong criterion of “normality” is available:
“good” elliptic curves are modular in the sense they can be parametrized
by modular curves.

4. A well known conjecture, the Taniyama-Shimura-Weil conjecture,
says in fact that every elliptic curve is modular.

From Frey’s idea one can derive a natural schema of proof for FLT:

1. Prove that Frey elliptic curves are not modular.

2. Prove the Taniyama-Shimura-Weil conjecture.

Step 1 was achieved by Kenneth Ribet who proved that Taniyama-
Shimura-Weil implies FLT and triggered a revolutionary challenge, and
step 2 by Andrew Wiles and Richard Taylor for the so called “semi-
stable” case, which is sufficient for FLT.

In such a perspective, FLT is no longer an isolated curiosity but a
consequence of general deep arithmetic constraints.
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5 The L-function of an elliptic curve

To define what is a modular elliptic curve E defined over Q, we have to
associate to E a L-function LE which counts in some sense the number
of integral points of E.

E has an infinity of points over C (but can have no points on Q).
However, if we reduce E mod p (p a prime number), its reduction Ep
will necessarily have a finite number of points Np = #Ep (Fp) over the
finite field Fp = Z/pZ. The most evident arithmetic data on E consists
therefore in combining these local data Np depending on the different
primes p.

This is a general idea. Any EC (more generally any algebraic variety)
defined over Q can be interpreted as an EC with points in Q, in algebraic
number fields K, in Q ⊂ K ⊂ Q, R, C, Fp, Fpn , Fp.

The L-function LE of E is defined as an Euler product, that is a
product of one factor for each p. We must be cautious since for p dividing
the discriminant ∆ of E, the reduction is “bad”, i.e. Ep is singular.

For technical reasons (see below), it is better to use the difference
ap = p + 1 − Np. In the good reduction case (where Ep is itself an EC)
we can generalize the counting to the finite fields Fpn and show that the
apn are determined by the ap via the formula

1

1− ap
ps

+ 1
p2s−1

= 1 +
ap
ps

+
ap2

p2s
+ · · ·

In the bas reduction case, we must use (1− app−s)−1. So, the good choice
of an Euler product is the following which defines the L-function LE(s)
of the elliptic curve E:

LE(s) =
∏
p|∆

1

1− ap
ps

∏
p-∆

1

1− ap
ps

+ 1
p2s−1

As 1 ≤ Np ≤ 2p+1 (we count the point at infinity), then |ap| ≤ p, and
therefore LE(s) converges for <(s) > 2. In fact, a theorem due to Hasse
asserts that |ap| ≤ 2

√
p and therefore LE(s) converges for <(s) > 3/2.

6 Riemann’s ζ-function and Dirichlet’s L-

functions

To understand the relevance of the L-functions LE, we have to come back
to Riemann’s ζ-function.

The zeta function ζ(s) encodes deep arithmetic properties in analytic
structures. Its initial definition is extremely simple and led to a lot of

14



computations at Euler time:

ζ(s) =
∑
n≥1

1

ns

which is a series absolutely convergent for integral exponents s > 1.
Euler already proved ζ(2) = π2/6 and ζ(4) = π4/90. A trivial expansion
shows that, in the convergence domain, the sum is equal to an infinite
Euler product containing a factor for each prime p (we note P the set of
primes):

ζ(s) =
∏
p∈P

(
1 +

1

ps
+ . . .

1

pms
+ . . .

)
=
∏
p∈P

1

1− 1
ps

.

The zeta function is a symbolic expression associated to the distribu-
tion of primes, which is well known to have a very mysterious structure.
Its fantastic strength as a tool comes from the fact that it can be extended
by analytic continuation to the complex plane. First s can be extended
to real s > 1, secondly s can be extended to complex numbers s of real
part <(s) > 1, and thirdly ζ(s) can be extended by analytic continuation
to a meromorphic function on the entire complex plane C with a pole at
s = 1.

Dirichlet’s L-functions generalize ζ(s). They have the general form∑
n≥1

an
ns

and under some conditions on the an can be factorized in Euler products∏
p∈P

(
1 +

ap
ps

+ . . .
apm

pms
+ . . .

)

1. The condition is of course that the coefficients an are multiplicative
in the sense that a1 = 1 and, if n =

∏
prii , an =

∏
aprii .

2. Moreover if the an are strictly multiplicative in the sense that apm =
(ap)

m then the series can be factorized in a first degree (or linear)
Euler product ∏

p∈P

1

1− ap
ps

.

3. If a1 = 1 and if for every prime p there exists an integer dp s.t.

apm = apapm−1 + dpapm−2

15



then the series can be factorized in a second degree (or quadratic)
Euler product ∏

p∈P

1

1− ap
ps
− dp

p2s

The most important examples of Dirichlet series are given by Dirichlet
L-functions where the an are the values χ(n) of a character modm, that
is of a multiplicative morphism

χ : (Z/mZ)∗ → C

Lχ =
∑
n≥1

χ(n)

ns

As χ is multiplicative, the an are strictly multiplicative and the series
can be factorized in a first degree Euler product. The theory of the zeta
function can be straightforwardly generalized (theta function, automor-
phy symmetries, lambda function, functional equation).

7 Modularity

7.1 General definition

We have defined L-functions LE of EC. We will now define a completely
different class of L-functions Lf associated to what are called modular
forms. By construction, the Lf have extremely deep arithmetic proper-
ties. An EC curve is said modular if there exists a “good” f s.t. LE = Lf .
This implies that there exists, associated to f , an analytic map

F : X0 (N)→ E

which yields a parametrization of the elliptic curve E by the modular
curve X0 (N) (see below).

By definition, modular EC have strong arithmetic properties and
therefore to say that all EC are modular is to say that in spite of the
strong irregularity of the distribution of primes, there are highly non
trivial constraints and that such constraints imply FLT.

We have to define f , Lf and X0 (N).

7.2 EC as complex tori

As cubic plane projective curves, EC are commutative algebraic groups.
Let P and Q be two points of E. As the equation is cubic, the line PQ
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intersects E in a third point R. The group law is then defined by setting
P +Q+R = 0.

A great discovery (Abel, Jacobi, up to Riemann) is that they are iso-
morphic to their Jacobian, which a complex torus. There is a completely
different way of looking at elliptic curves, the equivalence of the two per-
spectives being one of the greatest achievements of mathematics in the
first half of the XIXth century (Abel, Jacobi, etc.). It belongs to another
theory, namely the theory of analytic complex functions. The problem
is to study doubly periodic analytic functions on the complex plane C.
Let (ω1, ω2) be the two periods. We look for analytic functions f(z) such
that f(z +mω1 + nω2) = f(z) for all m,n ∈ Z. As ω1 and ω2 cannot be
colinear, Im (ω1/ω2) 6= 0 and changing eventually a sign we can suppose
(ω1/ω2) > 0. Let Λ be the lattice {mω1 + nω2}m,n∈Z in C and E the
quotient space E = C/Λ; E is a complex torus and f is defined on E. f
is called an elliptic function. E being compact, f cannot be holomorphic
without being constant according to Liouville theorem; f can only be a
meromorphic function if it is not constant.

Let E = Ecub a regular cubic. Topologically it is a torus and it is
endowed with a complex structure making it a compact Riemann surface.
Let γ1 and γ2 two loops corresponding to a parallel and a meridian of E
(they constitute a Z-basis of the first integral homology group H1(E,Z)).
Up to a factor, there exists a single holomorphic 1-form ω on E. Its
periods ωi =

∫
γi
ω generate a lattice Λ in C and we can consider the

torus Etor = C/Λ which is called the Jacobian of E. If a0 is a base point
in E, the integration of the 1-form ω defines a map

Φ : Ecub → Etor

a 7→
∫ a
a0
ω

(the map is well defined since two pathes from a0 to a differ by a Z-linear
combination of the γi and the values of ω differ by a point of the lattice
Λ).

Theorem. Φ is an isomorphism between Ecub and Etor.
This is the beginning of the great story of Abelian varieties.
In is in this context, where algebraic structures are translated and

coded in analytic ones, that one can develop an extremely deep theory
of arithmetic properties of elliptic curves. Its “deepness” comes from the
analytic coding of arithmetics.

7.3 SL(2,Z) action

We consider now the representation of elliptic curves as complex tori
E = C/Λ with Λ a lattice {mω1 + nω2}m,n∈Z in C with Z-basis {ω1, ω2}.
If τ = ω2/ω1, we can suppose Im (τ) > 0, that is τ ∈ H where H
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is the Poincaré upper half complex plane. To correlate univocally E
and its “module” τ we must look at the transformation of τ when we

change the Z-basis of Λ. Let {ω′2, ω′1} another Z-basis. We have

(
ω′2
ω′1

)
=(

a b
c d

)(
ω2

ω1

)
with γ =

(
a b
c d

)
an integral matrix. But γ must

be inversible and its inverse must therefore be also an integral matrix,
so Det (γ) = ad − bc = 1 and γ ∈ SL(2,Z). γ acts on τ via Möbius
transformations:

γ (τ) =
aτ + b

cτ + d
.

The EC defined by {1, τ} is denoted Λτ .

7.4 Modular functions for SL(2,Z)

The concept of modular form arises naturally when we consider holomor-
phic SL(2,Z)-invariant differentials on the Poincaré half-plane H. Let
f(τ)dτ be a 1-form on H with f an holomorphic function and consider
f(τ ′)dτ ′ with τ ′ = γ (τ). We have

f(τ ′)dτ ′ = f

(
aτ + b

cτ + d

)
(cτ + d) a− (aτ + b) c

(cτ + d)2 dτ

= f

(
aτ + b

cτ + d

)
1

(cτ + d)2dτ since ad− bc = 1

We see that in order to get the invariance f(τ)dτ = f(τ ′)dτ ′ we need
f
(
aτ+b
cτ+d

)
1

(cτ+d)2
= f(τ), i.e.

f (γ (τ)) = (cτ + d)2 f(τ) .

Hence the general definition:
Definition. An holomorphic function on H is a modular function of

weight k if f (γ (τ)) = (cτ + d)k f(τ) for every γ ∈ SL(2,Z).
We note that the definition implies f = 0 for odd weights since −I ∈

SL(2,Z) and if k is odd

f(−Iτ) = f

(
−τ
−1

)
= f(τ) = (−1)k f(τ) = −f(τ)

The weight 0 means that the function f is SL(2,Z)-invariant. The weight
2 means that the 1-form fdz is SL(2,Z)-invariant.

To be modular, f has only to be modular on generators of SL(2,Z),

two generators being the translation T =

(
1 1
0 1

)
acting by τ → τ + 1
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and the inversion S =

(
0 1
−1 0

)
acting by τ → −1/τ . Therefore f is

modular of weight k iff {
f (τ + 1) = f(τ)

f
(
− 1
τ

)
= (−τ)k f(τ)

These are automorphy properties, where.“automorphy” means invari-
ance of a function f(τ) defined on the Poincaré plane H relatively to a
countable subgroup of the group acting on H by homographies (also
called Möbius transformations) γ(τ) = aτ+b

cτ+d
.

7.5 Fourier expansion at infinity, modular forms,
and cusp forms

The fact that a modular function f is invariant by the translation τ →
τ + 1 means that it is periodic of period 1 and therefore can be expanded
into a Fourier series

f(τ) =
∑
n∈Z

cne
2iπnτ =

∑
n∈Z

cnκ
n with κ = e2iπτ

The variable κ = e2iπτ is called the nome (and is traditionally denoted
by q). It is a mapping H → D − {0}, τ 7→ κ = e2iπτ which uniformizes
H at infinity in the sense that, if τ = x+ iy, κ = e2iπxe−2πy −→

y→∞
0. The

boundary y = 0 of H maps cyclically on the boundary S1= ∂D of D.
If we use this representation, the second property of modularity

f

(
−1

τ

)
= (−τ)k f(τ)

imposes very strict constraints on the Fourier coefficients cn and therefore
modular functions generate very special series {cn}n∈Z.

For controlling the holomorphy of f at infinity one introduces two
restrictions on the general concept of a modular function of weight k.

Definition. f is called a modular form of weight k if f is holomorphic
at infinity, that is if its Fourier coefficients cn = 0 for n < 0.

Definition. Moreover f is called a cusp form, if f vanishes at infinity,
that is if c0 = 0 (then cn = 0 for n ≤ 0).

It is traditional to note Mk the space of modular forms of weight k,
and Sk ⊂Mk the space of cusp forms of weight k.
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7.6 L-functions of cusp forms

If f is a cusp form of weight k, i.e. f ∈ Sk, then f(τ) =
∑

n≥1 cnκ
n with

the nome κ = e2iπτ . We associate to f the L-function:

Lf (s) =
∑
n≥1

cn
ns

having the same coefficients. These L-functions encode a lot of arith-
metical information. They come essentially as Mellin transform of their
generating cusp form.

