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I think that structuralism can be considered as a direct consequence of
a general transcendental perspective on modern physics based on the
three following principles:

1. Physics concerns only phenomena. Phenomena are relational enti-
ties which are inseparable of their conditions of observation, and
the accessibility conditions (observation, measure, extraction of
information, etc.) are constitutive of the very concept of physical
object. In that sense physical objectivity cannot be the ontology
of a mind-independent substantial reality and any ontological re-
alism has to be rejected.

2. But �ontological� concepts still have a theoretical function. To be
transformed in objects, phenomena must be conceptually �legal-
ized� via a categorial structure. The �rst philosophical themati-
zation of this principle was Kant�s

explaining how the four categorial blocks:
phoronomy, dynamics, mechanics, and phenomenology, act in New-
tonian mechanics.
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3. The essential feature of physics is the mathematical interpretation
of the categorial concepts which transforms them into
for the of phenomena. This is the
main point. Physics has to solve an , namely the
inverse problem of the abstraction problem. Conceptual
must be complemented with a of phe-
nomena. In Kant�s, computational synthesis if based �rst on the
schematization and second on the �construction� of categories.

The consequence of (3) is that physics is necessarily structural since
computational synthesis is mathematical and mathematics are struc-
tural.

In the the cat-
egorial moments of classical Mechanics can be summarized in the fol-
lowing way (in modern terms).

1. : Euclidean metric as background structure (a pri-
ori), Galilean relativity.

2. : Physical dynamics has to be described by differential
entities (velocities, accelerations, etc.) varying covariantly (link
with phoronomy). Physics must be a differential geometry.

3. : the category of substance is reinterpreted as the
principle of conservation laws, the category of causality as forces,
the category of community as interaction.

4. (modality): due to relativity, movement is not
real (it is a purely relational ungrounded phenomenon). Position
and velocity are not observable properties whose values could in-
dividuate dynamical states. The body �has� such position and
such velocity in the sense of �having a property� is not a physical
judgement.

A modern striking example of (3) is given by the constitutive role
of . In general relativity and non abelian gauge theories, the
drastic enlargement of the symmetry groups enables to mathematically
construct the physical content of the categories of force and interac-
tion . I think that this thesis is akin to
Van Fraassen�s hypothesis that symmetry groups are devices allowing
problem solving.

For me, as for my colleague Daniel Bennequin (a specialist of sym-
plectic geometry and string theory) this is a deep manifestation of the

essence of modern physics:
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entities which cannot be physical observables are at the same time prin-
ciples of determination of the physical obervables

differentiable
cohomology

geometric

Non Commutative Geometry
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.
In the evolution of modern physics one can observe a great stability

of the categorial structures coupled with a great variability of their suc-
cessive mathematical interpretations. I think that this variability is by
no means an argument against a transcendental approach. For instance,
in Kant, the a priori nature of space and time means essentially that the
Galilean structure of space-time is a background structure for Mechan-
ics. And this is perfectly true. In GR metric is no longer a background
structure and becomes a dynamical feature of the theory. The -
invariance as gauge-invariance implies that localization becomes purely
relational and that points lack any physical content. But I think that
this background independence doesn�t refute transcendentalism at all.
I have developped the hypothesis that the structure of
space-time with the of differential forms remains a back-
ground structure.

In this talk, I want to comment on a new technical example of
mathematical reinterpretation of the categorial structures of physics
in relation with John Baez� requisite (less radical than Lee Smolin�s)
of background independence of any structure. The problem
is rather difficult, especially in what concerns Quantum Gravity. How
eliminate background geometry in QM while maintaining at the same
time the computational efficiency of geometry?

I think that the most interesting answer to this problem comes from
and I want to present here an example,

namely how in NCG metric can be reinterpreted in purely spectral
terms using the formalism of Clifford algebras and Dirac operators and
how a pure non-commutative generalization yields a natural interpre-
tation of the Higgs phenomenon.

Philosophically, the breakthrough of NCG is to start from QM and
to �quantize� all classical geometrical concepts. The con�ict between
geometry and QM disappears from the outset since quantum concepts
are no longer subordinated to any backgroung geometrical structure.

