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This paper begins with Husserl's phenomenological distinction between formal 
ontology (analytic theory of general objects) and "material" regional ontologies 
(types of "essences" of objects which prescribe "synthetic a priori" rules). It then 
shows that, as far as its "ontological design" is concerned, transcendental phenome
nology can be seen as an "object-oriented" epistemology (opposed to the classical 
"procedural" epistemology). The paper also analyses the morphological example. 
which constitutes the core of HusserI's third Logical Investigation, of the unilateral 
relation of foundation between sense qualities and spatia-temporal extension. It 
gives a geometrical model using the geometrical concepts of fibration, sheaf and 
topos. © 1995 Academic Press Limited 

1. Formal ontology vs. regional ontologies 

In Husserlian phenomenology, the concept of formal ontology cannot be dissociated 
from that of "material" regional ontology. Formal ontology concerns a formal 
analytic theory of general objects. It axiomatizes formal categories and concepts like 
those of: object, quality, relation, identity, equality, plurality, number, magnitude, 
whole, part, genus, species, state of affairs, etc. On the contrary, a "material" 
regional ontology-as for instance the ontology of perception-concerns the 
objective laws governing a phenomenal domain of a specific type. For Husserl, such 
an objective type has a normative status. It is a noematic essence, a set of 
constitutive eidetic rules, which a priori prescribes and detennines, prior to empirical 
data, what properties belong typically and generically to the objectivity of the 
empirical phenomena under consideration. 

According to Husser!, this possibility of coherent rule-governed anticipations is the 
main characteristic of objectivity. For instance, in his theory of perceptive adumbrations 
(Abschattungslehre), he explains that it is the possibility of anticipating the geometrical 
deformations of the apparent contours of an object which founds perceptive inten-
tionality, that is the directionality of consciousness towards external real objects. 

This fundamental thesis is corroborated by contemporary research. For instance, Jan 
Koenderink (1976: p. 59), one ofthe leading geometers in computational vision, claims: 

If an observer has been permitted to visually explore a certain body by means of 
changing his vantage point voluntarily, he can gather enough information to predict 
future changes of the visual image [anticipation]. He is able ( ... ) to interpret such 
changes as proprioceptive, and may consider the object as an unchanging entity, de~pite 
the changing visual input [unity and objective identity]. Our geometrical theory 
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[singularity theory] enables us to understand the structure of th, observer's internal 
models of external bodies, 

The main Husserlian idea is that the temporal flux of the manifold of mental 
states (BewuBtseinsmannigfaltigkeit) is governed by rules which prescribe 
(vorzeichnen) its connexions and series (BewuBtseinszusammenhiinge). The fun-
damental problems of phenomenology, which Husserl calls the "functional" ones 
(1913; §86 "Die funktionellen Probleme"), concern 

how, according to absolutely invariant eidetic laws, an existing object can be a correlate 
for linked series of states of consciousness of a perfectly determined eidetic status, and 
conversely how the being inherent to such linked series is equivalent with an existing 
object. (p. 177). t 

As Husserl [1913: §16 on Region and Category in the material sphere. Synthetic a 
priori knowledge (Husserrs emphasis)]: 

The region is nothing else than the generic total and highest unity ( ... ) which belongs to a 
concretum. (p. 30).* 

Every regional essence determines eidetic 'synthetic' truths, that is truths which have their 
foundation in it, in so far as it is such a generic essence, and which are not simply 
particular forms of truths belonging to formal ontology. (p.31).§ 

Regional categories 

do not only express, as do concepts in general, particular forms of purely logical 
categories, ( ... ) they express in terms of eidetic generality what must a priori and 
'synthetically' occur to an individual object of the region. (p. 31).11 

On the contrary, as is explained in § lOon Region and Ca.legory. The analytic 
region and its categories, the "formal region" is not an authentic one. It is ··the 
empty form of a region in general". 

Die sog. 'formale Region' ( ... ) ist eigemlich nicht Region, sondern .feere Form von Region 
Uberhaupt. (p. 22). 

It prescribes only a common general formal law-governedness to the material 
regional ontologies. 

t "Wie, nach absolut festen Wesensgesetzen seiender Gegenstand Korrelat ist fUr 
BewuBtseinszusammenhange ganz bestimrnten Wesengehaltes, sowie umgekehrt das Sein so gearteter 
Zusammenha.nge gleichwertig ist mit seisndem Gegenstand". 

:j: "Region ist nichts anderes als die gesamte zu einem Konkretum gehorige oberste Gattungseinheit." 

§ "Jedes regionale Wesen bestimmt "syntherische" Wesenswahrheiten, d.h .. wlche, welche in ihm als 
diesem Gattungswesen grunden, nicht aber bloSe Besonderungen formal-ontologischer Wahrheiten sind." 

II "Diese Begriffe [die regionalen Kategorien1 in eidetischer Allgemeinheil ausdrucken, was einem 
individuellen Gegenstand der Region 'a priori' und 'syntherisch' zukommen muU." 
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We can therefore set down the following list of oppositions: 

Formal 
General 
Analytic 

Formal ontology 

Logical categories 
General legislation 

Regional ontologies 

Material 
Specific 
Synthetic a priori 
Essence: typicality, genericity 
Anticipation 

2. Transcendental phenomenology as "object-oriented" 
epistemology 
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Since Dreyfus' (1982) Husserl, Intentionality and Cognitive Science, many philo-
sophers have emphasized the close links between Husserlian phenomenology, 
contemporary research in artificial intelligence and computational cognitivism (see 
e.g. Mclntyre & Woodruff Smith 1982; Mcintyre 1986). It is true that the 
noetico-noematic correlation shares many common features with cognitive 
functionalism and that the epoche and transcendental reduction yield remarkable 
cases of methodological solipsism. The main difference with, for instance, a theory 
of mental representations of a Fodorian type is that, according to Husserl, 
intentionality is constituted on the solipsistic basis of "narrow" cognitive contents-
which are "narrow" in the sense they are no longer denotative. Intentionality is 
therefore no longer a semantic property linking the cognitive contents with the 
external world via some causal theory of reference. According to Husserl, it is 
defined after the bracketing of the external world, as a primitive property of mental 
contents. 