The Mellin transform was introduced as a fundamental link between
Riemann’s ζ-function and the Θ-function having strong automorphy prop-
erties. It implies the fundamental functional equation satisfied by the
ζ-function.

The theta function Θ(τ) is defined on the half plane H as the series

Θ(τ) =
∑
n∈Z

ein
2πτ = 1 + 2

∑
n≥1

ein
2πτ

=(τ) > 0 (i.e. τ ∈ H) is necessary to warrant the convergence of
e−n

2π=(τ). Θ(τ) is a modular form of level 2 and weight 1
2
. Its auto-

morphic symmetries are

1. Symmetry under translation: Θ(τ+2) = Θ(τ) (trivial since e2iπ = 1
implies ein

2π(τ+2) = ein
2πτ ).

2. Symmetry under inversion: Θ(−1
τ

) =
(
τ
i

) 1
2 Θ(τ) (weight 1

2
, proof

from Poisson formula).

Now, if f : R+ → C is a complex valued function defined on the
positive reals, its Mellin transform g(s) is defined by the formula:

g(s) =

∫
R+

f(t)ts
dt

t

Let us compute the Mellin transform of Θ(it) or more precisely, using
the formula Θ(τ) = 1 + 2Θ̃(τ), of Θ̃(it) = 1

2
(Θ(it)− 1):

Λ(s) =
1

2
g
(s

2

)
=

1

2

∫ ∞
0

(Θ(it)− 1) t
s
2
dt

t
=
∑
n≥1

∫ ∞
0

e−n
2πtt

s
2
dt

t

In each integral we make the change of variable x = n2πt. The integral
becomes:

n−sπ−
s
2

∫ ∞
0

e−xx
s
2
−1dx
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But
∫∞

0
e−xx

s
2
−1dx = Γ

(
s
2

)
where Γ (s) =

∫∞
0
e−xxs−1dx is the gamma

function, and therefore

Λ(s) = π−
s
2 Γ
(s

2

)(∑
n≥1

1

ns

)
= ζ(s)Γ

(s
2

)
π−

s
2

This remarkable expression enables to use the automorphic symme-
tries of the theta function to derive a functional equation satisfied by the
lambda function, and therefore by the zeta function. Indeed, let us write
Λ(s) =

∫∞
0

=
∫ 1

0
+
∫∞

1
and use the change of variable t = 1

u
in the first

integral. Since i
u

= − 1
iu

and

Θ

(
i

u

)
= Θ

(
− 1

iu

)
=

(
iu

i

) 1
2

Θ (iu) = u
1
2 Θ (iu)

due to the symmetry of Θ under inversion, we verify that the
∫ 1

0
part of

Λ(s) is equal to the
∫∞

1
part of Λ(1− s) and vice-versa and therefore the

lambda function satisfies the functional equation

Λ(s) = Λ(1− s)

As ζ(s) is well defined for <(s) > 1, it is also well defined, via the
functional equation of Λ, for <(s) < 0, the difference between the two
domains coming from the difference of behavior of the gamma function
Γ.

We can easily extend ζ(s) to the domain <(s) > 0 using the fact that
ζ(s) has a pole of order 1 at s = 1 and computing ζ(s) as

ζ(s) =
1

s− 1
+ · · ·

Λ(s) being now define on the half plane <(s) > 0, the functional equation
can be interpreted as a symmetry relative to the line <(s) = 1

2
, hence

the major role of this line which is called the critical line of ζ(s).
Paralleling the case of Riemann ζ function for which the function

Λ(s) = ζ(s)Γ
(s

2

)
π−

s
2

was the Mellin transform of the theta function 1
2

(Θ(it)− 1), we introduce
the Mellin transform

Λf (s) =

∫ ∞
0

f (it) ts
ds

s

of the cusp form f on the positive imaginary axis and we compute

Λf (s) =
1

(2π)s
Γ(s)Lf (s)
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The modular invariance of f and its good behavior at infinity imply
that the cn are bounded in norm by nk/2 and therefore Lf (s) is absolutely
convergent in the half-plane <(s) > k

2
+ 1.

As the Riemann ζ function, the L-functions Lf (s) satisfy a functional
equation. It is the content of a deep theorem due to Hecke:

Hecke theorem. Lf (s) and Λf (s) are entire functions and Λf (s) satis-
fies the functional equation

Λf (s) = (−1)k/2Λf (k − s)

7.7 The modular curve X0 (N)

We need to introduce now the modular curves X0 (N) of different levels
N . For N = 1, X0 (1) is the compactification of the quotient H/SL(2,Z)
of H by the modular group SL(2,Z), i.e. of its standard fondamental
domain R. It is well known that R is the domain of H defined by −2 ≤
< (τ) < 2 and |τ | > 1. It contains on its boundary the 3 remarkable
points i = ei

π
2 , ζ3 = e2iπ

3 = ρ2, and ζ3 + 1 = −ζ2
3 = ρ = ei

π
3 .

It can be shown that the field of meromorphic fonctions K (X0 (N))
is generated by the modular invariant j.

The modular curve of level N , X0 (N), classifies pairs (Λ, C) of a
lattice Λ and a cyclic subgroup C of order N , that is a N -torsion point
x (Nx = 0). For the lattice Λτ = Z ⊕ τZ (τ ∈ H) of basis {1, τ}, Cτ is
simply the cyclic subgroup generated by 1/N . For N = 1, C is reduced
to the origin 0 (1x = x = 0).

Let g (N) be the genus of X0 (N). Barry Mazur proved a beautiful
theorem on g (N). For low genus he got:

genus g level N
0 1, . . . , 10, 12, 13, 16, 18, 25
1 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49
2 22, 23, 26, 28, 29, 31, 37, 50

X0 (N) is intimately associated to the congruence groups Γ0(N) which
are smaller than SL (2,Z). This corresponds to the introduction of the
key concept of level N of a modular function, the classical ones being
of level 1. The congruence subgroup Γ0(N) of SL (2,Z) is defined by a
restriction on the term c:

Γ0(N) =

{
γ =

(
a b
c d

)
∈ SL (2,Z) : c ≡ 0 modN

}
=

{(
a b
kN d

)
∈ SL (2,Z)

}
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We note that

(
1 N
0 1

)
∈ Γ0(N). Of course Γ0(1) = SL (2,Z). Let

Γ0(1) =
⋃
j

βjΓ0(N), βj =

(
aj bj
cj dj

)
∈ SL (2,Z), be a decomposi-

tion of Γ0(1) in Γ0(N)-orbits. A fundamental domain RN of Γ0(N)
is RN =

⋃
j

β−1
j (R) where R is a fundamental domain of SL (2,Z),(

β−1
j =

(
dj −bj
−cj aj

))
, and the cusps of RN are the rational points

of the boundary of H image of the infinite point: β−1
j (∞) = −dj

cj
∈ Q.

1. A modular function of weight k and level N is an f (τ) satisfying
the invariance condition f (γ (τ)) = (cτ + d)k f(τ) ∀γ ∈ Γ0(N).

2. A modular function of weight k and level N is a modular form
f (τ) ∈Mk (N) if it is holomorphic not only at infinity but also at
the cusps.

3. A modular form of weight k and level N is a cusp form f (τ) ∈
Sk (N) if moreover it vanishes at infinity and at the cusps. The
dimension of Sk (N) is the genus g (N) of the modular curve X0(N).

4. If f (τ) ∈ Mk (N), f (τ) is N -periodic (since γ =

(
1 N
0 1

)
∈

Γ0(N) and f (γ (τ)) = f (τ +N) = f(τ)) and can be developped at

infinity in a Fourier series f (γ (τ)) =
∑
n≥0

cnκ
n with nome κ = e

2iπτ
N .

A further generalization consists in introducing a character

ε :

(
Z
NZ

)+

→ C×

(what is called in German a Nebentypus) and defining the invariance
condition no longer by f (γ (τ)) = (cτ + d)k f(τ) but by

f (γ (τ)) = (cτ + d)k f(τ) = ε(d)f(τ) .

We get that way spaces Mk (N, ε) and Sk (N, ε).

7.8 Modular elliptic curves

Eichler and Shimura investigated the possibility of expressing the L-
function LE(s) of an EC as a modular L-function Lf (s) for a certain
modular form f (i.e. a Γ0 (N)-invariant holomorphic differential f(z)dz
on the modular curve X0 (N)). For the construction to be possible, f
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must be a cusp form of level N and weight 2. Let therefore f ∈ S2 (N).
We integrate the differential f(z)dz and get the function on H

F (τ) =

∫ τ

τ0

f(z)dz

where τ 0 is a base point in H. Let now γ ∈ Γ0 (N) . Since f(z)dz is
Γ0 (N)-invariant, we have:

F (γ (τ)) =

∫ γ(τ)

τ0

f(z)dz =

∫ γ(τ0)

τ0

f(z)dz +

∫ γ(τ)

γ(τ0)

f(z)dz

=

∫ γ(τ0)

τ0

f(z)dz +

∫ τ

τ0

f(z)dz

= F (τ) + Φf (γ) with Φf (γ) =

∫ γ(τ0)

τ0

f(z)dz

Φf is a map Φf : Γ0 (N)→ C and we see that if its image Φf (Γ0 (N)) is
a lattice Λ in C then the primitive F (τ) becomes a map

F : X0 (N)→ E = C/Λ

which yields a parametrization of the elliptic curve E by the modular
curve X0 (N). In that case E is called a modular elliptic curve.

Following Barry Mazur we make a remark on this definition. We have
seen that, as far as it is isomorphic with its Jacobian, a general elliptic
curve E defined over C admits an Euclidean covering by C, π : C →
E = C/Λ. If E is defined over Q (that is “arithmetic”) and modular, it
admits also an hyperbolic covering by a modular curve F : X0 (N) → E
defined over Q. But the two types of coverings are completely different,
the action of the lattice Λ on C being commutative while the action of
Γ0 (N) on H is non commutative.

“It is the confluence of two uniformizations, the Euclidean
one, and the (conjectural) hyperbolic one of arithmetic type,
that puts an exceedingly rich geometric structure on an arith-
metic elliptic curve, and that carries deep implications for
arithmetic questions.”2

The great result of Eichler-Shimura’s very technical construction is
that if f is a newform (in the sense of Atkin and Lehner) then

1. Λ is effectively a lattice in C;

2Mazur [28], p. 607. The text was written in 1989 when the STW conjecture was
still a conjecture.
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2. X0 (N), E and F are defined over Q in a compatible way;

3. and the L-functions of the elliptic curve E and the cusp form f are
equal: LE(s) = Lf (s).

7.9 New eigenforms and Hecke’s algebras

What are newforms? Up to now, the Lf was defined as series Lf (s) =∑
n≥1

cn
ns

with f(τ) =
∑

n≥1 cnκ
n and not as Euler products. But, by def-

inition, the LE are Euler product encoding information prime by prime.
We need therefore to know what modular forms can be also Euler prod-
ucts. It is the scope of Hecke operators.

The problem is rather technical and difficult. For SL (2,Z), Hecke’s
very beautiful idea was to solve it in two steps:

1. find linear operators Tk(m) on the vector spaces Mk of modular
forms which satisfy the relations of an Euler product;

2. look at their simultaneous eigenfunctions, which exist since the
algebra Tk of the Tk(m) is commutative.

These very particular modular eigenforms inherit very particular prop-
erties from those of Hecke operators. Their coefficients cn are algebraic
integers and satisfy the multiplicative relation cnm = cncm if (m,n) = 1.
The Dirichlet L-function Lf (s) =

∑
n≥1

cn
ns

can be expressed as an Euler
product.

This can be generalized to Γ0(N) with some technicalities solved by
Atkin and Lehner with the concept of newform. Among the cusp forms
of level N , some come from a cusp form of sublevel N/r. They are called
“old” forms. Sk (N) is the orthogonal sum of the subspaces of old and
new (i.e. non old) forms: Sk (N) = Sold

k (N)⊕ Snew
k (N).

If f (τ) ∈ Snew
k (N) is a new form, everything is fine: f (τ) possesses

at the same time an Euler product and a functional equation.

8 The core of the proof

8.1 “Un extraordinaire carrefour” (Dieudonné)

Modularity is the core of the proof because it is an “extraordinaire
carrefour” between many theories. In his Panorama des Mathématiques
pures. Le choix bourbachique, Jean Dieudonné gives specifically the ex-
ample of modular forms:
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“La théories des formes automorphes et des formes modu-
laires est devenue un extraordinaire carrefour où viennent
réagir les unes sur les autres les théories les plus variées :
Géométrie analytique, Géométrie algébrique, Algèbre homologique,
Analyse harmonique non commutative et Théorie des nom-
bres.”