To understand NC Geometry we must �rst come back to Gelfand theory
of commutative -algebras.

Recall that a -algebra is a Banach algebra (i.e. normed and
complete) with an involution s.t. . is the
spectral radius of the element , that is the Sup of the spectral
values of :

is not invertible
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In a -algebra the norm becomes therefore a purely concept.
In this classical setting, the mathematical interpretation of the fun-

damental (categorial) concepts of

1. space of states,

2. observable,

3. measure,

is the following:

1. the space of states is a smooth manifold: the phase space ;

2. the observables are functions (interpreted as
s.t. );

3. the measure of in the state is the evaluation
(where is the Dirac distribution at ).

The observables constitute a commutative -algebra and Gelfand
theory explains that the geometry of the manifold can be retreived
from the algebraic structure of .

Let be a topological space and let be the algebra
of continuous functions . It is a -algebra under general
conditions (e.g. if is compact).

The possible values of 	 that is the possible results of a measure
of 	 can be de�ned in a purely algebraic way as the of
that is

is not invertible in

Indeed, if then is not invertible in .
The main point is that the evaluation process 	 that is the

measure 	 can be interpreted as a between the space
and the algebra . Indeed, to a point of we can associate the

of :

But the maximal ideals of constitute a space 	 the of
the algebra . The can be considered as the of the
of , that is of the morphisms (multiplicative linear forms) ,
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( ) ( ) sp ( )

Sp( ) =
˜ Sp( )

˜ : Sp( )

(̃ ) = ( ) =

˜ : ( Sp ( ))
˜

˜(Sp( )) = sp( )

˜ ( Sp ( ))

duality
distributions

spectrum

Gelfand transform

isomorphism

equivalence

geomet-
ric correlate

Non Commutative Geometry Spectral Geometry
Quantum Geometry

reinterpreting

The basic concepts remain the same but there mathematical
content is complexi�ed

5

A character is a procedure for evaluating the elements . The
evaluation is also a .and .

As , the characters correspond to the Dirac distribu-
tions .

The of the -algebra is by de�nition the space of char-
acters . If is an element of , we associate to it a
function on

We get that way a map

which is called the .
For every we have

The key result is then:
. If is a commutative -algebra,

the Gelfand transform is an between and .
Gelfand theory shows that in the classical case of Halmiltonian Me-

chanics and commutative -algebras there is an between
the geometric and the algebraic perspectives.

In Quantum Mechanics (Von Neumann, Gelfand, Neimark, Segal)
the basic structure is that of the non commutative -algebras of ob-
servables. It is therefore natural to wonder if there could exist a

of this non commutative algebraic setting. It is the origin
of Connes� also called
or .

The most fascinating aspect of the research program of NCG is how
Alain Connes succeeded in all the basic structures of clas-
sical geometry in the framework of NC -algebras operating on Hilbert
spaces.

, their classical content becoming a commuta-
tive limit. We meet here a new very deep example of the conceptual
invariance through mathematical enlargements as in GR or QM.

Connes reinterpreted (in an extremely deep and technical way) the
six classical levels:
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derivations
Leibniz rule

a universal derivation struc-
ture

C D

D ab Da b a Db

D D . D D D

D D c c
,

D ,D D ,D
,

m

D a m a ma am.

m a .b a. m b ma am b a mb bm

mab abm

m ab .

d
a da a a .

:

( ) = ( ) + ( )

(1) = (1 1) = (1)1 + 1 (1) = 2 (1)

(1) = 0 ( ) = 0
Der( )

[ ]
Der( )

( ) = ad( )( ) =

ad( )( ) + ad( )( ) = ( ) + ( )

=

= ad( )( )

:
= 1 1
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1. Measure theory;

2. Algebraic topology and topology (K-theory);

3. Differentiable structure;

4. Differential forms and De Rham cohomology;

5. Fiber bundles, connections, covariant derivations, Yang-Mills the-
ories;

6. Riemannian manifolds and metric structures.

Let us take as a �rst example the reinterpretation of the differential
calculus.