If we try to interpret the opposition between formal and regional ontologies in the 
framework of AI and computational cognitivism, we are led to the following analogy 
(it is of course only an analogy) with object-oriented programming (OOP). The idea 
is that transcendental phenomenology (that is a systematic theory of regional 
ontologies) is a sort of "object-oriented" epistemology. 

In OOP, generic objects are pre-defined in a modular way. They are types, generic 
classes characterized by specific attributes and methods which are informationally 
encapsulated and which prescribe specific responses to external general messages. t 
More precisely, an object is a data structure characterized by attributes and 
associated with routines, procedures, actions---called methods-which operate 
specifically on it. This specificity is called encapsulation. The objects belong to classes 
which describes the object's data, the methods and their implementation, and also 
the messages by which they are acted on. Classes are hierarChically organized and 
sub-classes inherit the attributes and the methods of their super ordered classes. 
Finally, polymorphism is the possibility of sending the same message to objects of 
different types and to get nevertheless different specific responses (because different 
methods have been activated by the message). 

In much the same manner, in transcendental phenomenology generic objects are 
pre-defined in an a priori synthetic way. They are types, classes, characterized by 

t See e.g. Booch (1991). 
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specific eidetico-constitutive rules which are a priori synthetic and which prescribe 
specific responses to scientific investigation. 

The parallel can be summarized in the following way: 

Transcendental phenomenology 

Domain: constitution of knowledge. 

General categories of formal ontology 

which are applicable to any types of objects. 

Regional ontologies (Essences). 
Typical objects. 
Eidetico-constitutive rules. 

Anticipation and specification of what must 
a priori and synthetically occur to an 
individual object of the region. 

Object of a region (token) = instance of its 
generic regional essence (type). 

Uncoupling between analytic a priori 
(generic formal ontology) and synthetic a 
priori (specific "material" regional 
ontology). 

Application of the categories of formal 
ontology to the regional ontologies. 

Transcendental schemalism: 
the specific interpretation of the general 

formal categories in a regional ontology. 

Object oriented programming 

Domain: programming. 

External messages and nOD-specific universal 
methods 

which are applicable to allY types of objects. 

Classes. 
Typical objects. 
Specific data structures and routines 

(attributes and methods). 

Anticipation and specification of the 
characteristic behavior of an individual 
object of the class. 

Particular object (token) = instance of its class 
(type). 

Encapsulation of the particular attributes and 
methods which are specific of a class. 

Communication with the different classes of 
objects by means of messages and universal 
methods. 

Polymorphism: 
the specific response of an object type to the 

external messages via the selection of 
appropriate internal methods. 

I think that the main interest of this analogy is to show that the celebrated (and 
much maligned) "synthetic a priori" is essentially an epistemological and ontological 
strategy of modularization and encapsulation of the objects. It is a strategy for 
ontological design and the constitution of objective knowledge. 

The main error of logical positivism in its obsessional atwmpt to refute the 
existence of synthetic a priori judements is to have searched for absolute criteria for 
characterizing them. Indeed, it is of course impossible. To ask if a judgement is "an 
sich" an analytic or an a priori synthetic one is as vain as asking if a procedure is "an 
sich" an encapsulated method or a universal one (that is a non-encapsulated one 
which can be applied to every class of objects). It is only a question of "ontological 
design". 

In my perspective, synthetic a priori is therefore no more-but also no less-than 
a strategic move in ontological design. It yields a powerful polymorphic method of 
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modular encapsulation for ontologies. This transcendental strategy is to its positivist 
counterpart what OOP is to procedural programming. 

3. The unilateral foundation of sense qualities in spatio-temporal 
extension 

I now want to give an explicit example of Husserl's "dialectic" between formal 
ontology and regional ontologies. It belongs to the regional ontology of perception 
and concerns the morphological Gestaltist description given by Husserl in the third 
Logische Untersuchung (Zur Lehre von den Ganzen und Teilen) concerning the 
Whole/Part theory. This text has been extensively (and deeply) analysed by Smith 
and Mulligan (1982). My purpose is to give here a geometric schematization of 
Husser!'s pure eidetic description and to correlate it with the mereological 
axiomatics proposed in Smith (1993). 

I will first recall some elements of Husser!'s description. 

3.l. HUSSERL'S PURE ElDETIC DESCRIPTION 

Husser! begins with the difference between abstract and concrete contents, which he 
identifies with the (Stumpfian) opposition between dependent (unselbststiindigen) 
and independent (selbststiindigen) contents. According to him, such a difference is 
fundamental for the "pure (a priori) theory of the objects as such" which concerns 
the "formal objective categories" and the essential truths (Wesenswahreiten) of 
formal ontology. 

But it is only in the second chapter, Gedanken zu einer Thearie der reinen Formen 
von Ganzen und Teilen, that Husser! develops an axiomatics of whole/parts relations. 
In the first chapter, Der Unterschied der selbststiindigen und unselbstiindigen 
Gegenstiinde, he develops, in fact, a "material" analysis of empirical morphologies. 

As is well known, the central problem analysed by Husserl is that of the unilateral 
dependence between qualitative moments (e.g. colour) and spatial extension 
(Ausdehnung). According to him, qualities are abstract essences (species) and 
constitute categorized manifolds, that is "Mannigfaltigkeiten" decomposed in 
different categories. He thought of the .. quality ..... extension" dependence as an 
eidetic law binding generic abstracta or types. 

The dependence [Abhiingigkeit] of the immediate moments [der unmittelbaren Momente] 
concerns a certain relation conform to a law existing between them, a relation which is 
determined only by the immediately super-ordered abstracta of these moments. (p. 233). 