As all creative mathematicians, Jean Dieudonné was convinced that the
mathematical interest of a proof depends upon its capacity of circulating
between many heterogeneous theories and of translating some parts of
theories into completely different other ones.

8.2 Two classes of L-functions (Knapp, Murty)

We met two classes of L-functions, those LE associated to elliptic curves
and those Lf associated to cusp modular forms. In the case of modu-
lar elliptic curves, the two L-functions are equal (Eichler-Shimura). The
Taniyama-Shimura-Weil conjecture that every elliptic curve over Q is
modular says therefore that the two classes are identical. It is a conjec-
ture on the equivalence between two completely different ways of con-
structing objects of a certain type (L-functions). Its deepness has been
very well formulated by Anthony Knapp who explained that XXth cen-
tury mathematics discovered

“a remarkable connection between automorphy and arith-
metic algebraic geometry. This connection first shows up
in the coincidence of L-functions that arise from some very
special modular forms ( ‘automorphic’ L-functions) with L-
functions that arise from number theory ( ‘arithmetic’ or ‘ge-
ometric’ L-functions, also called ‘motivic’).”
“The automorphic L-functions have manageable analytic prop-
erties, while the arithmetic L-functions encode subtle number-
theoretic information. The fact that the arithmetic L-functions
are automorphic enables one to bring a great deal of math-
ematics to bear on extracting the number-theoretic informa-
tion from the L-function.”
“Automorphic L-functions have more manageable analytic
properties, but they initially have little to do with algebraic
number theory or algebraic geometry. The fundamental ob-
jective is to prove that motivic L-function are automorphic.”

Ram Murty also emphasized the point:

26



“In its comprehensive form, an identity between an auto-
morphic L-function and a ‘motivic’ L-function is called a
reciprocity law. (. . . ) The conjecture of Shimura-Taniyama
that every elliptic curve over Q is ‘modular’ is certainly the
most intringuing reciprocity law of our time. The ‘Himalayan
peaks’ that hold the secrets of this non abelian reciprocity law
challenge humanity.”

8.3 Encoding geometrico-arithmetic information into
L-functions

The L-function LE

“encode geometric information, and deep properties of the
elliptic curve come out (partly conjecturally) as a consequence
of properties of these functions”.(Knapp)

And as for the zeta function:

“It is expected that deep arithmetic information is encoded
in the behavior of LE(s) beyond the region of convergence”.

The situation is well described by A. Knapp:

“We have two kinds of L functions, the kind from cusp forms
that we understand very well and the kind from elliptic curves
that contains a great deal of information.”

Of course it would be a “miracle” that two L functions belonging to these
two completely different classes will be the same. But it is precisely the
astonishing result proved by Eichler et Shimura. As Knapp explains:

“Two miracles occur in this construction [modular EC]. The
first miracle is that X0(N), E, and the mapping can be de-
fined compatibly over Q. (...) The second miracle is that the
L function of E matches the L function of the cusp form f .”

9 TSW and Ribet theorem

The Taniyama-Shimura-Weil conjecture (TSW) (conjectured by Yutaka
Taniyama in 1955 and formulated precisely by Goro Shimura in the early
1960s) says that every elliptic curve is isogenous (that is a covering of
finite degree) with a modular elliptic curve coming from an X0 (N) and
a f ∈ Snew

2 (N) by the Eichler-Shimura construction.
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In a Notice of the AMS of November 1995 Serge Lang [25] recalls some
elements of the rich story of the conjecture from the pioneering works of
Artin, Hasse and Hecke, explains how Taniyama became interested in
1955 by ζ- and L-functions which are Mellin transforms of automorphic
forms, how Shimura proved in the late 1950s that the modular elliptic
curves have a ζ-function sharing all the good properties one can expect
and formulated the conjecture that all elliptic curves defined on Q are
modular. Shimura proved himself in 1971 that his conjecture is true
for elliptic curves with complex multiplication (there exists a complex
number α /∈ Z s.t. αΛ ⊂ Λ).

A result due to Carayol says that the level N must be equal to the
conductor NE of E (it is a technical definition: NE =

∏
p|∆

pn(p) with

n(p) = 1 if Ep is a node, n(p) = 2 if p > 3 and Ep is a cusp, n(p) is given
by Tate’s algorithm for p = 2, 3).

TSW conjecture is equivalent to another celebrated conjecture:
Hasse-Weil conjecture. The L-functions LE(s) of elliptic curves share

the same automorphy properties as the L-functions Lf (s).
Theorem. TWS conjecture and the Hasse-Weil conjecture are equiv-

alent.
The implication TWS → HW is easy since if two elliptic curves

defined over Q are isogeneous over Q then there L -functions are equal.
So E is isogeneous to E ′ with LE′(s) = Lf (s) for a certain f ∈ Snew

2 (N)
and LE(s) = LE′(s) = Lf (s). The implication HW → TSW is less
evident. HW implies that ∃f ∈ Snew

2 (N) with LE(s) = Lf (s). The
Eichler-Shimura construction associates to f a modular elliptic curve E ′

with LE′(s) = Lf (s). So, LE(s) = LE′(s) and we can conclude using a
theorem of Faltings:

Theorem (Faltings). If LE(s) = LE′(s) then E and E ′ are isogeneous
over Q.

Theorem. TSW implies FLT.
Let al + bl + cl = 0 be an hypothetic solution of Fermat theorem

(prime l ≥ 5 and a, b, c relatively prime). We consider the associated
Frey elliptic curve E of equation

y2 = x
(
x− al

) (
x+ cl

)
We know that the discriminant is ∆ = 16(abc)2l and that the conductor
is N =

∏
p|abc

p due to semi-simplicity. Ribet proved that these values forbid

E to be modular.
In [35] (p. 16), Ribet gives the following conceptual description of

Frey’s strategy:

“From Frey’s point of view, the main “unexpected” property
of E is that ∆ [the minimal discriminant] is a product of
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a power of 2 and a perfect l th power, where l is a prime
≥ 5. Frey translated this property into a statement about
the Néron model for E: if p is an odd prime at which E
has bad reduction, the number of components in the mod p
reduction of the Néron model is divisible by l. Frey’s idea
was to compare this number to the corresponding number for
the Jacobian of the modular curve X0 (N), where N is the
conductor of E. Frey predicted that a discrepancy between
the two numbers would preclude E from being modular. In
other words, Frey concluded heuristically that the existence of
E was incompatible with the Taniyama-Shimura conjecture,
which asserts that all elliptic curves over Q are modular.”

Ribet theorem is a descent result. The idea is to show that the level
N can be reduced to the case N = 2 and then to use the fact that
S2(2) = 0 which shows that a parametrization associated to a modular
form f cannot exist. The reduction to level 2 is a consequent of a theorem
of Ribet.

Ribet theorem (Serre ε-conjecture). Let E be an elliptic curve defined
over Q having discriminant ∆ with prime decomposition ∆ =

∏
p|∆

pδp

and conductor N =
∏
p|∆

pfp . If E is a modular elliptic curve of level N

associated to a cusp form f ∈ S2(N), if l is a prime dividing the power δp
of p in ∆ and if fp = 1 (that is if p ‖ N in the sense p | N but p2 - N) then
modulo l the modular parametrization can be reduced to level N ′ = N/p
mod l in the sense that there exists a cusp form f ′ ∈ S2(N ′) s.t. the
coefficients of f and f ′ are equal modulo l: cn ≡ c′n l ∀n ≥ 1.

Let us apply Ribet theorem to the Frey curve. We know that ∆ =
16a2lb2lc2l. As a, b, c are relatively primes, for p 6= 2, if p | ∆, we have
2l | δp, hence l | δp, and fp = 1 and we can apply the theorem. For p = 2
the situation is different since 4 + 2l | δ2 and therefore l - δ2 (if δ2 = lm
and 4 + 2l = nδ2, then 4 + 2l = nlm and l | 4, but l is odd) and the
reduction of levels leads to N ′ = 2. So there exists f ′ ∈ S2(2) such that
cn ≡ c′n mod l ∀n ≥ 1. We then apply the lemma:

Lemma. S2(2) = 0.
Indeed, in the N = 2 case, the result of Barry Mazur on the genus

g (N) of X0(N) says that the modular curve X0(2) is of genus g = 0
(it is topologically a sphere) and there exist therefore no non trivial
holomorphic differential ω on X0(2) (the differential dz has a pole at
infinity). As an f ∈ S2(2) corresponds to an ω, S2(2) = 0. As S2(2) = 0,
we get for n = 1 the congruence (c1 = 1) ≡ (c′1 = 0) mod l which is clearly
impossible and TSW ⇒ Fermat. So under an incredibly complicated
travel inside the unity of mathematics and the TSW conjecture, the
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proof of Fermat theorem boils down to the topological obstruction that a
torus of genus 1 cannot be parametrized by a sphere of genus 0.

10 Wiles’ travel

In his reference paper, Wiles summarizes the story of his proof.

“I began working on these problems in the late summer of
1986 immediately on learning of Ribet’s result.”

10.1 Encoding information into Galois representa-
tions

To prove TSW , Andrew Wiles used deep works of Jean-Pierre Serre
and Barry Mazur on a specific class of Galois representations naturally
associated to ECs and introduced in the 1940’s by André Weil and in
the 1950’s by John Tate. We meet here another extraordinary example
of encoding informations of a theory into another theory. The arithmetic
informations we will focus on are associated to torsion points (also called
“division” points) of ECs.

This encoding is particularly interesting for the following reason. Un-
til now we met two definitions of modular elliptic curves defined over
Q. A geometric definition: they are quotients of modular curves X0 (N),
and an analytic definition: they are associated to modular forms. But
as was emphasized by Charles Daney ([8], p. 24), these two definitions
respectiviely geometric and analytic are difficult to use.

“The difficulty, perhaps, lies in the disparity between the es-
sentially analytic nature of the properties and the algebraic
nature of an elliptic curve and the kind of problems to which
we want to apply the theory. (...) We seem to need some
more algebraic formulation of what it means for an elliptic
curve to be modular.”

It is here that Galois representations enter the stage.
Let E be an elliptic curve identified with its Jacobian J as a complex

torus C/Λ. The torsion points of order N of E (C) correspond to those
of the smaller lattice 1

N
Λ, that is those satisfying Nx = 0. Their set

TN is trivially isomorphic to Z
NZ ×

Z
NZ . So, the torsion points of E (C)

constitute a group E [N ] (C) ' Z
NZ ×

Z
NZ . If {ω1, ω2} is a Z-basis of Λ,

{ω1/N, ω2/N} is a Z-basis of Λ/N and if xi corresponds to ωi/N by the
isomorphism, {x1, x2} is a Z-basis of E [N ].

30



If x is a pm-division point of E and if n > m then, a fortiori x is a pn-
division point. The E [pn] constitute a projective system whose projective
limit E [p∞] is called the p-adic Tate module of E.

Suppose now that E is defined over Q. Then the N -torsion points are
algebraic over Q (look at the formulae of division on E) and E [N ] (C) =
E [N ]

(
Q
)
.

It is natural to look at rational N -torsion points, that is at E [N ] (Q).
The structure of their subgroup has been clarified by Lutz and Nagel in
the 1930s. Long after, Barry Mazur proved a beautiful theorem giving
their exhaustive list.

Mazur theorem. The only groups which appear as rational torsion
groups of ECs defined over Q are:

1. Z/NZ for N = 1, 2, . . . , 10, 12.

2. Z/2NZ⊕ Z/2Z for N = 1, . . . , 4.

As the N -torsion points are Q-points, we can consider the extension
Q (E [N ]) of the base field Q defined by the adjunction of their coordi-
nates. It can be shown that Q (E [N ]) is an algebraic Galois extension of
Q and we can consider the way the elements σ ∈ Gal (Q (E [N ]) /Q) act
on Q (E [N ]). In the Z-basis {x1, x2} of E [N ] , any such automorphism σ
of Q (E [N ]) over Q is represented by a 2×2 matrix and we get therefore
a representation, called a Galois representation,

ρE,N : G = Gal (Q (E [N ]) /Q)→ GL2

(
Z
NZ

)
;

This representation is injective (one-to-one) and make Gal (Q (E [N ]) /Q)

a subgroup of GL2

( Z
NZ

)
. Indeed let g s.t. ρE,N (g) =

(
1 0
0 1

)
, then g

leaves invariant the Z-basis {x1, x2} of E [N ] and therefore g = Id.
More generally, if K is an extension of Q containing Q (E [N ]), we get

a representation ρ : Gal (K/Q) → GL2

( Z
NZ

)
. In particular, for K = Q

we get a Galois representation

ρE,N : G = Gal
(
Q/Q

)
→ GL2

(
Z
NZ

)
and in the case where N = p is a prime, we get a Galois representation

ρE,p : G = Gal
(
Q/Q

)
→ GL2 (Fp)

of the “absolute” Galois group Gal
(
Q/Q

)
. This representation is called

“continuous” in the sense it factorizes through the Galois group Gal (K/Q)
of a finite algebraic Galois extension K/Q.
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As you know, the “absolute” Galois group G = Gal
(
Q/Q

)
is one of

the deepest object of Arithmetics and a lot of work have been devoted
to its comprehension.