Let be a
NC -algebra. We want �rst to de�ne that is

-linear maps satisfying the (which is the universal formal
rule for derivations):

For that, must be endowed with a structure of -bimodule (right
and left products of elements of by elements of ). A consequence of
Leibniz formula is

and therefore , which implies .
Let be the -vector space of such derivations. It is a

Lie algebra since is a derivation if are derivations. In
there exist very particular elements, the interior derivatives,

associated with the elements of :

Indeed,

Now, we stress the fact that there exists
depending only upon the structure of . It is given by
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3.2. Non commutative differential calculus or �quantized�
calculus.

�

Der( ) Hom �

: Der( )
˜ : �
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= 1 1 1 ( ) (1) = ( ) (1) = 0
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= 0

[ ]

= [ ]

= 0
= [ ] = 1

( ) = ( )
0 0

( ) 0

operators

in�nitesimal
to reinterpret the classical concept of in�nitesimal in the NC

framework
compact

�nite

adb

, ,

D ,
D

a b aD b .

da a a .D a a.D D a D
n

a da ...da .

d
a da ...da da da ...da .

d

C

df f f

df

dt
F, f

F f
df

df F, f

F d f .
d f F , f F

df

T
� T T T T

� > T < �
� T T

k
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Let be the sub-bimodule of generated by the . It is
the bimodule of universal 1-forms on . Universality means that

If is an element of , the associated morphism
is de�ned as

So (since ).
We can generalize this construction to universal -forms which will

have the symbolic form

The differential is then

It is easy to verify the fundamental property .

We suppose now that the -algebra acts upon an Hilbert
space and we want to interpret in this representation the universal,
formal, and purely symbolic differential calculus of the previous section.
For that we must interpret the of the elements , these being
now on . Connes main idea is to use the well known formula
of QM

where is the Hamiltonian of the system and any obervable.
We interpret the symbol as

for an appropriate self-adjoint operator . We want of course
But and the simplest solution is given by .

The main constraint is that the must be . We have
therefore

. Connes de�nition is that an operator is in�nitesimal if it
is , that is if the eigenvalues of converge
to that is if for every the size of is outside a subspace
of dimension. If as then is an in�nitesimal of

order .
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We interpret therefore the differential calculus in the NC framework
through triples where is compact for every . Such
a structure is called .

The differential forms are now interpreted as operators

In the classical case of the commutative -algebra
( necessarilly differentiable) acting by multiplication upon

the Hilbert space , the Fredholm operator is the

and is (up to ) the operator de�ned by the kernel

is compact iff has a vanishing mean oscillation, that is if

being the mean value of on the interval .
It must be emphasized that the NC generalization of differential

calculus is a wide and wild generalization since it enables a differential
calculus on fractals!

Another great success of Alain Connes was the complete and deep rein-
terpretation of the in Riemannian geometry. Classically,

. But in the NC framework, the must be interpreted as
where is a Fredholm module and the as an

element of the matrix algebra . The must become an
operator

Connes� idea is to reinterpret
the classical notion of distance between two points of a Rie-
mannian manifold as the Inf of the length of the paths
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the Clifford algebra
the differential

forms and the metric

anti-commutation

( ) = = ( )

( ) = Sup ( ) ( ) : grad( ) 1

( )

�

� �

= 2( )

Cl( )

= ( )

Cl( )
Cl( )

2 ( ) = ( + ) ( ) ( )

= 2 ( )

Cl = Cl( )

Cl =

L 	 ds g dx dx .

C

d p, q f p f q f

... L x M
T M

M.

O n

v v
v v.w

v w

v, w v, w

V
g V, g

v v g v , v V

V, g v v v.v
V, g
V

g v, w g v w g v g w

g

v, w g v, w

, g .
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An elementary computation shows that this de�nition of the dis-
tance is equivalent to the dual algebraic de�nition using only concepts
concerning the -algebra

where is the norm, that is the Sup on of the norms
on the tangent spaces .

Now the core of the NC de�nition of dis-
tance uses of the Riemannian manifold

Recall that the formalism of Clifford algebras relates
in Riemannian manifolds. In the classical case of

the Euclidean space , the main idea is to encode the isometries
in an algebra structure. As every isometry is a product of re�ections
(Cartan), we can associate to any vector the re�ection relative
to the orthogonal hyperplane and introduce a multiplication
which is nothing else than the composition .