There exists a functional dependence (funktionelle Abhiingigkeit) connecting the 
immediate moments of quality and extension. The same qualitative Abschattung can 
be spread (ausgedehnt, ausgebreitet) over every extension, and conversely the same 
extension can be covered (bedeckt) by every quality. But this functional 
dependence-which associates to every point x of the extension W the value q (x) of 
the quality q at this point-is objectively legalized by a pure law (objektive-ideale 
Notwendigkeit, reine und objektive Gesetzlichkeit) which acts only at the level of 
pure essences (reine Wesen). This "ideal a priori necessity grounded in the material 
essences" (in den sachlichen Wesen grundenden idealen oder apriorischen 
Notwendigkeit) is, according to Husser!, a typical example of the synthetic a priori. 
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Husserl (1931: §8-9) analyses the difference between the contents which set 
themselves into relief intuitively against a background (anschaulich sich abhebenden 
Inhalten) and the contents which are intuitively merged and fused together 
(verschmolzenen). Perceptual grasping presupposes a global unity of the intuitive 
moments and a "phiinomenal Abhebung", that is, a saliency in Thorn's or Gibson's 
sense. It is such a saliency which is expressed by the difference between, on the one 
hand, contents intuitively separated (gesonderten, sich abhebenden, sich 
abscheidenden) from the neighbouring ones and, on the other hand, contents 
merged with the neighbouring ones (verschmolzenen, iiberflieBenden, ohne 
Scheidung ). 

3.2. THE CONCEPT OF VERSCHMElZUNG 

The concept of fusion or merging-of Verschmelzung-is a key one. It expresses the 
spreading of qualities, that is the topological transition from th,e local level to the 
global one. It is Verschmelzung which generates the moment of global unity, of 
totality, of an object. Its complementary concept is that of separation, of disjunction, 
of cleavage-of Sonderung. Sonderung is an obstacle to Verschmelzung. It generates 
boundaries delimiting parts. At the intuitive synthetic a priori level, the 
"whole/part" difference grounds itself on the "Verschmelzung/Sonderung" one. 

Here also, Husserl's pure description fits very well with contemporary research. 
For instance Stephen Grossberg, one of the leading scientists in the field of vision, 
concludes from his numerous works that there are two fundamental systems in visual 
perception: 
(i) The Boundary Contour System (BCS) which controls the segmentation of the 
visual scenes. It detects, sharpens, enhances and completes edges, especially 
boundaries, by means of a "spatially long-range· cooperative process". The bound-
aries organize the image geometrically (morphologically). 
(ii) The Featural Contour System (FCS) which performs featural tilling-in, that is 
spreading of qualities. It stabilizes qualities such as colour o:r brightness. These 
diffusion processes are triggered and limited by the boundari,,. provided by the 
BCS. Therefore, according to Grossberg (1988: p. 35), 

"Boundary Contours activate a boundary completion process that synthesizes the 
boundaries that define perceptual domains. Feature Contours activate a diffusion 
fiUing-in process that spreads featura] qualities, such as brightness or color, across these 
perceptual domains" (p. 35). 

In fact, the concept of Verschmelzung does not come from Stumpf but from the 
German psychologist Johann Friedrich Herbart (1776-1841), who developed a 
continuous theory of mental representations and contents. Esst:ntially in the same 
vein as Peirce, Herbart was convinced that mental contents are vague and can vary 
continuously. For him, a "serial form" (Reihenform) was a class of mental 
representations which undergo a graded fusion (abgestufte Verschmelzung) gluing 
them together via continuous transitions. He coined the neologism of synechology 
for his conception (Peirce's neologism of synechism is clearly equivalent). 

It is not sufficiently known that Herbar!'s point of view was one of the main 
interests of Bernhard Riemann when he was elaborating his key concept of 
Riemannian manifold. Even if Riemann did not agree with Herbart's metaphysics, 



SHEAF MEREOLOGY AND HUSSERL'S MORPHOLOGICAL ONTOLOGY 747 

he strongly claimed that he was "a Herbartian in psychology and epistemology". 
Scholtz (1992) has shown that in Riemann's celebrated Ober die Hypothesen, welche 
der Geometrie zu Grunde liegen (1867) the role of the differentiable manifold 
underlying a Riemannian manifold "is taken in a vague sense by a Herbarian-type of 
'serial form', backed by mathematical intuition". 

3.3. SONDERUNG AND QUALITATIVE DISCONTINUITIES 

In the third Logical Investigation, Husserl (1900-1901: §8) claims that "Sonderung 
beruht ( ... ) auf Diskontinuitiit". Verschmelzung corresponds to a continuous (stetig) 
spreading of qualities in an undifferentiated unity (unterschiedslose Einheit) (p. 244) 
and Sonderung corresponds to qualitative discontinuities in the way in which 
extension is covered (Deckungszusammenhang) by qualities. 

These qualitative discontinuities are salient only if ' 
(i) they are contiguously unfolded (sie angrenzend ausgebreitet sind) against the 
background of a moment which varies continuously (ein kontinuierlich variierendes 
Moment), namely the spatial and temporal moment, or 
(ii) they present a sufficient gap (threshold of discrimination). 

Husserl's (p. 246) morphological description is precise and remarkable. 

It is from a spatial or temporailimit [einer Raum· oder Zeitgrenze] that one springs from 
a visual quality to another. In the continuous transition [kontinuierlichen Ubergangl from 
a spatial part to another, one does not progress also continuously in the covering quality 
[in der uberdeckenden Qualitat]: in some place of the space, the adjcent neighboring 
qualities [die angrenzenden QualWilen] present a finite (and not too small) gap [Abstand]. 

This Husserlian pure eidetic description of the unilateral dependence "quality ..... 
extension" yields therefore the following correspondences, 

Totality 

Verschmelzung 
Spreading activation 

(featural filling-in) 
Continuity 

Parts 

Sonderung 
Boundaries 

Discontinuity 

3.4. THE LINKS WITH COMPUTATIONAL VISION 

This Gestaltist morphological description is very akin to contemporary theories of 
computational vision. For instance, Marr (1982) introduced the hypothesis that the 
main function of the ganglionary cells of the retina is to extract the qualitative 
discontinuities (zero-crossings) which are encoded in the signal, and that the higher 
levels of visual processing are grounded in this primal morphological organization of 
the image (primal sketch). In fact, it has been shown that the convolution of the 
signal by the receptive profiles of the ganglionary cells (which are essentially 
Laplacians of Gaussians), is a waveler analysis, that is a spatially localized and 
malriscale Fourier analysis. Now, wavelet analysis is actually the best known device 
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for extracting discontinuities. Let us explain very briefly the mam idea in the 
one-dimensional case. 