To make things more concrete, let us take the simplest case p = 2.
We have E [2] = {(0,∞) , (α1, 0) , (α2, 0) , (α3, 0)} where the αi are the 3
roots of the cubic polynomial f(x) in the equation y2 = f(x) of E and G
permutes these roots. The group GL2

( Z
2Z

)
is isomorphic with the group

S3 of permutations on 3 elements a, b, c and the image of G by ρE,2 in

GL2

( Z
2Z

)
' S3 is isomorphic to Gal (K/Q) where K is the splitting field

of the polynomial f(x).
In his 1972 paper “Propriétés galoisiennes des points d’ordre fini des

courbes elliptiques” dedicated to André Weil, Jean-Pierre Serre explains
that

“Il s’agit de prouver que les groupes de Galois associés aux
points d’ordre fini des courbes elliptiques sont ‘aussi gros que
possible’”

in the sense of the following theorem:
Theorem (Serre). The index of the image ρE,N (G) of G is bounded

in GL2

( Z
NZ

)
by a constant depending only on E.

Let E [∞] =
⋃
N∈N

E [N ] be the subgroup of all torsion points in E
(
Q
)

and consider the automorphism group

lim
←−
GL2

(
Z
NZ

)
= GL2

(
lim
←−

Z
NZ

)
= GL2

(
Ẑ
)

Let ρE,∞ : G = Gal
(
Q/Q

)
→ GL2

(
Ẑ
)

be the limit of the ρE,N then

Theorem. The index of the image ρE,∞ (G) of G in GL2

(
Ẑ
)

is finite.

These results can be formulated in the p-adic framework. Indeed
E [∞] =

⋃
N∈N

E [N ] =
⊕

p prime

E [p∞] with E [p∞] the p-adic Tate module,

and GL2

(
Ẑ
)

= Aut (E [∞]) is a product of factors corresponding to the

different primes:

GL2

(
Ẑ
)

= Aut (E [∞]) =
∏

p prime

Aut (E [p∞]) '
∏

p prime

GL2 (Zp)

and the representation ρE,∞ : G = Gal
(
Q/Q

)
→ GL2

(
Ẑ
)

is a “product”

of ρE,p∞ : G = Gal
(
Q/Q

)
→ GL2 (Zp).

The representations ρE,∞ encode a lot of informations on the elliptic
curve E. For instance, ρE,∞ and ρE′,∞ are isomorphic iff E and E ′ are
isogenous.
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Serre proved the theorem:
Theorem (Serre). For almost every prime p, ρE,p∞ is surjective: ρE,p∞ (G) =

GL2 (Zp).
The main obstruction to the surjectivity of ρE,p∞ is the existence of

a Q-rational point of order p.
So, we can say that the ρE,p : G = Gal

(
Q/Q

)
→ GL2 (Fp) are

generically (i.e. for almost all p) surjective, and therefore isomorphisms
Gal (K/Q)→ GL2 (Fp).

10.2 The Frobenius

In order to go further, we need Frobenius morphisms. For the algebraic
extensions Fqn of Fq and the algebraic closure Fq of Fq the Frobenius
is defined as Frobq : x → xq. It is the generator of the Galois group
Gal

(
Fqn or Fq/Fq

)
. As, due to Fermat little theorem, xq = x for every

x ∈ Fq, it is the identity on Fq. On Fqn it is a Fq-automorphism of order
n, i.e. Gal (Fqn/Fq) is a cyclic group of order n. It can be lifted to a
Frobenius Frobq in the absolute Galois group Gal

(
Q/Q

)
.

More precisely, let K/Q be a Galois extension and OK the ring of
integers of K. The prime ideals q of OK s.t. q ∈ q (i.e. q | (q)) are
conjugated by the Galois group Gal (K/Q). If q | (q), the decomposition
group of q is

Dq = {σ ∈ Gal (K/Q) | σ fixes q (i.e. σ (q) = q)}

At the level of residual fields it is the Galois group of the extension
Fq/Fq of the residual fields OK/q = Fq and Z/qZ = Fq. But Fq/Fq is a
Galois extension whose Galois group is the cyclic group generated by the
Frobq : x 7→ xq. Let ϕ be the map ϕ : Dq → Gal (Fq/Fq) which associates
to σ ∈ Gal (K/Q) the induced automorphism σ of OK/q (which is well
defined since σ fixes q). The map ϕ is surjective and its kernel Ker (ϕ) =
Iq ⊂ Dq is called the inertia subgroup of q.

Iq = {σ ∈ Dq | σ (x) = x (mod q)}
The elements of Iq fix the residue field OK/q = Fq and, via the map ϕ,
the quotient Dq/Iq becomes isomorphic to the Galois group Gal (Fq/Fq).
The cardinal |Iq| of the inertia subgroup is the ramification index e, and
the prime q is said unramified in K/Q iff ϕ is injective, that is iff Iq = {1}.

If q is unramified in K/Q then Iq = {1}, Dq ' Gal (Fq/Fq) and the
unique σq ∈ Dq ' Gal (Fq/Fq) ⊂ Gal (K/Q) associated to Frobq by the
inverse isomorphism ϕ−1 is written Frobq and is also called the Frobenius.
It generates Dq and is of order fq. In OK , Frobq (x) ≡ xq mod q. All the
different Frobq for q | (q) are conjugate and they define up to conjugacy
a Frobenius Frobq ∈ Gal (K/Q).
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One can generalize the finite degree case to the infinite degree case
of the algebraic closure K = Q, and Fq = Fq. As explained by Kenneth
Ribet ([35], p. 12), in that special but very fundamental case,

“One can think of q as a coherent set of choices of primes
lying over q in the rings of integers of all finite extensions of
Q in Q.”

In that case the decomposition subgroups Dq and the (big) inertia sub-
groups Iq are all subgroups of the absolute Galois group Gal

(
Q/Q

)
and

are all conjugate in their respective classes. One writes Frobq the Frobq,
Frobq being defined up to conjugacy.

One says that ρE,p is unramified at q if ρE,p is trivial on the inertia
group Iq. The conductor Np of the representation ρE,p is defined as

Np =
∏
q 6=p

q ramified

qn(ρ,q)

where n(ρ, q) is the degree of ramification of ρE,p at the prime q 6= p. Np

divides the conductor NE of E since Np is the product of primes q 6= p
whose power in the discriminant ∆E of E is not 0 modulo p.

An important theorem relates the properties of ramification of ρE,p
to the properties of reduction of E: if q 6= p and q - NE (good reduction)
then ρE,p is unramified at q. Further:

Theorem of Néron, Ogg, Shafarevich. Let q 6= p. Then E has good
reduction at q iff the representation ρE,p∞ on the p-adic Tate module is
unramified at q.In particular, if E/Q and E ′/Q are isogenous they have
the same primes of good and bad reduction.

Suppose, e.g., that E is semi-stable at q, its reduction mod q being a
node. The group of regular points is then the multiplicative group Gm

of C and the pn-torsion points are then the pn-th roots of unity. Their
group is of size pn while E [pn] is of size p2n. So a lot of pn-torsion points
are killed by the reduction mod q. Hence the ramification.

Another related result concerns the links between the reducibility of
ρE,p and the rationality of the corresponding point of X0 (p) :

Theorem. ρE,p is reducible iff the corresponding point of X0 (p) is
rational.

This is due to the fact that rational points of X0 (p) correspond to
curves whose p-division points are rational and on which Gal

(
Q/Q

)
act

therefore trivially.

10.3 Galois representations and LE-functions

The consideration of the Galois representations ρE,p of G = Gal
(
Q/Q

)
is relevant because they have deep links with L-functions. It is due to the
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remarkable following theorem. For σ ∈ G, the image ρE,p (σ) is a matrix
GL2 (Fp) and this matrix has two invariants belonging to Fp, its trace
and its determinant. The theorem shows in particular that the different
ρE,p encode the counting of points of E over the different prime fields Fq
with q another prime (beware: we are considering two primes p and q).

Theorem. Let E be an elliptic curve defined over Q. Its Galois repre-
sentation ρE,p satisfies the following properties:

1. Trace ρE,p (Frobq) ≡ q + 1−#E (Fq) = aq mod p for almost every
prime q (essentially q 6= p and q - N). This is the reason why we
used aq instead of #E (Fq) for counting the points of E mod q.

2. Det ρE,p = εp where εp : G → F×p is the cyclotomic character
giving the action of G on the pth roots of unity (which are of
course algebraic integers ∈ Q), and in particular Det ρE,p (Frobq) ≡
q (mod p).

3. Det ρE,p (c) = εp (c) = −1 (i.e. ρE,p is odd) since the complex

conjugation c acts on a pth root of unity ζ by ζ 7→ ζ−1. Com-
plex conjugation can be interpreted as Frob∞, the Frobenius of the
“infinite” prime corresponding to the local field R.

This theorem remains valid for the p-adic limit ρE,p : G→ GL2 (Zp),
that is when we lift the residual situation at p to the local situation at p.

The study of this type of representations is a large generalization of
class field theory which corresponds to the abelianization of Gal

(
Q/Q

)
and to representations of dimension 1.

10.4 Serre conjecture

The conjecture which is the equivalent to the TSW conjecture for Galois
representations is due to Jean-Pierre Serre and says essentially that every
Galois representation ρ : G = Gal

(
Q/Q

)
→ GL2 (Fp) coming from the

torsion points of an elliptic curve is modular. The representations ρE,p :
G→ GL2 (Fp) are continuous and their character Det ρE,p is odd. It can
be shown that they are absolutely irreducible in the sense that they are
irreducible and ρE,p ⊗Fp Fp is also irreducible.

Serre conjecture. Let ρ : G → GL2 (Fp) be a continuous, and abso-
lutely irreducible Galois representation with Det ρ (c) = −1 (that is ρ can
be modular). Then ρ is effectively modular: there exist a level N ≥ 1,

a weight k ≥ 2, a character χ :
( Z
NZ

)+ → C×, and a new cusp form
f ∈ Snew

k (N,χ) s.t. ρ = ρf .
Serre made precise propositions for the weight k, the conductor N ,

the Nebentypus χ and the newform f .
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Theorem. Serre conjecture implies Fermat last theorem.
The proof is analog to the previous proof that STW implies Fermat.

Let al + bl + c`l = 0 be an hypothetical solution of Fermat theorem for
a prime l ≥ 5 and a, b, c relatively prime non vanishing integers. We
consider once again the associated Frey elliptic curve E

y2 = x
(
x− al

) (
x+ bl

)
and this time we consider the very particular Galois representation ρE,l :
G→ GL2 (Fl) defined by the points of l-torsion, where l is now the power
in Fermat equation.

1. ρE,l is continuous since it factorizes through Gal (K/Q) where K is
the field generated by (the coordinates of) the l-division points.

2. ρE,l is absolutely irreducible.

3. ρE,l is unramified outside 2 and l and its ramification at l and 2 is,
as says Bas Edixhoven ([15], p. 222) “very well behaved”. Indeed
for ρE,l to be ramified at q 6= 2, l we must have (since q | ∆) q | abc.
But in that case we get a node (semi-simplicity) with l dividing the
exponent 2l of q in ∆, and this implies the non ramification.

4. ρE,l can be modular.

5. If Serre conjecture is true ρE,l is modular.

6. One shows, it is the difficult part of the proof, that for any f s.t.
ρE,l = ρf we must have (N, k, χ) = (2, 2, 1).

7. One concludes with the same argument as before: S2(2, 1) = 0
since X0(2) is of genus g = 0.

Step 6 uses a theorem due to Barry Mazur and an adaptation of
Ribet theorem which say essentially that we can choose as conductor N
the Artin conductor of ρ and that, for a ρ coming from a Frey curve, this
Artin conductor is minimal and equal to 2. As was emphasized by Yves
Hellegouarch ([23], p. 329):

“La ‘philosophie’ qui rend ces conjectures si précieuses tient
au fait que la représentation ρf liée à une nouvelle forme
f de niveau N peut être beaucoup plus simple que ce que
l’on pouvait attendre : en particulier son conducteur d’Artin
Nρ peut être beaucoup plus petit que N . La forme f est
alors congrue modulo p à une forme dont le niveau est un
très petit diviseur de N , ce qui conduit à des conséquences
merveilleuses.”
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These arguments (implying that ρ is absolutely irreducible, unrami-
fied at p and flat at l) give a proof of the implication STW ⇒ Fermat.
Of course it is normal for ρ to be unramified at the points where E has
good reduction. But in our case, ρ is also unramified at p = l and p | N
with p > 2 and this is quite extraordinary. As Gerd Faltings formulates
it:3

“The l-division points behave as if E had good reduction at
all p > 2.”