We are then naturally led to the anti-commutation relations

More generally, let be a -vector space endowed with a quadratic
form . Its Clifford algebra is its tensor algebra quotiented by
the relations

In the tensorial product becomes a product . It
must be stressed that there exists always in the constants
which correspond to the 0th tensorial power of .

Using the scalar product

associated with , one gets the relations

Elementary examples are given by the

.
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Cl = = = 1 Cl =

Cl = = + = Cl =

Cl =

Cl = [2] 2 2
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Cl( ) Cl( )

Ad : Cl ( ) Aut (Cl( ))
Ad :

=
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+
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( )
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( )

Ad( ) =
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( )

ad
cl ( ) = Cl( )

Cl ( )

ad : cl ( ) = Cl( ) Der (Cl( ))
ad : [ ]
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( , , ).

( , , ).

.

( matrices with entries in ).

.

.

.

(Bott periodicity theorem).

If (which would always be the case for if is non
degenerate) is invertible in this algebra structure and

The multiplicative Lie group of the invertible elements of
act by on . This yields the

But

Hence

The derivative of the adjoint representation enables to retreive the
Lie bracket of the Lie algebra of the Lie group
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v g v
V, g /
/

C

V, g C k v . .v

C V
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ε v v V

ε v u v u .

ε v v v

� v
g

� v u g v, u u u u .

� v

ε v , � w g v, w

c v ε v � v
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Now there exists a fundamental relation between the Clifford algebra
of and its exterior algebra . If and if we interpret

as , the anti-commutation relations become simply ,
that is the antisymmetry . Therefore

In fact, can be considered as a way of quantifying using
the metric to get anti-commutation relations.

Due to the relations which decrease the degree of a prod-
uct by , is no longer a -graded algebra but only a -graded
algebra, the -gradation corresponding to the even/odd elements.

But we can reconstruct a -graded algebra associated to

, the being the homogeneous terms of degree : .

. The map of graded algebras

given by is a .

We consider now operations on the exterior algebra:

1. The exterior multiplication by :

We have since .

2. The contraction (interior multiplication) induced by the met-
ric :

We have also .
One shows that the anti-commutations relations obtain:

Let . We get the anti-commutation relations of the
Clifford algebra
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4.3. Spin groups.

4.4. Dirac equation.

4.5. NC distance and Dirac operator.

( ) ( )
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�
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g.V.g V v . .v v . .v

n
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The isometry group (or if the sig-
nature of is different) is canonically embedded in . If we try
to characterize its elements in in terms of the Clifford multipli-
cation we use the two properties:

1. (where is the Clifford
conjugation,

2. (where is the transposition).

But these properties characterize a larger group, the ,
which is a 2-fold covering of . If we take into account the orienta-
tion and restrict to the 2-fold covering becomes the

. By restriction of the Clifford multiplication and of the adjoint
representation to , we get therefore a representa-
tion of in the spinor space .

We can use the Clifford algebra to change
the exterior derivative of differential forms.

We de�ne the Dirac operator as

where is the Clifford multiplication.. (the Laplacian) and
acts on the spinor space .

More generally, if is a
Riemannian manifold the previous construction can be done for every
tangent spage endowed with the quadratic form . We get that
way a of Clifford algebras . If is a spinor bundle,
a bundle of -modules s.t. with a covariant
derivative , we associate to it the Dirac operator

which is a �rst order elliptic operator interpretable
as the �square root� of the Laplacian , which interprets itself the
metric in operatorial terms. can be extended from the -
module to the Hilbert space . In general,
due to chirality, will be the direct sum of an even and an odd part,
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and will have the characteristic form

and being adjoint operators.
The metric induces canonical isomorphisms between

the tangent and cotangent spaces and therefore

and the 1-forms act on via the spin
representation . They satisfy the anti-commutation relations

and if are local coordinates, are elements of .
Let us look now at the connections. There exists �rst the

on :

with the Leibniz rule for and :

There exists also the on

with the Leibniz rule for and :