Consider the Hilbert space L 2(~) of square integrable functions on ~. Fourier 
analysis provides an orthogonal decomposition of every [ E L '(~) relative to the 
orthonormal basis of trigonometric functions e -iwx. That is, the Fourier transform 
(FT) I(w) of [(x) is given by the formula: 

- 1 L . f(w) = _ ~ [(x)e-'WXdx. 
v21f ~ 

It can be shown that !(w) = [(x) and that the norms IIf(x) II and 1I/(w)1I are equal 
(that is, the FT is an isometry). 

The prohlem is that the information provided by I is delocalized (because the 
plane waves e-'wx are). In order to localize it, Gabor introduced the idea of the 
Window Fourier transform (WFT): 

1 ( . 
Gf(w, u) = v2ir J

R 
e-'WXg(x - u)f(x)dx. 

Gf(w, u) is localized by a spatial "window" g(x) translated along the x-axis. The 
WFT depends not only on the frequency w but also on the position u. It generalizes 
the FT. The inverse transform is given hy: 

1 L . f(x) = - Gf(w, u)e'WXg(u - x)dwdx. 
2Jr [R' 

It is an isometry between L'(~) and L'(~'), that is IIfII = IIGfli. It is in general 
highly redundant and it is therefore possible to sample u and w. 

The problem with Gabor's WFT is that it operates at only one level of resolution. 
If the signal is a multiscaled one (e.g. fractal), this is a drastic limitation. 

The idea of the wavelet transform (WT) is to find decompositions of L'(IR) starting 
from a single function "'(x) (the "mother" of the wavelets), and using its translated 
transforms "'(x - u) and its rescaled transforms: 

",,(x) = vS ",(sx) (or ",,(x) = ~ ",m). 
One then gets the following WT: 

Wf(s, u) = Lf(X)"',(X - u)dx = [*;j,(u) 

with f,(x) = ",(-x). It is well defined if an admissibility condition C~ on the FT IjJ is 
satisfied, to the effect that $(0) = 0 and that $ is sufficiently flat near 0: 

n",(w)I' dw < 00 

Jo w 

The main result of the theory is that appropriate '" exist. A typical example is 
Marr's wavelet. The amplitude IWf(s, u)1 of the WT is an indicator of the 
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singularities encoded in the signal. More precisely, the Lipschitzian order of f at x 
can be deduced from the asymptotic decreasing of \Wf(x, us\ in the neighbourhood 
of x when the scale tends towards O. As was emphasized by Mallat (1989): 

the ability of the WT to characterize the type of local singularities is a major motivation 
for its application to detect the signal's sharper variations.t 

As the WT is generally highly redundantJ it is possible to discretize it by 
sampling the u and w variables. With such devices it becomes possible to compress 
an image in an intrinsic way, that is according to its specific structure.§ The main fact 
we want to stress here is that the compression of information-which is an 
information processing constraint-appears as identical with a morphological 
analysis-which relates to a geometrical objective fact. 

4. The problem of a morphological geometry 

Husser!'s morphological description is precise and remarkable. But nevertheless it 
raises a fundamental problem. Qualitative discontinuities, he says, 

concern the minimal specific differences [die niedersten spezifischen DiJJerenzen 1 in an 
immediately super-ordered [iibergeordnet] pure genus [Gattung]. (p. 246). 

They are discontinuities of the functional dependence "quality -> extension". 
The consequence is that, according to Husser!, it is impossible to formalize them. 

Formalization can only operate at a higher level of abstraction, the level of the 
general eidetic law of dependence. 

We meet here a formalist thesis which subordinates the regional material 
ontologies to formal ontology, and therefore the synthetic a priori (synthetisch-a 
priorische) laws to the analytic (analytisch-a priorische) ones. As regards its material 
content, the eidetic law of dependence "quality -> extension", belongs to the sphere 
of vague intuitions (vage Anschaulichkeiten). But, according to Husserl, these 
vague-inexact-morphological essences cannot be geometrically modelled. As he 
claims (§9, p. 245): 

KontinuiUit und DiskontinuiUit sind natiirlich nieht in mathematischer Exaktheit zu 
nehmen. 

It is not possible to clarify here this fundamental point. But neveltheless I want to 
emphasize the fact that one of the main limitations of phenomenology is its divorce 

t For an introduction to the use of wavelet analysis in computational vision, see also MaUat & Zhong 
(1989). For a discussion of the link with morphological phenomenology, see e.g. Petitot (1989b, 1990, 
\993b, c). 
* When the redundancy is zero one speaks of orthogonal wavelets. 
§ Wavelet analysis can be refined-in particular for the applications to data compression prOblems-by 

means of wavelet packet algorithms and methods. Many wavelets are used in parallel so as to adapt in the 
best way the choice of the decomposition basis to the particular structure of the signal. The fit criterion is 
the minimizing of the information entropy (e.g. Wickerhauser, 1991). 
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of any "material descriptive eidetic" of Erlebniss from any form of geometry. 
Husserl has always rejected the possibility of a morphological geometry. In some 
outstanding sections of the Ideen I (§§71-75), he explains the fundamental 
difference between, on the one hand, the vague inexact de:;criptive concepts 
correlated with morphological essences, and, on the other hand, the exact ideal 
mathematical concepts. According to him, ideation, which leads exact essences to 
ideality, is drastically different from 'abstraction, which leads inexact essences to 
genericity (categorization and typicality). This opposition is a key one for Husserl. 
Nevertheless, it can be shown (Petitot, 1985, 1989a, 1992a, 1993a) that it is no longer 
acceptable. 