But this is impossible.
In fact Serre conjecture is stronger than the TSW conjecture. Indeed:
Theorem. Serre conjecture implies TSW conjecture.
Sketch of the proof. Let E be of conductor N with Hasse-Weil L-

function LE(s) =
∑
n≥1

an
ns

. One shows first that, for almost every prime

p, the Galois representation modulo p, ρE,p, can be modular. If Serre
conjecture is valid, then they are modular and ρE,p = ρfp for a cusp form
fp ∈ S2 (N, 1) whose coefficients aq,p for q - N are eigenvalues of Hecke
operators. But fq can be lifted to characteristic 0 to a modular cusp form

F =
∑
n≥1

Anκ
n s.t. F̃ ≡ fp mod p. But as the weight k and the level N

are fixed, there exist only a finite number of possible F . There exists
therefore an F s.t. F̃ = fp mod p for an infinite set P of primes p. Let
q - N , then E has good reduction. Let aq = Trace (Frobq) . We have
aq ≡ aq,p mod p for every q 6= p and therefore Aq = aq in Fp for every
p ∈ P − {q} and, as P is infinite, Aq = aq for every q - N . This shows
that Aq ∈ Z and that the Aq define a modular curve EF of level N ′/N , E
and EF sharing equivalent q-adic representations. But, due to Faltings
theorem, this implies that E and EF are isogeneous over Q, and E is
therefore modular.

10.5 A letter of Jean-Pierre Serre to Alexander Grothendieck

The 31 December 1986, Jean-Pierre Serre wrote a very interesting and
touching letter to Alexander Grothendieck announcing his conjecture.
Let us quote it.

“ Cher Grothendieck,
“ Tu vas recevoir un de ces jours une copie de “ Sur les représentations

modulaires de degré 2 de Gal(Q/Q) ” , un travail que j’ai rédigé ces
derniers mois, mais qui était en fait en chantier depuis une douzaine
d’années. (...)

3Faltings [18], p. 744.
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“ Tu te souviens sans doute de la conjecture avancée par Weil en 1966 :
toute courbe elliptique sur Q est “ modulaire ” . (...) Le grand intérêt
de cette conjecture est qu’elle décrit comment on peut obtenir les motifs
les plus simples qui soient : ceux de dimension 2, de hauteur 1 et de corps
de base Q. En particulier, si la conjecture est vraie (et elle a été vérifiée
numériquement dans de très nombreux cas), la fonction zêta du motif a
les propriétés analytiques (prolongement et équation fonctionnelle) que
l’on pense.

“ Plus généralement, toutes les fonctions zêta attachées aux motifs
devraient (conjecturalement) provenir de “ représentations modulaires ”
convenables; il y a là-dessus des conjectures assez précises de Langlands
et Deligne.

“ Ce que j’ai essayé de faire dans le texte que je t’envoie, c’est un ana-
logue (modulo p) de la conjecture de Weil en question. On veut décrire
en termes de formes modulaires (modulo p) certaines représentations ga-
loisiennes. Ces représentations sont en apparence très spéciales; ce sont
des représentations

Gal
(
Q/Q

)
→ GL2 (Fp)

irréductibles (sinon ce n’est pas très intéressant) et de déterminant im-
pair (la conjugaison complexe doit avoir un déterminant égal à −1). La
conjecture que je fais est que toutes ces représentations sont “ modu-
laires ” , i.e. proviennent de formes modulaires modulo p dont je prédis
en outre le niveau et le poids (la recette prédisant le niveau est très na-
turelle — celle du poids ne l’est pas). Bien entendu, je ne suis pas du
tout sûr que cette conjecture soit vraie! Mais elle est étayée par quantité
d’exemples mi-théoriques, mi-numériques, et j’ai fini par me décider à la
publier. D’autant plus que ses applications sont nombreuses :

a) elle entrâıne la conjecture de Weil citée au début, ainsi que des
conjectures analogues sur des motifs de hauteur > 1 (...); a priori, cela
peut parâıtre surprenant : comment déduire un énoncé de caractéristique
0 d’un énoncé de caractéristique p? C’est beaucoup moins surprenant
lorsqu’on se rend compte qu’on a une infinité de p à sa disposition.

b) elle entrâıne le (grand) théorème de Fermat, ainsi que des variantes
assez surprenantes: non-existence de solutions non triviales de xp + yp +
`zp = 0, p ≥ 11, pour ` premier égal à 3, 5, 7, 11, 17, 19,. . . (mais la
méthode ne s’applique pas à ` = 31).

c) elle entrâıne que tout schéma en groupes sur Z, plat, fini, de type
(p, p) est somme directe (pour p ≥ 3) de copies de Z/pZ et de µp. (At-
tention: il ne s’agit que de schémas de rang 2. Je ne sais rien faire pour
un rang plus grand.).

“ Bien sûr, on serait un peu plus rassuré si on savait faire une conjec-
ture générale (sur un corps global quelconque, pour des représentations
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de dimension quelconque). J’y ai souvent réfléchi, mais je ne vois pas
comment faire (et cependant je suis sûr que c’est possible, au moins dans
certains cas). On verra bien. . .

“ Bien à toi — et meilleurs vœux pour 1987.
“ J-P. Serre” .

10.6 Deligne theorem

We have encoded a lot of arithmetic informations on ECs in Galois rep-
resentations ρE,p : Gal

(
Q/Q

)
→ GL2 (Fp). Now, due to a fundamental

work of Pierre Deligne in 1969, one can also associate such Galois repre-
sentations to modular forms. Hence the strategic idea of proving TSW
conjecture by proving that the ρE,p are modular.

Let Sk(N, ε) be the space of cusp forms of weight k, level N and char-
acter (Nebentypus) ε. Hecke operators Tk (`) for ` prime (they generate
all the Tk (n)) act on Sk(N, ε) and commute between them. Let λ(n) be
the eigenvalues of a common new eigenform f =

∑
n≥1 anκ

n ∈ Snew
k (N, ε)

of the Tk (n), let Of be the ring generated by the λ(`) and the ε (`) and
Kf the quotient field. Let ∼: Of → Fp be a morphism of Of into the
finite field Fp. For p a prime non dividing N , let p be a prime ideal of
Of above p, and Of,p the completion of Of at p .

Deligne theorem.4 Under these hypotheses there exists a (unique)
representation ρf : G = Gal

(
Q/Q

)
→ GL2 (Of,p) associated with f

which is continuous, semi-simple and unramified for q 6= p and q - N and
has the good properties for the trace, the determinant and the character,
that is its quotient ρf : G = Gal

(
Q/Q

)
→ GL2 (Fp) defined via the map

∼: Of → Fp satisfies for every prime q 6= p and q - N

1. ρf is unramified at q;

2. Trace ρf (Frobq) = ãq;

3. Det ρf (Frobq) = qk−1ε̃ (q),

4. Det ρf (c) = −1 where c is the complex conjugation.

Moreover, the same properties are true for ρf : Trace ρf (Frobq) =
aq, Det ρf (Frobq) = qk−1ε (q), and Det ρf (c) = −1.

This provides a method of proof. The idea is now to translate all the
problematic of the TSW conjecture and FLT into this new context of
Galois representations. As Allan Adler explains very well,

4For k = 2, the theorem has been proved before by Eichler and Shimura.
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“The point is that to every elliptic curve one can associate
a Galois representation, while in some cases one knows how
to associate a Galois representation to a modular form. The
idea then is to show that the Galois representation associated
to the semi-stable elliptic curve E is of the type one gets from
modular forms.”5

As Wiles explains, his aim was to prove a sort of converse of Deligne’s
theorem:

“We will be concerned with trying to prove results in the
opposite direction, that is to say, with establishing criteria
under which a p-adic representation arises in this way from a
modular form.” (Wiles [48], p. 445).

For modular Galois representations everything is fine.
Theorem. For elliptic curves E defined over Q the following properties

are equivalent:

1. E is modular and associated to a newform f ;

2. there exists a prime p s.t. the Galois representation ρE,p is modular;

3. for every p, ρE,p is modular;

4. there exists a covering π : X0 (NE)→ E of E by the modular curve
X0 (NE);

5. E is isogeneous to the modular abelian variety defined by f .

We have therefore a two completely different ways to Galois represen-
tations: elliptic curves and modular forms, and the unity of this double
way inside the whole unity of mathematics is particularly deep and strik-
ing. As said Richard Taylor (in the interview quoted above) conserning
Langlands problem:

“The answer is to my mind extremely surprising; it invokes
extremely different objects. You start with this algebraic struc-
ture and end up using what are called modular forms, which
relate to complex analysis.”

5Adler [1], 2, p. 3.
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10.7 Langlands-Tunnell theorem

With Deligne theorem, we can associate to any suitable modular form a
Galois representation mod p. But for the converse, there are only very
few results constructing an eigen cusp form from a Galois representa-
tion. The most important one is the fundamental theorem of Langlands
and Tunnell concerning Galois representations ρ of G = Gal

(
Q/Q

)
in

GL2 (C) (and not in GL2 (Fp): representations in GL2 (C) are Artin rep-
resentations). To formulate it we need to define the smaller congruence

group Γ1 (N) =

{
γ ∈ SL2 (Z) | γ ≡

(
1 b
0 1

)
modN

}
. Remember that

Γ0 (N) =

{
γ ∈ SL2 (Z) | γ ≡

(
a b
0 d

)
modN

}
Langlands-Tunnell theorem. Let ρ : G = Gal

(
Q/Q

)
→ GL2 (C) be

a continuous irreducible representation with odd determinant Det ρ(c) =
−1 (c = complex conjugation). Suppose that the image ρ (G) is a sub-
group of S4 (fondamental hypothesis of diehedrality). Then there exist a
level N and an eigenform g ∈ S1 (Γ1 (N)), g =

∑
n≥1

bnκ
n, s.t., for almost

every prime q, one has bq = Trace ρ (Frobq).
In our “Hymalayan” metaphor, this non trivial theorem could be

considered as a sort of forced, narrow and very elevated “mountain pass”.

10.8 Wiles new route: SSML for p = 3, 5

According to Wiles:

“The key development in the proof is a new and surprising
link between two strong but distinct traditions in number
theory, the relationship between Galois representations and
modular forms on the one hand and the interpretation of
special values of L-functions on the other.”” (Wiles [48], p.
444).

An excellent introduction to the first Wiles proof is the text of Karl
Rubin and Alice Silverberg [38]. “A report on Wiles’ Cambridge lec-
tures”, Bulletin of the AMS (1994).

As emphasized by Charles Daney ([8], p. 2), Wiles theorem

“can be seen to be both surprising and beautiful. The rea-
son is that it concerns two apparently quite different sorts of
mathematical objects — elliptic curves and modular forms.
Each of these is relatively simple and has been studied inten-
sively for ever 100 years. Along the way some very surprising
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parallels have been observed in the theory of each. And the
theorem states that the parallels are in fact the results of a
fundamental underlying connection between the two.”

Wiles strategy was defined in the following way by Nigel Boston 2003
[2], what he called “the big picture”:

“An outline to the strategy of the proof has been given. A
counterexample to Fermat’s Last Theorem would yield an el-
liptic curve (Frey’s curve) with remarkable properties. This
curve is shown as follows not to exist. Associated to ellip-
tic curves and to certain modular forms are Galois represen-
tations. These representations share some features, which
might be used to define admissible representations. The aim
is to show that all such admissible representations come from
modular forms (and so in particular the elliptic curve ones
do, implying that Frey’s curves are modular, enough for a
contradiction). We shall parametrize special subsets of Ga-
lois representations by complete Noetherian local rings and
our aim will amount to showing that a given map between
such rings is an isomorphism. This is achieved by some com-
mutative algebra, which reduces the problem to computing
some invariants, accomplished via Galois cohomology.”

A first key idea of Wiles is to weaken TSW by considering it modulo
p and to relativize it to a single prime p. So the strategy is to work
modulo p (i.e. with characteristic p) and then to try to lift the results
to characteristic 0. The transformed conjecture is called the “semi-stable
modular lifting conjecture”.

As pointed out by Kenneth Ribet ([35], p. 18)

“Wiles’s approach to the Taniyama-Shimura conjecture is
‘orthogonal’ to one based on consideration of the varying
ρE,p.”