The Dirac operator on is then de�ned as

In local coordinates terms
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It then easy to compute the bracket for . If
, we have

and therefore , that is

In the standard case where and , being a
-module of spinors ( ), we have seen that is a

differential operator with constant coefficients taking its values in .

with the constant matrices satisfying the anti-commutation
relations

The classical Dirac matrices are the for They
satisfy the anti-commutation relations

The fundamental point is that the are associated with the basic
1-forms through the isomorphism

and is the norm of the Clifford action of on the space of
spinors . But
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the propagator of the
Dirac operator

5.1. Symmetry breaking and classical Higgs mechanism.
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Whence the de�nition:

In this reinterpretation, corresponds to
If is the Fredholm operator de�ning the differ-

entials , can be symbolically interpreted as

and therefore interprets . As operator acting on the Hilbert
space , is an unbounded self-adjoint operator such that is
bounded and such that its resolvent is compact

(which corresponds to the fact that is in�nitesimal). In
terms of the operator , .

An extraordinary example of pure NC physics is given by Connes� in-
terpretation of the Higgs phenomenon.

Let
us �rst recall the classical Higgs mechanism. Consider e.g. a theory
for scalar real �elds and . The Lagrangian is

with the potential

It is -invariant.
For the minimum of (the quantum vacuum) is non degen-

erate: and the Lagrangian of small oscillations in the
neighborhood of is the sum of Lagrangians of the form:

describing particles of mass .
But for the situation becomes completely different. Indeed

the potential has a full circle (an -orbit) of minima
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and the vacuum state is highly degenerate.
One must therefore to choose a vacuum state.

Let us take for instance and translate the situation to :

The oscillation Lagrangian at becomes

There exist particles:

1. a particle of mass which corresponds to radial oscil-
lations,

2. a particule of mass connecting the vacuum states. is
the .

As is well known, the Higgs mechanism consists in using a cooper-
ation between the gauge boson and the Goldstone boson to confer a
mass to the gauge boson.

Let the complex �eld of the previous model. the
Lagrangian is

It is of course invariant by the global internal symmetry . If
we localize the global symmetry by and if we take
into account the coupling with an electro-magnetic �eld deriving from
the vector potential , we get

with the covariant derivative

and the force �eld

The Lagrangian remains invariant if we compensate the localization of
the global internal symmetry with a change of gauge
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For , and we get scalar particles and and a
photon .

For , if we take and write

if and are small,

we get for the oscillation Lagrangian:

1. The �eld (radial oscillations) has mass

2. The boson acquires a mass due to the term and interacts
with the Goldstone boson .

The terms containing the gauge boson and the Goldstone boson
write

and are therefore generated by the gauge change

We see that we can use the gauge transformations

for �xing the vacuum state. The transformation corresponds to the
phase rotation

In this new gauge where the Goldstone boson disappears, the
vector particule acquires a mass . The Lagrangian writes

The Goldstone boson connecting the degenerate vacuum states is in
some sense �captured� by the gauge boson and transformed in mass.
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5.2. NC Yang-Mills theory of points.
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Let
the -algebra of the space composed of points and . Its elements

act by multiplication on the Hilbert space

. We take for Dirac operator an operator of the form

and introduce the �chirality� (the of the standard

Dirac theory). In this discrete situation we de�ne as

with Therefore

where is the greatest eigenvalue of .
If we apply now the formula for the distance:

we see that the distance between the two points and has a
content and is measured by the Dirac operator.

We consider now the idempotents (projectors) and de�ned
by

Every writes , and therefore

and provide a natural basis of the space
of 1-forms . Let
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5.3. Higgs mechanism.
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a 1-form. is represented by

But and therefore

Let us now construct the . A vector potential
	 a connection in the sense of gauge theories 	 is a self-adjoint 1-form
and has the form

Its curvature is the 2-form

and a computation gives

The Yang-Mills action is the integral of the curvature 2-form, that
is the of :

But as and

we get

This Yang-Mills action manifests
. The minimum of is

reached on all the circle and the gauge group
of the unitary elements of acts on it by

where with .