5. The synthetic a priori law of dependence "quality-. extension" 
and the geometrical concept of fibration 

5.1. FIBRE BUNDLES AND SECfIONS 

Indeed, there is a fundamental geometric structure which fits perfectly well with 
Husserl's eidetic pure description of the spreading [AusbreitungJ of a quality in an 
extension or, equivalently, of the covering [Uberdeckung, DeckungszusammenhangJ 
of an extension by a quality. It is the key geometrical concept of fibration. 

According to Herbart, Riemann and Stumpf, a spatial substrate (Ausdehnung) 
can be geometrically modelled by a differentiable manifold W. let Q be the 
qualitative genus under consideration (e.g. the space of colours). Q can be modelled 
by a manifold endowed with a categorization, that is with a decomposition in 
domains (categories) centred around central values (prototypes). 

The functional dependence expressing a spreading-covering relation between W 
and Q can be naively defined as a map q: W -> Q which, to any given point x E W, 
associates the value q(x) E Q of the quality at this point. This models Husserl's 
functional dependence. Verschmelzung is then expressed by the differentiability of q 
and Sonderung by the discontinuities of q. These discontinuities constitute a closed 
subset K of W which expresses geometrically the salient morphology profiled in W. 
(See Petitot & Smith, 1991.) 

But this naive model is too naive. Indeed, we need to have al/lhe space Q at hand 
at every point x E W. This requisite is imposed by Hussel's pure description (§III.1.), 
but also by theories of perception. Actually, since Hubel's and Wiesel's pioneering 
works, it has been shown by many neurophysiological experiments that the covering 
of extensions by qualities such as colours or by local geometrical elements such as 
directions are neurally implemented by (hyper)columns, that is by retinotopic 
structures where, "over" each retinal position, there exists a "column" implement-
ing the same set of possibilities. 

This leads to the fundamental and pervasive concept of fibration introduced by 
Whitney, Hopf and Stiefel and which concerns, in modern geometry and mathe-
matical physics, all the situations where fields of non spatio-temporal entities 
functionally depend on space-time positions. 

Mathematically, a fibration is a differentiable manifold E endowed with a 
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E 

M 

x 

FIGURE 1. The gcneml structure of a fibration. E is the total space, M the base space. lC the canonical 
projection and Ex = lC-1(X) the fibre over x. All the fibres are isomorphic to a typical fibre F. 

canonical projection (a differentiable map) Ir: E -> M over another manifold M. M is 
called the base of the fibration, and E its total space. The inverse images Ex = Ir-"(x) 
by Ir of the points x E Ware called the fibres of the fibration. 

The two axioms for 7t are then: 
(F,) All the fibres Ex are diffeomorphic with a typical fibre F. 
(F,) The fibration is locally triuial, that is 'Ix E M, 3U a neighbourhood of x such 
that the inverse image Eu = Ir-'(V) of U is diffeomorphic with the direct product 
U X F endowed with the canonical projection U X F -> U, (x, q)-> x. (See Figures 1 

and 2.) 
In our case, we have M = Wand F = Q. The main point is that the geometric 

structure of a fibration geometrizes the Husserlian eidetic law of unilateral 
dependence "quality -> extension". Therefore, this eidetic law possesses a geometric 
eidetic content. 

How can we interpret the concept of functional dependence in this new context? 
It corresponds to the key concept of a section of a fibration. Let Ir: E -> M be a 
fibration and let U c M be an open subset of M. A section s of Ir over u is a lift of U 
in E which is compatible with Ir. More precisely, it is a map s: U -> E, x E U-> 
s(x) E Ex> i.e. such that It'S = Idu. In general s is supposed to be continuous, or 
differentiable, or analytic. Sometimes it can present discontinuities along a singular 
locus. (See Figures 3, 4 and 5.) 

It is conventional to write f( U) for the set of sections of Ir over U. A local 
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Eu = U x F 

E 

M u 
x 

FIGURE 2. The local triviality of a fibration. For every point x of the base space M, there exists a 
neighbourhood U of x such that the inverse image Eu=n-1(U) of U by the canonical projection 1r is 

trivial, that is diffeomorphic with the direct product U x F. 

trivialization of Tr over U (i.e. Eu ..... = U x F ..... U) transforms every section 
s: U ..... E in a map x ..... s(x) = (x,f(x)), that is in a map f: U· .... F. Therefore, the 
concept of section generalizes the classical concept of map, that is of functional 
dependence. 

5.2. FROM HUSSERL'S PURE EIDETIC DESCRIPTION TO THOM'S TOPOLOGICAL ONE 

With the concepts of fibration and section at hand, we can identify the Husserlian 
pure eidetic description with the topOlogical one proposed by Thorn (1972, 1980). 
This link between morphological phenomenology and geometrical eidetics is in our 
eyes an essential one, and we have up to now devoted to it a lot of work (see Petitot, 
1979, 1985, 1989, 1992b, 1993a,c). It unifies qualitative physics, Gestalt theory, 
phenomenology and structuralism in a general mathematical theory of forms and 
structures. t 

Let S be a material substrate, The problem is to explain its observable 
morphology, We suppose that an internal dynamical mechanism X defines the 
internal states of S. More precisely: 

t For the link between morphodynamics and qualitative physics see Petitot and Smith (1991). For the 
link between phenomenology and Gestalt theory, see Smith and Mulligan (1982) and Smith (1988). For 
the link with structuralism see Holenstein (1992) and Petitot (1985, 1986, 1989,],b, 1993c). 
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E 

sIx) 

, 

M 

------------~O~------
x=II('(x» 

FIGURE 3, A section of a fibration is a lifting of It, that is a map s: M -+ E such that ;r(s(x)) = x. 

(i) There exists a configuration space (or a phase space) M of S which is a 
differentiable manifold and whose points x represent the instantaneous transient 
states of S. M is called the internal space of S. 
(ii) X is a flow on M. that is, a system of ordinary differential equations i ~ X(x) 
which shares three properties: it is first complete (its trajectories are integrable from 
t ~ - ex to t ~ + "'); second deterministic; and third smooth relatively to the initial 
conditions. The smooth vector field X is called the internal dynamics of S. 