He didn’t look, as Serre and Drinfeld suggested, for “a compatible system
of p-adic representations” but followed rather the suggestion by Mazur
and Fontaine to use restrictions on the decomposition and inertia groups
(p. 446). Instead of looking at all representations ρE,p and try to prove
that an infinity of them are modular, Wiles chose to focus on a single
prime p and to prove that the p-adic lifting ρE,p∞ : G = Gal

(
Q/Q

)
→

GL2 (Zp) is modular. This would be sufficient since

Trace ρE,p∞ (Frobq) ≡ aq for every q 6= p, q - N

Semi-stable modular lifting conjecture (SSML). Suppose that E is semi-
stable and that there exists a prime p ≥ 3 s.t.
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(a) ρE,p is irreducible,

(b) E is modular but only mod p (where the ideal p lifts p in the ring of
integers Of of the extension Q (an) of Q by the algebraic integers
an), i.e. there exists an eigenform f ∈ S2 (N), f =

∑
n≥1

anκ
n, sat-

isfying aq ≡ q + 1 − #E (Fq) mod p (very approximative equality)
for almost every prime q,

then E is really modular, i.e. there exists an eigenform f ∈ S2 (N),
f =

∑
n≥1

anκ
n, satisfying aq = q+ 1−#E (Fq) (exact equality) for almost

every prime q.
Even if weaker than TSW the conjecture remains highly non trivial

since, as was emphasized by Karl Rubin and Alice Silverberg ([38], p.
21)

“There is no known way to produce such a form in general.”

It is why, as explained by Richard Taylor (in his Harvard interview)

“The big problem has been to start with a representation of
the Galois group and try to produce a modular form.”

Wiles strategy is based on the fact that the semi-stable modular lifting
conjecture for the first two primes p = 3, 5 is sufficient to prove the semi-
stable TSW conjecture, which is itself sufficient for FLT . The key reason
is that the group PGL2 (F3) is isomorphic to the symmetric group S4 of
permutations of 4 elements and that for this extremely special dihedral
case there exists the Langlands-Tunnell result of modularity.

As Wiles explains in his paper regarding his first real breakthrough:

“Our approach to the study of elliptic curves is via their as-
sociated Galois representation. Suppose that ρp is the repre-

sentation of Gal
(
Q/Q

)
on the p-division points of an elliptic

curve over Q, and suppose for the moment that ρ3 is irre-
ducible. The choice of 3 is critical because a crucial theorem
of Langlands and Tunnell shows that if ρ3 is irreducible then
it is also modular. We then proceed by showing that un-
der the hypothesis that ρ3 is semi-stable at 3, together with
some milder restrictions on the ramification of ρ3 at the other
primes, every suitable lifting of ρ3 is modular.” (Wiles [48],
p. 444).
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Theorem. Semi-stable modular lifting conjecture for p = 3, 5⇒ semi-
stable TSW ⇒ FLT . (The case p = 5 is needed when ρE,3 is reducible.)

Sketch of the proof. Let E be defined over Q and semi-stable and
suppose that the semi-stable modular lifting conjecture is true for p = 3.
Suppose first that the Galois representation ρE,3 is irreducible (hypoth-
esis (a)). Then E will be modular via the semi-stable modular lifting
conjecture if hypothesis (b) is verified. For proving (b) one relies upon
Langlands-Tunnell.

To construct ρ in our case, we consider ρE,3 : G = Gal
(
Q/Q

)
→

GL2 (F3). It is irreducible by hypothesis. We use the key fact that
GL2 (F3) can be embedded in GL2 (C) through the well suited morphism
ψ which factorizes through GL2

(
Z
[
i
√

2
])

and satisfies{
Trace (ψ(g)) ≡ Trace (g) mod

(
1 + i

√
2
)

Det (ψ(g)) ≡ Det (g) mod (3)

We define explicitely ψ on the generators

(
−1 1
−1 0

)
and

(
1 −1
1 1

)
of GL2 (F3) by ψ

((
−1 1
−1 0

))
=

(
−1 1
−1 0

)
and ψ

((
1 −1
1 1

))
=(

i
√

2 1
1 0

)
.One shows that ρ = ψ ◦ ρE,3 : G =

(
Q/Q

)
→ GL2 (C)

is irreducible with odd determinant Det ρ(c) = −1 and that Im (ρ) ⊆
PGL2 (F3) ' S4. One can therefore apply Langlands-Tunnel. There exist
a level N and an eigenform g ∈ S1 (Γ1 (N)), g =

∑
n≥1

bnκ
n, s.t. for almost

every prime q one has bq = Trace ρ (Frobq). From g, one constructs then
an eigenform f ∈ S2 (N) = S2 (Γ0 (N)) s.t. ∀n an ≡ bn mod p, where p

is the prime ideal of Q containing 1 + i
√

2. The congruences show that
the eigenform f satisfies (b) for the ideal p′ = p ∩Of and therefore E is
modular.

Suppose now that the representation ρE,3 is reducible. If the repre-
sentation ρE,5 is also reducible then E is modular. Indeed, the group of

points of E over Q contains a cyclic subgroup of order 15 = 3.5 which
is G-stable. But the pairs (E,C) are classified by the rational points of
the modular curve X0 (15). But X0 (15) has only 4 rational points and it
can be shown that they all correspond to modular curves.

We can therefore suppose that ρE,5 is irreducible. In that case, Wiles
method is to construct another auxiliary elliptic curve E ′ defined over Q
and semi-stable s.t.

1. ρE′,5 = ρE,5, and

2. ρE′,3 is irreducible.
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Let us suppose that E ′ is constructed. According to the case explained
before, E ′ is modular. Let f ∈ S2 (N), f =

∑
n≥1

anκ
n, be the associated

eigenform. For almost every prime q we have aq = q+ 1−#E ′ (Fq). But
q + 1 − #E ′ (Fq) ≡ Trace ρE′,5 (Frobq) mod 5. And, as ρE′,5 = ρE,5, we
have the congruence

Trace ρE′ ,5 (Frobq) = Trace ρE,5 (Frobq) ≡ q + 1−#E (Fq) mod 5

and f satisfies therefore the condition (b) of the semi-stable modular
lifting conjecture for p = 5. We conclude that E is modular.

At this point, the main difficulty is to construct the auxiliary elliptic
curve E ′. The sarting point is that elliptic curves E ′ satisfying ρE′,p =
ρE,p are classified by the rational points of the Riemann surface X(p)
(defined over Q) X(p) = H/Γ(p) where

Γ(p) = {γ ∈ SL2 (Z) | γ ≡ Id mod p}

is the subgroup of integral matrices of SL2 (Z) which are congruent to
the identity matrix modulo p. We will use again a topological argument,
namely that X(p) is of genus g = 0 for p ≤ 5. But when g = 0, if there
exists a rational point (which is the case here with E ′ = E) then there
exist an infinite number of rational points. One then shows:

Proposition. For an infinite number of rational points of X(5) ρE′,3 is
irreducible.

One uses the fact that if E ′ is a generic point (and therefore not
rational) of X(5) then its Galois group given by its p-torsion points is
“big” in the sense that the image of G = Gal

(
Q/Q

)
in GL2 (Fp) is

maximal (that is equal to GL2 (Fp)). But a theorem due to Hilbert,
called the irreducibility theorem, says that “many” specializations of a
generic point have the same Galois group and we can conclude.

One shows next that E ′ can be chosen semi-stable. If the prime q 6= 5
semi-stability reads on E ′[5] and as E ′[5] = E[5] and E is semi-stable at
q by hypothesis, E ′ is also semi-stable at q. For q = 5 one choose an E ′

which is “close” to E for the p-adic metric and use the fact that semi-
stability is an open property. As E is semi-stable at 5 by hypothesis, E ′

is also semi-stable at 5.

10.9 Lifting to p-adic representations

Up to now, we have considered only representations of G = Gal
(
Q/Q

)
intoGL2 (Z/NZ) induced by theN -torsion (N -division) Q-points E [N ] '

Z
NZ ×

Z
NZ of ECs. We will now look at all the representations associated

to the successive powers pk of a prime p. Taking their projective limit,
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we get a continuous representation in the algebra Zp of p-adic integers

ρE,p : G = Gal
(
Q/Q

)
→ GL2 (Zp)

which satisfies the properties:

1. Det ρE,p = εp (where εp is the cyclotomic character εp : G→ Z×p ),

2. for almost every prime q, Trace ρE,p (Frobq) = q + 1 − #E (Fq)
(exact equality).

(of course, through the quotient Zp → Fp, ρE,p returns ρE,p).
Once again, we will say that a p-adic representation

ρ : G = Gal
(
Q/Q

)
→ GL2 (Zp)

is modular if there exists an eigenform f ∈ S2 (N), f =
∑
n≥1

anκ
n, s.t.

Trace ρ (Frobq) = aq for almost every prime q in a well suited extension
of Zp (for instance a completion Of,p for p ∩ Z =pZ). The semi-stable
modular lifting conjecture says essentially that, given E defined over Q
and semi-stable and p ≥ 3, if ρE,p is irreducible and modular then ρE,p is
modular. We see that this is a problem of lifting the modularity property
from the prime field Fp of characteristic p to the p-adic algebra Zp which
is the ring of integers of the local field Qp of characteristic 0.

In this context the strategy has been pedagogically very well explained
by Allan Adler [1]. We have two p-adic Galois representation ρ1, ρ2 : G→
GL2 (Zp), ρ1 coming from E/Q and ρ2 from a cusp form. We know that
their residual representations mod p, ρ1, ρ2 : G→ GL2 (Fp), are equal and
we want to gather some informations on the spaces of ρ3 : G→ GL2 (Zp)
s.t. ρ3 = ρ1 = ρ2. In fact ρ1 and ρ2 share more properties than ρ1 = ρ2 :
they are unramified for almost every q (i.e. outside a finite set of “bad”
primes). We consider only such representations ρ : G→ GL2 (Zp).

At this point, we use the deep analogy between arithmetics and ge-
ometry linking finite fields Fp and p-adic fields Qp: Fp is like a “point”
and the local algebra Zp is like a “germ of deformation” and therefore a
lifting ρ→ ρ is like to lift the value of a fonction at a point to a germ of
function near the point.

As you know, this deep longstanding analogy dates back to Dedekind,
Weber and Hensel who considered the integers n as functions over the
primes p, the “valuation” of n at the “point” p being the power of p
in the decomposition of n. To localize the n in the neiborhood of p we
consider first S = Z− (p) and make the elements of S invertible. We get
the local ring Z(p) with maximal ideal m(p) = pZ(p) and residual field
Z(p)/pZ(p) = Fp. If n ∈ Z, to look at n “locally” at p is to look at n in
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Z(p). The “value” of n at p is its class in Fp, i.e. n mod p and the local
structure of n at p can be read in Z(p).

In the local ring Z(p) every ideal is equal to some power pk of p. The
successive quotients Z(p)/p

k+1Z(p) are like successive approximations of
order k of the elements Z(p) (expansion of natural integers n in base p).

Indeed, to make pk+1 = 0 is to approximate n by a sum
∑i=k

i=0 nip
i with

all ni ∈ Fp.
It is well known that |x|p = p−vp(x) is an ultrametric norm on Q. The

projective limit

Zp = lim←−
Z
pkZ

is a “profinite” local ring with maximal ideal pZp, residual field Zp
pZp =

Z
pZ = Fp and fraction field Qp = Q⊗Z Zp = Zp

(
1
p

)
. Zp is compact (due

to Tychonoff theorem), totally discontinuous (it is a Cantor set) as limit
of discrete structures, and is the completion of Z for the p-adic absolute
value |x|p = p−vp(x). For a polynomial P (x) ∈ Z [x], to have a root in Zp

is to have a root mod pn for every n ≥ 1.
Let us return to the lifting problem. We apply it to the case where

we have a finite algebraic extension k of Fp and a Zp-algebra A which is
Noetherian (every prime ideal is finitely generated), local (there is only
one maximal ideal p), complete (complete for the Krull topology defined
by the successive powers of p) with residual field k. These properties
are the “good” properties for a Zp-algebra A in this context. We start
from a representations ρ : G = Gal

(
Q/Q

)
→ GL2 (k) and we look for

liftings ρ : G → GL2 (A) making the following diagram commutative
(i ◦ ρ = ρ⊗k k):

GL2 (A)
ρ

↗ ↓ i
G −→

ρ⊗kk
GL2

(
k
)

where i : A → k is a morphism and ρ ⊗k k extends the field of scalars
from k to k..

This is what Wiles called the “ring theoretic version” of the problem.

10.10 Infinitesimal deformations and cohomology

Following the geometric analogy, it is natural to ask what can be an
“infinitesimal” deformation in this algebraic context.

The key idea, introduced a long time ago by Alexander Grothendieck,
is to define a “tangent vector” of a K-algebra R as a morphism t : R→
K[ε] of R into the algebra of dual numbers K[ε] = K[T ]

(T 2)
. The idea (very
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old, as old as Leibniz Calculus and introduced by Nieuwentijt) is that a
tangent vector is a linear approximation of a Taylor expansion and can
be defined and computed using first order nilpotent infinitesimal ε s.t.
ε2 = 0.