The �eld is a Higgs bosonic �eld corresponding to a gauge con-
nection on a NC space of points.
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A remarkable achievement of this NC approach of Yang-Mills theories is
given by Connes NC derivation of the Glashow-Weinberg-Salam stan-
dard model. It is easy to reinterpret in the NC framework classical
gauge theories where is a spin manifold, , is the Dirac
operator and is the space of sections of the spinor bundle
. is the relativity group (the gauge

group) of the theory.
In there exists the subgroup of inner automorphisms

acting by conjugation . It is trivial in the commutative case
and is one of the main feature of the non commutative case.

In there exists the group of unitary elements
acting by .

In the NC framework we can easily formulate standard Yang-Mills
theories. A vector potential is a self-adjoint operator interpreting a
1-form

and the force is the curvature 2-form

The unitary group acts on by gauge transformations

The interest of NC geometry is the possibility of coupling such classi-
cal gauge theories with purely NC ones introducing Higgs �elds. Connes
main result is:

The Glashow-Weinberg-Salam standard model
can be entirely reconstructed from the -algebras

where the �internal algebra has for unitary group the
symmetry group

The �rst step is to construct the model which is the product
of the classical Dirac fermionic model and the

previous purely NC 2-points model with
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The second step is to complexify the model and to show that it
enables to derive the complete GWS Lagrangian

1. is the Lagrangian of the gauge bosons

, gauge �eld

, gauge �eld.

2. is the fermionic kinetic term

with left fermion �elds of hypercharge and

right fermion �elds of hypercharge
3. is the Higgs kinetic term

with a pair of scalar complex �elds.

4. is a Yukawa coupling between the Higgs �elds and the fermions

where is a coupling matrix.
5. is the Lagrangian of the self-interaction of the Higgs �elds

Recently Connes realized a breakthrough in Quantum Gravity by cou-
pling such models with General Relativity. In NCG QG can be thought
of in a principled way and not as a �bricolage�. Indeed it becomes pos-
sible to introduce in the model a purely gravitational Hilbert-Einstein
action.

The general strategy is to �nd a -algebra s.t. is the
gauge group and plays the role of in a gravitational
theory.
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Let us explain how the NC identi�cation of points is different from
the classical identi�cation.

Let a set of two points. The (commutative) algebra
of functions on is

There are two completely different algebraic ways of de�ning the
quotient space in terms of

1. In the classical commutative way, one considers the sub-algebra
of of the s.t. .

2. In the non commutative way, one considers on the contrary
as a sub-algebra of the non commutative algebra . An

element is therefore interpreted as a function not

over but

To understand why this is a true identi�cation we must return to
the Gelfand-Neimark-Segal construction in the NC case. The problem
is to reverse the classical construction of QM where the basic structure
is the Hilbert space of states and the observables are (self-adjoint)
operators on . On the contrary, in the Gelfand-Neimark-Segal con-
struction one starts with a algebra and de�ne states as secondary
construed structures. Normally, if is a representation
of the algebra in the Hilbert space and if is a state,

de�ned by the scalar product is a posi-
tive ( ) normalized linear form on . This suggests
to a state as a positive normalized linear form on . If
is an observable, is interpreted as the of in state .

The space of states is and its extremal elements are
the states.

We use then the formalism of . If is a
state one can use it to de�ne a on . In
the case of , we have

de�nes a preHilbertian structure. If we take the quotient
by the ideal of �null norm� elements (i.e. by the s.t. ),
the of w.r.t. becomes an Hilbert space on which
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acts by multiplication. Moreover there exists a �cyclic� element
having the property that

is simply since A state is
if and only if the representation of in is .

In our case, we look at the pure states and
giving the values of the at the points and .

We have

Therefore and the �null norm� condition
means :

The associated Hilbert space is then

with the scalar product
The elements of act on the elements of by multipli-

cation

and a cyclic vector is the identity matrix modulo that is

the vector .

In exactly the same way and the �null norm�
condition means :

The associated Hilbert space is then
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It is this equivalence which expresses the NC identi�cation of the
points and
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with the scalar product
The elements of act on the elements of by multipli-

cation

and a cyclic vector is the identity matrix modulo that is

the vector .

Now the point is that the operator establishes an

equivalence between these irreducible representations of
which exchanges their cyclic vectors (in fact there exists only one irre-
ducible representation of , the standard one on ).

.