As a flow, X is identifiable with the one parameter sub-group of diffeomorphisms 
of M, r" where r, is the diffeomorphism of M which associates to every point x E M 
the point x, which is the point at time t on the trajectory of X leaving x at time t ~ O. 
Clearly, r,. 0 r, ~ r,+( and r<-o ~ (r,)-I. r: IR -> Diff(M) is therefore a morphism of 
groups from the additive group [J;l to the group of diffeomorphisms of M. r is the 
integral version of the vector field X. The internal states of S are then the 
(asymptotically stable) auraclOrs of X. 

I! is very difficult to define rigorously the notion of an auractor for a general 
dynamical system. The usual definition is the fOllowing. Let w+(a) be the positive 
limit set of a E M, that is the topological closure "at infinity" of the positive 
trajectory of a. Let A c M be a subset of the internal space M. A is an attractor of 
the flow X if it is topologically closed, X -invariant (i.e. if a E A then r,(a) E A 
Itt E IR), minimal for these properties (i.e. A ~ w+(a) Ita E A), and if it attracts 
asymptotically every point x belonging to one of its neighbourhoods U (i.e. 3U s.t. 
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E 

Discontinuity 

M 
----------~o~------

K 

FIGlJRE 4. A discontinuous section. 

A ~ w" (x) '\Ix E U). A is asymptotically stable if in addition it confines the 
trajectories of its sufficiently neighbouring points. If A is an attractor of X, its basin 
B (A) is the set of points x E M which are attracted by A (i.e. S.t. w + (x) ~ A). If U is 
an attracted neighbourhood of A, we have of course B (A) = U«o r,( U). 

Now, as only one internal state A can be the actual state of S, there exists 
necessarily some criterion I (for instance a physical principle of minimization of 
energy) which selects A from among the possible internal states of S. The system S is 
also controlled by control parameters varying in the extension W of S. W is called 
the external space of S. The internal dynamics X is therefore a dynamics X w which is 
parameterized by the external points W E Wand varies smoothly relative to them. 

PhenomenologicaJJy, the system S manifests itself through observable and 
measurable qualities q'(w), ... , q"(w) which are characteristic of its actual internal 
state Aw and are sections of fibrations having as typical fibr·" the quality types 
Q', ... , Q". When the control w varies smoothly in W, Xw and Aw vary smoothly. If 
Aw subsists as the actual state, then the q; also vary smoothly. But if the actual state 
Aw bifurcates towards another actual state Bw when w crosses some critical value, 
then some of the q; must present a discontinuity. Thorn has called regular the points 
w E W where locally all the qualities q; vary smoothly and singular the points w E W 
where locally some of the q; present a qualitative discontinuity. The set Rw of 
regular points is by definition an open set of Wand its complementary set Kw, the 
set of singular points, is therefore a closed set. By definition, K w is the morphology 
yielded by the dynamical behaviour of the system S. 
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FIGURE 5. (a) A covering (Uberdeckung) of a space by a quality (colour or grey level). (b) The 
corresponding section. 

The singular points W E Kw are critical values of the control parameters and, in 
the physical cases, the system S presents for them a critical behaviour. Thorn was the 
first scientist to stress the point that qualitative discontinuities are phenomenologi-
cally dominant, that every qualitative discontinuity is a sort of critical phenomenon 
and that a general mathematical theory of morphologies presented by general 
systems had to be an enlarged theory of critical phenomena. 

Now, it is clear that Thorn's description is a topological version of Husser]'s one. 
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Regular points corresponds exactly to Verschmelzung, and singular ones to 
Sonderung. 

5.3. GEOMETRY AND PHENOMENOLOGICAL EIDETICS 

(1) The functional dependencies determined at the level of minimal specific 
differences correspond to particular sections <T: W --> E of particular fibrations 
n: E --> W with fibre Q. 
(2) The qualitative salient discontinuities are discontinuities of sections (]" E f( U). 
(3) The eidetic law "concretely determined by its material contents" corresponds to 
a particular fibration 1C:E --> W of fibre Q but without any particular given section. 
Such a fibration models an abstract relation between the genus Wand Q (first level 
of abstraction). It implicitly contains an infinite universe of potential functional 
dependences, namely, all the sets of sections f( U) for U c W. 
(4) The synthetic a priori law of dependence "quality --> extension" corresponds to 
the general mathematical structure of fibration. It concerns the most abstract 
genus-the essences-of space and quality (second level of abstraction). 
(5) Last but not least, the "analytic axiomatization" of this synthetic law in the 
framework of formal ontology corresponds to the axiomatics of fibrations. 

6. The axiomatics of fibrations and the concept of sheaf 

6.1. GLUING AND COHOMOLOGY 

The axiomatics of the concept of fibration rests essentially on the concept of 
gluing-of fusion, of merging, of collating-of sections. t 

One constructs global sections by gluing local ones in the following way. Let 
n:E-->M he a fibration of fibre F and let 11ti= (U.);el be an open covering of U 
which locally trivializes n. This means that there are diffeomorphisms ip;: U; X F--> 
n-I(U;) = Eu, over the open sets U; which induce fihre diffeomorphisms ip;.x:F--> 
Ex = n-I(x). 

The condition for gluing to he possible is that '<Ii,j E I such that U; n Uj .. 0, then 
'<Ix E U; n~, the automorphism of F lIi,iX) = (ipi.,T 1 

0 ipj.x:F --> F belongs to a 
certain Lie group C of diffeomorphisms of F. This group is called the structural 
group of the fibration. For instance, in the case of a linear fibre bundle of which the 
fibre F is a vector space, the structural group C will be the linear group CL(F). It is 
trivial to verify that if U; n Uf n Uk" 0, then 1I;.j 0 (h.; = 1. 