Let us now proceed naively. Let ρ : G → GL2 (Zp). Its residual
representation ρ : G → GL2 (Fp) associates to every γ ∈ G a 2 × 2
matrix (

a0 (γ) b0 (γ)
c0 (γ) d0 (γ)

)
∈ GL2 (Fp) .

Using the representation of p-adic integers as “Taylor series” we can
consider the lifting ρ of ρ as associating to every γ ∈ G a 2× 2 matrix ∑

n≥0

an (γ) pn
∑
n≥0

bn (γ) pn∑
n≥0

cn (γ) pn
∑
n≥0

dn (γ) pn

 ∈ GL2 (Zp)

with the a0 (γ), b0 (γ), c0 (γ), d0 (γ) returning ρ. The Taylor approxi-
mations consist in truncating the series at a certain order and in par-
ticular the first order linear approximation consists in a representation
ρ1 : G→ GL2 (Z/p2Z) with matrices(

a0 (γ) + a1 (γ) p b0 (γ) + b1 (γ) p
c0 (γ) + c1 (γ) p d0 (γ) + d1 (γ) p

)
∈ GL2

(
Z/p2Z

)
where p2 = 0 that is where p is treated as an infinitesimal ε.

Compute formally in Fp[ε] with ρ1 : G → GL2 (Fp[ε]). ρ1 is close to
ρ and to compare them we write ρ1 (g) ρ (g)−1 = 1 + εa (g) with a (g) ∈
M2 (Fp). We consider now the structure of G -module defined by ρ on
M2 (Fp). GL2 (Fp) acts on M2 (Fp) by conjugation: if α ∈ M2 (Fp) and
g ∈ GL2 (Fp), the action g ∗ α of g on α is given by g ∗ α = gαg−1

(what is called the adjoint representation). We write then that ρ1 (g) =
(1 + εa (g)) ρ (g) is a representation that is ρ1 (gh) = ρ1 (g) ρ1 (h). This
imposes drastic conditions on the map a : G→M2 (Fp), namely

a (gh) = a (g) + ρ (g)−1 a (h) ρ (g) ((∗))

A key point is that this formula (∗) says that the map a is a 1-
cocycle for the action of G on M2 (Fp) in the sense of group cohomology.
There exists therefore a fundamental link between the first order lifting of
ρ : G→ GL2 (Fp) and the cohomology group H1 (G,M2 (Fp)). As Barry
Mazur ([30], p. 245) explains:

“First-order infinitesimal” information concerning the univer-
sal deformation ring [see below] attached to a representation ρ
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can be expressed in terms of group cohomology (of the adjoint
representation of ρ). This is quite a general phenomenon, does
not even depend upon the representability of the deforma-
tion problem, and has an appropriate variant for deformation
problems subject to conditions.”

It is this idea which has been generalized at higher orders with an
extraordinary virtuosity by Barry Mazur, Andrew Wiles and Richard
Taylor. As was emphasized by Lawrence Whashington ([47], p.108)

“The main reason that Galois cohomology arises in Wiles’
work is that certain cohomology groups can be used to classify
deformations of Galois representations.”

10.11 Deformation data and Mazur conjectures

We have seen how to handle first order infinitesimal deformations of
representations ρE,p : G = Gal

(
Q/Q

)
→ GL2 (Fp) and how Galois co-

homology enters the stage. Wiles wanted to show that modularity is a
liftable property : if ρE,p is modular then its p-adic lifting ρE,p : G =

Gal
(
Q/Q

)
→ GL2 (Zp) is also modular. His strategy was to make an

induction on “Taylor expansions”, that is to lift modularity to the suc-
cessive nth-order infinitesimal deformations ρE,p modn and to pass to
the limit. As comments Brian Conrad ([5], p. 375):

“In order to carry out this procedure, there is an extremely
delicate balancing act to handle, with (abstract) deformation
rings on one side and (concrete) Hecke rings on the other side.
The latter provides a link to modular forms and representa-
tions ‘coming from modular forms’, whereas the former pro-
vides a link to the particular representation of interest, ρE,p,
which we want to prove ‘comes from a modular form’. The
relation between the two different types of rings — leading to
the proof that they’re isomorphic — is supplied by a numer-
ical criterion from commutative algebra. The hard part is to
check that this numerical criterion actually can be applied!
In order to do this, one has to prove highly non-obvious the-
orems about the commutative algebra properties of the rings
in question. This requires a very detailed understanding of
both the deformation rings and the Hecke rings.”

Wiles consider liftings satisfying constraints called “deformation data”
D by Barry Mazur (this stuff is extremely technical). As Wiles said:
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“Mazur had been developing the language of deformations
of Galois representations. Moreover, Mazur realized that
the universal deformation rings he found should be given by
Hecke rings, at least in certain special cases. This critical
conjecture refined the expectation that all ordinary liftings of
modular representations should be modular.”

A deformation data is a pair D = (Σ, t) where

1. Σ is a finite set of “bad” primes q outside of which representations
are unramified, and

2. t is a set of relevant properties of representations ρ at p (to be
“ordinary”, to be “flat”, etc.).

Once again, a representation ρ : G→ GL2 (k) is called D-modular if
there exists an eigenform f ∈ S2 (N) and a prime ideal p over p (p | p)
in Of s.t. the representation ρf,p associated to f by the Eichler-Shimura
construction is a D-lifting of ρ.

For technical reasons, Wiles need to introduce local conditions which
are essentially constraints on the p-adic representations ρE,p = ρE,p∞
which lift local constraints on the residual representations ρE,p. They
essentially mean that ρ is unramified outside Σ and has the same behavior
as its residual representation ρ.

They are remarkably commented by Ken Ribet ([35], p. 20):

“There is flexibility and tension implicit in the choice of these
conditions. They should be broad enough to be satisfied by
ρE,p and tight enough to be satisfied only by lifts that can be
related to modular forms. Roughly speaking, in order to prove
the modularity of all lifts satisfying a fixed set of conditions,
one needs to specify in advance a space of modular forms S
so that the normalized eigenforms in S satisfy the conditions
and such that, conversely, all lifts satisfying the conditions are
plausibly related to forms in S. It is intuitively clear that this
program will be simplest to carry out when the conditions
are the most stringent and progressively harder to carry out
as the conditions are relaxed.

A theme which emerges rapidly is that there are at least
two sets of conditions of special interest. Firstly, one is espe-
cially at ease when dealing with the most stringent possible
set of conditions which are satisfied by ρE,p; this leads to
what Wiles calls the “minimal” problem. Secondly, one needs
at some point to consider some set of conditions which allows
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treatment of the lift ρE,p — this lift is, after all, our main
target. It would be natural to consider the most stringent
such set. The two sets of conditions may coincide, but there
is no guarantee that they do; in general, the second set of
conditions is more generous than the first.

Wiles provides a beautiful “induction” argument which
enables him to pass from the minimal set of conditions to a
non-minimal set. Heuristically, this argument requires keep-
ing tabs on the set of those normalized eigenforms whose Ga-
lois representations are compatible with an incrementally re-
laxing set of conditions. As the conditions loosen, the set of
forms must grow to keep pace with the increasing number of
lifts. The increase in the number of lifts can be estimated from
above by a local cohomological calculation. A sufficient supply
of modular forms is then furnished by the theory of congru-
ences between normalized eigenforms of differing level.”

Mazur conjecture 1. Let ρ : G → GL2 (k) (k an extension of Fp) be
absolutely irreducible (that is ρ⊗k k is irreducible) and D-modular, then
every D-lifting of ρ to the integer ring O of a finite extension of Qp with
residual field k is modular.

Wiles theorem. Mazur 1⇒ Semi-stable modular lifting conjecture.
Indeed let E be an elliptic curve defined over Q and semi-stable which

satisfies the conditions (a) and (b) of the semi-stable modular lifting
conjecture for p and let ρ be the representation ρ = ρE,p. According to
hypothesis (a) ρ is irreducible. One shows that it is also absolutely irre-
ducible. The hypothesis (b) means that ρ is modular. It is then possible
to find a deformation data D with Σ = {p}∪{q | E has bad reduction at q}
and to show that ρE,p is a D-lifting of ρ and that ρ is D-modular. Mazur
1 implies that ρE,p is modular and therefore E is modular.

In a second step, following once again the geometric analogy, one
reformulates the first Mazur conjecture

“as a conjecture that the algebras which parametrize liftings
and modular liftings of a given representation are isomor-
phic. It is this form of Mazur’s conjecture that Wiles attacks
directly.” (our emphasis, Rubin-Silverberg [38], p. 26)

The reformulation is done in terms of universal deformations for
(D,O)-deformations, O being the ring of integers of a finite extension
of Qp

GL2 (A)
ρ

↗ ↓ i
G −→

ρ
GL2 (k)
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where A is a local, Noetherian, complete O-algebra of residual field k.
The concept of universal deformation is then associated to the existence
of a very special algebra R. The concept of deformation comes from
differential geometry and extends the analogy between algebra and ge-
ometry.

Mazur-Ramakrishna theorem. There exists a universal (D,O)-lifting
ρR : G→ GL2 (R) of ρ, that is for every (D,O)-lifting ρ : G→ GL2 (A)
there exists one and only one morphism of algebras ϕρ : R→ A s.t. the
following diagram is commutative:

GL2 (A)
ρ

↗ ↓ ϕ∗ρ
G −→ GL2 (R)

q
ρR

↗ ↓ i
G −→

ρ
GL2 (k)

This fundamental theorem means that the functor A L (A) which
associates to every O-algebra A (they constitute a category) as above
the set of liftings of ρ : G → GL2 (k) to A (they constitute a category)
is representable by R (in the sense of the interpretation of universal
problems as representation of functors), and therefore that there exists
an isomorphism

L (A) = Hom
cont

(R, A)

(where Homcont (R, A) is the set of continuous homomorphisms from R

to A). It can be proved first without conditions and then relativized
to representations ρ “with particularly desirable properties”. As Barry
Mazur explains:

“The recipe for cutting down the “universal deformation”
to these more specifically desirable Galois representations is
(surprisingly enough!) at last conceptually nothing more than
the “imposition” of local conditions at the ramified primes,
and sometimes with the additional prescription of the appro-
priate global determinant.”

But if ρ is D-modular with an eigenform f and a prime ideal p of Of
s.t. ρf,p is a D-lifting of ρ and ρf,p ⊗Of Of is a (D,O)-lifting of ρ then
there exists also a modular universal deformation in the following sense:

T1 The O-algebra A is a generalized Hecke algebra T of operators
satisfying the expected properties.
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T2 There exists a level N divisible only by “bad” primes q ∈ Σ and
a morphism j : T (N)→ T from the standard Hecke algebra T (N)
acting on S2 (N) to T s.t. T is generated over O by the images
j (Tq) of the Hecke operators Tq of T (N) for q /∈ Σ (i.e. q “good”
prime).

T3 There exists a (D,O)-lifting of ρ, ρT : G→ GL2 (T), s.t.

Trace ρT (Frobq) = j (Tq) for every “good” prime q .

T4 If ρ is a modular (D,O) -lifting of ρ to an A, then there exists one
and only one O-morphism ψρ : T → A s.t. the following diagram
is commutative:

GL2 (T)
ρT

↗ ↓ ψ∗ρ
G −→

ρ
GL2 (R)

As ρT is a (D,O)-lifting of ρ, Mazur-Ramakrishna theorem implies
that there exists one and only one morphism of algebras ϕ : R→ T s.t.
ρT = ϕ ◦ ρR. The map ϕ is surjective since

∀q /∈ Σ, ϕ (Trace ρR (Frobq)) = Trace ρT (Frobq) = j (Tq)

and the j (Tq) generate T by (2).
Following the key idea that the general case is always modular, Mazur

introduced a second conjecture saying intuitively that parametrizations
of ordinary liftings and modular liftings are equivalent or that “universal”
is equivalent to “modular universal”, which is clearly a translation of the
TSW conjecture in the context of universal deformations.

Mazur conjecture 2. ϕ : R→ T is an isomorphism.
Theorem. Mazur conjecture 2 implies Mazur conjecture 1.
Sketch of the proof. Let ρ : G→ GL2 (k) be absolutely irreducible and

D-modular. If ρ is a D-lifting of ρ toA, we want to show that ρ is modular.
We first extend ρ and ρ to O and ρ becomes a (D,O)-lifting. Let ψρ :
R → A be the morphism of algebras asserted by Mazur-Ramakrishna
theorem. If ϕ : R → T is an isomorphism we can consider the inverse
map ϕ−1 : T→ R and the composed map ψ = ψρ ◦ ϕ−1 : T→ A

ψ : T
ϕ−1

→ R
ψρ→ A

We deduce from (T3) that ψ (Tq) = Trace ρ (Frobq) for almost every
prime q. Shimura results imply then the existence of an eigenform f ∈
S2 (N), f =

∑
n≥1

anκ
n, s.t. aq = Trace ρ (Frobq) = ψ (Tq) for almost every

prime q. But this implies that the representation ρ is modular.
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10.12 Complete intersections and Gorenstein prop-
erty

We get universal local algebras R associated to deformation data D =
(Σ, t). As we have noted, R represents the functor L which associates
functorially to every local algebra A as above the set of deformations
L(A) = {lifting of ρ to A}. The problem is to measure in some sense the
“size” of R. The simplest way to do that is to compute the dimension
of its “tangent space” at its maximal ideal mR.