In fact we meet here the concept of simplicial structure, which lies at the basis of 
what is called the cohomology of fibrations. Let I1ti = (U;); el be an open covering of 
the base M. Let F and C be as above. The skeleton K of I1ti is the simplicial structure 
over I defined in the following manner: 

• the O-simplexes are the indices i E I; 
• the I-simplexes are the pairs (i, j) E I X I such that U; n Uj .. 0; 
• the 2-simplexes are the triples (i, j, k) E I X I X I such that U, n ~ n Uk .. 0; etc. 

For any open set U of M, let f(U)={II:U-->C, II a differentiable map}. If s is a 

t For an introduction to local/global structures, fibrations, sheaves, topoi, etc. see Petitot (1979, 1982), 
and, for more details, Mac Lane and Moerdijk (1992). 
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p-simplex of K, a p-cochain is an element U E r, = r«(k., Vi)' The p-cochains form 
a group CPo It is then easy to define a coboundary operator and therefore a 
cohomology theory. For instance, let <p = (<p,) be a O-cochain. Its boundary is the 
1-cochain d<p = «(}'j = <pi\ . 'P,). If () = «(}'j) is a 1-cochain, its coboundary is the 
2-cochain d(} = (ifJ'jk = (}'j' (}jk' (}k')' etc.t 

It is trivial to verify that a' = 1. One can therefore consider the group of 
p-cocycles ZP, that is of p-cochains u without boundary (au = 1) and of p
coboundaries BP, that is of p-cochains of the form u = ar with r E Cp-'. As a' = I, 
BP C ZP and one can therefore consider the quotient groups HP = ZP / BP. They are 
called the cohomology groups of the fibration. One can then prove the following 
theorem. 

Theorem. A fibration is characterized by a 1-cocycle () = «(},j) (aO = 1 is the gluing 
condition). It is globally trivial if () is a l-coboundary «(}'j = 'Pi\ . <PI)' 

6.2. SECTIONS AND SHEAVES 

At a more abstract level, a fibration is characterized by the sets of its sections reV) 
over the open sets V c M. If S E r( V) and if V c V, we can consider its restriction 
slv to V. The restriction is a map r(V) ..... reV). It is clear that if V = V, then slv = s 
and that if We V c V and SEre V), then (slv)lw = slw (transitivity of the 
restriction). We get therefore a contravariant Junctor f: O"(M) ..... fI from the 
category OeM) of the open sets of Mt in the category fI of sets. 

Conversely, let r be such a functor. To have a chance of being the functor of the 
sections of a fibration, r must clearly satisfy the two following axioms. 

(S\) Let Ill/. = (U')'e] be an open covering of M. Let s, s' E reM). If slv, = s'lv, Vi E f, 
then s = s'. Two sections which are locally equal must be globally equal. 
(S,) Let s, E reV,) be a family of sections over Ill/. = (V')'e]' If the s, are compatible, 
that is, if s,lu,nu, = s,lu,nu, when V, n Uj "" 0, then they can be glued together: 
3s E reM) such that slv, = s, Vi E f. Compatible local sections can be collated in a 
globalone. 

In fact these axioms characterize a more general structure-and one that is even 
more pervasive in contemporary mathematics-than the structure of fibration, 
namely the structure of sheaf It can be shown that if the axioms (S,) and (S,) are 
satisfied, then one can represent the functor r by a general fibred structure 
1f:E ..... M (called an "etale" space and which is not necessarily locally trivial as a 
fibration must be) in such a way that reV) becomes the set of sections of 1f over U. 
In a nutshell, the fibre Ex-called in that case the stalk of the sheaf r at x-is the 
inductive limit: 

Ex = lim {(reU), rev c V)} 
VCUEou" 

(where IlI/.x is the filter of the open neighbourhoods of x). E is the sum of the Ex. If 
s E r(V), then s can be interpreted as the map x E V ..... s(x) E Ex. The topology of 
E is then defined as the finest topology making all these sections continuous. 

t In these formula, products and inverses are those defined by G. 
:j::The objects of O(M) are the open sets of M, and its morphisms are the inclusions of open sets. 
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7. Axiomatics of fibrations. sheaf mereology and the 110rmal 
ontology of wholes and parts 

J. PETITOT 

The concept of section is a key mathematical concept which pennits us to build up 
models for a large class of dependent parts. It therefore provide; a good model (in 
the sense of model theory) for axiomatic mereology, t what we will call a sheaf 
model. This is why, to conclude this reftexion, I want to stress the relation between 
the axiomatics of fibrations and the piece of formal ontology proposed by Smith 
(1993).:1: 

7.1. SMITH'S MEREOLOGICAL AND TOPOLOGICAL SYSTEM. 

Smith (1993) proposed an axiomatic for two primitives: 
(i) the mereological primitive xCy : "x is a constituent of y"; 
(ii) the topological primitive xPy: x is an interior part of y". 

From xCy some other concepts can be immediately derived: 
DC!. "x overlaps y" xOy:= 3z(zCx A zCy); 
DC2. "x is discrete from y"; xOy:= .rOy. 

The first two axioms characterizing the C relation are: 
ACr. xCy ~ Vy(zOx ~ zOy); 
AC2. XCYAYCX ~x = y. 

This mereological system is extensional and C is an order relation. 
A fundamental axiom is that, for every predicate I{! of x, one can define the 

sum-the fusion, the merging-of all the x which satisfy I{!. This yields the definition: 
DC4. [x: I{!(x)]:= 'y(Vw(wOy ~ 3v(l{!(v) " wOv))), for any satisfied predicate. 
Of course, we need axioms to guarantee that the matrix of DC4 is a definite 
description to which Russell's operator L can be applied. ACt implies unicity. For 
existence, we need: 
AC3. 3x1{!(x)~3y(y = [x:l{!(x)]). 

One can then prove easily the following theorems. 
TC3. y = [x:l{!(x)]~Vx(l{!(x)~xCy); 
TC4. 3x Vy(yCx) (the universe exists); 
TC5. yC[x: I{!(x)] ~ Vw(wCy ~ 3V(I{!(V) A wOv». 

One can also define the following fundamental concepts, 
1:= [x:x = x] (the universe); xOy:= [z :zCy v zCy] (union); 
x n y:= [z: zCy A zCy] (intersection); 
x':= [z :zOx] (complement). 