The “tangent space” to R is TR = Homk (R, k[ε]) the set of k[ε]-
points of R. It corresponds to first order infinitesimal deformations and
its dimension can be computed using Galois cohomology. For every mor-
phism t : R→ k[ε] the maximal ideal mR of the local ring R maps onto
k[ε] with a kernel containing m2

R and TR = Homk (R, k[ε]) is the dual
space of the “cotangent space”

T ∗R =
mR

m2
R

The problem is now to prove that ϕ : R → T is an isomorphism.
Surjectivity is “easy”. For injectivity, Wiles introduced a fundamental
numerical criterion. The idea is to bound the order of “tangent spaces”
at prime ideals of R.

If ρ is D-modular, there exists an eigenform f ∈ S2 (N) and a prime
ideal p | p (p ∈ p) of Of such that ρf,p is a D-lifting of ρ. If Of ⊂ O
(with K the field of fractions of O), then ρf,p

⊗
Of
O is a (D,O)-lifting of

ρ. As the Galois representation ρf,p
⊗
Of
O is modular by construction, due

to the universality property T4, there exists one and only one morphism

πT : T→ O s.t. the composed map G
ρT−→ GL2 (T)

πT−→ GL2 (O) satisfies

πT ◦ ρT = ρf,p
⊗
Of

O .

Let pT = Ker (πT) and

pR = Ker (πT ◦ ϕ) = ϕ−1 (pT) = Ker (πR)

where πR is the (unique) map πR : R→ O by the universal property of
R. We have therefore:

R

ϕ−1

−→
←−
ϕ

T

πR ↘ ↙ πT

O
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The property (T2) of T (to be generated over O by the Hecke oper-
ators j (Tq) for “good” q) and the fact that, for almost every prime q,
Trace ρf,p (Frobq) = aq imply that, for almost every prime q, πT (Tq) = aq.

Now, we use the fact that the cotangent spaces of the schemes Spec (R)
and Spec (T) at the points pR = Ker (πR) and pT = Ker (πT) are respec-
tively pR

p2
R

and pT

p2
T
. As explains Barry Mazur ([30], p. 271)

“The intuition behind this definition is that if one thinks of
R as being “functions on some base-pointed space”, then mR

may be thought of as those functions vanishing at the base
point, and T ∗R is the quotient of mR by the appropriate ideal
(of “higher order terms” of these functions) so as to isolate
the “linear parts” of these functions.”

At this point Wiles uses a special property of the Hecke algebra T,
namely to be a Gorenstein ring. This result due to by Barry Mazur means
that there exists a (non canonical) isomorphism of T-modules between T

and HomO (T,O) .

“The turning point in this and indeed in the whole proof came
in the spring of 1991. In searching for a clue from commuta-
tive algebra I had been particularly struck some years earlier
by a paper of Kunz [Ku2]. I had already needed to verify
that the Hecke rings were Gorenstein in order to compute
the congruences developed in Chapter 2. This property had
first been proved by Mazur in the case of prime level and his
argument had already been extended by other authors as the
need arose.”

The morphism πT : T → O corresponds therefore to an element ξ of
T and, via πT itself, to an element πT (ξ) of the ring O:

HomO (T,O) →̃ T
πT→ O

πT 7→ ξ 7→ πT (ξ)

Let η be the ideal (πT (ξ)) of O (η is well defined idependently of the
isomorphism HomO (T,O) ' T). Wiles gave a sufficient condition for
ϕ : R → T to be an isomorphism in terms of order of the “cotangent

space” pR/p
2
R. As ϕ is onto, we already have #

(
pR

p2
R

)
≥ #

(
pT

p2
T

)
.

Theorem (Wiles). #
(
O
η

)
≤ #

(
pT

p2
T

)
≤ #

(
pR

p2
R

)
. If #

(
pT

p2
T

)
(and

therefore #
(
O
η

)
) are finite, then T and R are complete intersections

iff #
(

pT

p2
T

)
= #

(
O
η

)
. Further, if #

(
pR

p2
R

)
= #

(
O
η

)
, then ϕ : R→ T is an
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isomorphism of complete intersection rings. An O-algebra A is a com-
plete intersection if A ' O [[T1, . . . , Tr]] / (f1, . . . , fr) (as many relations
as variables).

Wiles shows #
(

pT

p2
T

)
≥ #

(
O
η

)
and therefore, if #

(
pR

p2
R

)
≤ #

(
O
η

)
we

get the equalities

#

(
pR

p2
R

)
= #

(
pT

p2
T

)
= #

(
O
η

)
and ϕ induces an isomorphism of the “tangent spaces” of R and T at the
corresponding “points” pR and pT. Due to the fact that T is a complete
intersection over O, this “tangent isomorphism” implies that ϕ is an
isomorphism. Indeed, as Darmon, Diamond and Taylor explain in [9],

“The usefulness of the notion of complete intersections comes
from the following two (vaguely stated) principles:

1. Isomorphisms to complete intersections can often be
recognized by looking at their effects on the tangent spaces.

2. Isomorphisms from complete intersections can often be
recognized by lookingat their effects on the invariants η.”

The last difficulty in the proof of the TSW conjecture is then to bound

the order #
(
O
η

)
. The new idea is to give a cohomological interpretation

of “tangent spaces” in terms of Selmer groups. It is the most technical
and difficult part of the proof!

10.13 Selmer groups

Selmer groups enter the stage because the classical local/global Hasse-
Minkowski principle for solving Diophantine problems does not apply to
ECs. One considers solutions in the “local” fields Qp and R as local solu-
tions, and solutions in the “global” field Q as global solutions. Of course,
if global solutions on Q exist they can be localized and local solutions
exist for every prime p, their coherence being ensured by the underlying
global solution. The main problem is to solve the inverse problem, that is
when local solutions imply the existence of global solutions. It is highly
non trivial. Many classical theorems say that if a Diophantine equation
f = 0 has “local” solutions at every “point” p (i.e. mod p) and a solution
over R (point at infinity) then it has a “gobal” solution over Z. The best
known is Minkoswki’s theorem that proves this assertion for quadratic
forms with rational coefficients.

But this Hasse principle is not verified by algebraic curves. In 1951,
Selmer gave the famous counterexample of the projective cubic C over Z
of equation

3x3 + 4y3 + 5z3 = 0
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which has solutions modulo every prime p and over R but has no rational
point at all. Let E be an elliptic curve defined over Q . It is also trivially
defined over Qp and R since Q is a subfield of Qp and R. The main
question is to know in what exact sense the “local” elliptic curves E/Qp

and E/R determine the “global” one E/Q. An elliptic curve E ′/Q such
that E ′/Qp ' E/Qp and E ′/R 'E/R is called a companion of E/Q and
the main problem is to compute what is called the Selmer group S (E) of
the classes of isomorphisms of the companions of E. This fondamental
concept is commented in the following way by Barry Mazur ([29], p. 21)
for any algebraic variety V :

“One can think of the cardinality of S (V ) as roughly analo-
gous to a class number, i.e., a measure of the extent to which
local data (in this case, the isomorphism classes of V/Qp for
all p, and V/R) determine or fail to determine global data (the
isomorphism class of V/Q). One might say that the local-to-
global principle holds for a class of varieties V if S (V ) consists
of the single isomorphism class {V } for each member V of V .”

Using deep results of Rubin and Kolyvagin, Mazur proved the
Theorem (Mazur). The set S (C) of the non isomorphic companions

of the Selmer curve C is constituted by the 5 curves defined over Z:
3x3 + 4y3 + 5z3 = 0, 12x3 + y3 + 5z3 = 0, 15x3 + 4y3 + z3 = 0, 3x3 +
20y3 + z3 = 0, 60x3 + y3 + z3 = 0, and the last curve J is the common
Jacobian of the four other curves and is the only one to have a Q-rational
point ({0, 1,−1}, it is unique).

In fact the natural interpretation of Selmer groups is cohomological.

11 Some developements since 1994.

Fred Diamond generalized Wiles result to the case of elliptic curves E
defined over Q which are semi-stable only at p = 3 and p = 5. A corollary
(Rubin-Silverberg) was that if the 2-division points of E/Q are rational
then E is modular. And finally in 1999 Christian Breuil, Brian Conrad,
Diamond and Taylor generalized it to all elliptic curves E/Q. This final
achievement required a lot of hard computations made possible by new
techniques introduced by Breuil. It is interesting to emphasize that these
new translations show how the reinterpretation is a never-ended open
process. As the authors claim (Breuil et al. [3], p. 848):

“In the key computation of the local deformation rings, we
now make use of a new description (due to Breuil) of finite
flat group schemes over the ring of integers of any p-adic field

57



in terms of certain (semi)-linear algebra data. (...) It seems
miraculous to us that these long computations with finite flat
group schemes (...) give answers completely in accord with
predictions made from much shorter computations with the
local Langlands correspondence and the modular representa-
tion theory of GL2(Q3). We see no direct connection, but
cannot help thinking that some such connection should ex-
ist.”

A lot of deep results “à la Fermat” on Diophantine equations proceed
from these extraordinary achievements. Other very important conse-
quences concern the theory of elliptic curves, e.g. the celebrated Birch
and Swinnerton-Dyer conjecture saying that LE (s) is analytic on the
whole complex plane C (in particular at s = 1) with ords=1L = r, where
r is the rank of E. Due to the Mordell-Weil theorem, the group of ra-
tional points E (Q) is a finitely generated abelian group and is therefore
of the form E (Q) = T + Zr. We have Mazur’s theorem for the torsion
subgroup T and r is the rank. As Henri Darmon explains:

“Knowing that E is modular also gives control on the arith-
metic of E in other ways, by allowing the construction of
certain global points on E defined over abelian extensions
of quadratic imaginary fields via the theory of complex mul-
tiplication. Such analytic constructions of global points on
E actually play an important role in studying the Birch and
Swinnerton-Dyer conjecture through the work of Gross-Zagier
and of Kolyvagin.”6

Other generalizations concern the situation of ECs defined not over
Q but over an extension of Q such as Q (i) (imaginary quadratic field) or
Q
(√

2
)

(totally real field). They are extremely difficult. Of particular in-
terest are what are called Q-curves. They are elliptic curves E/K defined
over a Galois extension K of Q having the property of being isogenous
to all their Galois conjugates. As explains Jordan Ellenberg ([17]), they
constitute

“the ‘mildest possible generalization’ of the class of elliptic
curves over Q.”

Kenneth Ribet proposed the conjecture that an elliptic curve over C is
modular iff it is a Q-curve.

Another conjecture asserts that if A is an abelian variety over Q for
which End (A)⊗

Z
Q is a number field of degree equal to dimA, then there

6Darmon [9], p. 1399.
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exists an hyperbolic uniformization of A defined over Q. As explains
Ribet ([35], p. 383)

“It is natural to regard Conjecture 1 and Conjecture 2 as
generalizations of the Taniyama-Shimura conjecture. The first
conjecture pertains to elliptic curves which are not necessarily
defined over Q, while the second pertains to abelian varieties
over Q which are not necessarily elliptic curves. Neither of
these conjectures is proved.”

Another line of generalization consists in studying higher dimensional
representations ρ : G → GLn

(
Fp
)

with n > 2. See e.g. the works of
Avner Ash.

The TSW conjecture is part of the research program on the rela-
tions between Galois representations and automorphic forms known as
Langlands program. Langlands conjectures have been proved in 1998 for
local fields by Harris and Taylor and in 1999 for function fields by Louis
Lafforgue (who won for that the Fields medal in 2002).

In what concerns Serre’s modularity conjecture (which is stronger
than the TSW conjecture), it has been proved in 2005 by Chandrashekhar
Khare in the level 1 case, and later in 2008 by Khare and Jean-Pierre
Wintenberger.

12 Conclusion: the conceptual complexity

of a proof

We have tried to present conceptually the elements of Wiles’ proof of the
Taniyama-Shimura-Weil conjecture and we emphasized the fact that its
main steps consist in translating parts of theories into another theories
in order to make explicit and tractable some pieces of information. To
say that the proof is not “direct and simple” but “indirect and complex”
is to say that the amount of such translational steps is very high.
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