As concerns the topOlogical primitive P, the following six axioms are clearly 
needed. 

t For mereology in the framework of formal ontology, see PoJi (J992). 
tIn the Padova Workshop on Formal Ontology, J met Dr. Graham White who has also used sheaf 

cohomology in relation to Smith's mereology. This unexpected convergence e'rlhances the relevance of 
sheaf mereology (see White. 1993). 
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APt. xPy =?xCy: 
AP2a. xPy l\yCZ =?xpz (left monotonicity); 
AP2b. xCy I\YPz =?xpz (right monotonicity); 
AP3. xPy I\XPZ =?xP(y n z) (condition on finite intersections); 
AP4. Vx(",(x)=?xPy) =? Ix: 'P(x)]py: 
AP5. 3y(xPy); 
AP6. xPy =?xP[t:tPy]' 
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From these axioms it is possible to derive all the traditional topological concepts. 
For instance the interior of an object x is defined by: 
DP6. int (x):= [y :yPx]. 

For defining the closure of x one can define first the boundary relation xBy in the 
following manner: x crosses y if x overlaps both y and its complement 1 - Y : = 

[z :zOy]. x straddles y if when xPz then z crosses y. Finally xBy if zCx implies that z 
straddles y. One can then define the closure of x by: 
DP4. cJ(x):=xU[y:yBx]. 

Closure thus defined can easily be shown to satisfy the usual Kuratowski axioms for 
topological space. 

7.2. SHEAF MEREOLOGY 
Let us now apply this general mereological axiomatics-which belongs to formal 
ontology-to the sheaf-theoretic modelling of Husserl's pure eidetic description of 
the jj berdeckung of extension by dependent qualities. The basic elements of our 
universe are sections of a sheaf defined by a contravariant functor f: O"(M) -> Y 
Given such an object s E f( U) we must carefuJly distinguish between 
(i) the domain on which it is defined, Dom (s) = U c; M, which is a detachable part 
of a geometrical extensive whole (the base manifold M), and 
(ii) its values sex), which belong to an intensive space of qualities (the fibre F). 
It must be emphasized again that the key concept of section supports a local/global 
dialectic: restriction from global to local and gluing from local to global. The 
domains of sections correspond to the purely extensional (topological) part of the 
axiomatics. Their values correspond on the other hand to the truly mereological 
part. 

As the base space M is a manifold, all the concepts of open set, interior part, 
boundary, closure, etc. are ipso facto well defined.t But the concepts of fibration 
and sheaf deepen what it is for a section s to be a constituent of another section t. 
There are in fact (at least) two meanings of constituency, a weak one and a strong 
one. 
(1) Weak sense. 
s E f(U)Ct E f(V):= U c; V (that is the domains are included one in the other). 
(2) Strong sense. 
s Ef(U)CtEf(V):=(Uc;V)"(tlu=s) (that is the sections agree on the included 
domain). 

t In some cases one can generalize the concept of section and define it for non~open subsets of M. But 
in general "good" sections must share some properties of continuity, differentiability, analyticity, etc. 
These are aHlocal properties which are well defined only on open sets. 
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Of course, it is the strong sense which is the most interesting, With it, overlaps 
become gluing conditions, More precisely, the gluing condition slunv = tl unv is a 
condition of maximal overlap (that is of overlapping on Dom (s) II Dom (t)), 

The strong sense of constituency is imposed by the ACZ axiom: 

ACZ. xCy "yCx =>x = y, 

Indeed, if we retain only the weak sense, we must introduce an equivalence relation 
x'" y:= Dom (x) = Dom (y) and take the modified axiom: 

ACZ*. xCy "yCx =>x '" y, 

This shows that ACZ is by no means evident for the case of dependent parts. 
The strong sense of constituency is also imposed by the axioms API and AP2a, b 

linking the primitives C and P. Indeed, if S E f( V), the unique plausible meaning for 
sPt, t E f(V) is that V c int (V) and tl u = s, t But then API and APZa, b imply 
immediately sCt in the strong sense, 

Of course, we can also introduce a third meaning of constituency, a mixed one, 
The objects are now sets S of sections and we define: 

SCT: = Ifs E S 3t E T, sCt in the strong sense. 

Il is relevant to use the mixed sense if for instance we want to get a good definition 
of the complement x': = [z : z Ox I of a section s, Indeed, a section t can be discrete 
from s for two completely different reasons: 

(i) (V = Dom (s» n (V = Dam (t)) = 0: 
(ii) (V = Dom (s)) n (V = Dam (t» '" 0 but t(x) '" six) Ifx E V n v. 
The complement s' of s is therefore a set of sections. 

We can even introduce a fourth meaning of constituency if we take as objects 
multiva~s~ctions, In that case a s E flU) is no longer a map s:V_E lifting the 
projection n, Instead, it is a map which associates to every point x E V a subset s(x) 
of the fibre Ex over x, But, even if they can be interesting by themselves, such 
extensions of the concept of section are somewhat artificial. For a section, the 
natural meaning of being a constituent is to be a restriction of some larger section. 

Now, the main point is that the mereological concept of sum (union and fusion), 
splits into two different concepts. 

(1) The union of any two sections s E f(V) and t E f(V) can be defined as the 
section s UtE f(V U V) such that s U t(x) = {six), t(x)) (we take six), t(x) = 0 if 
x It v,v), If s(x) '" t(x) for x E V n V then s U t is a multi valued section. 
(2) The fusion of two sections s E f(V) and t E f(V) is more restrictive. It requires 
the gluing condition slunv = tlunv, The fundamental consequenc,e is that, if <pis) is a 
predicate of sections, the sum [s:<p(s)] is no longer a single element. It is the set of 
all maximal sections satisfying <p, 

In some cases, we can also suppose that there exists some algebraic "superposi-
tion" structure u·v in the fibre F (think of the superposition of colours). We can 
then define the union of any two sections $ E f( V) and t E r( V) as the section 

t Of course in. means here the topologicaJ interior. In general, V will be open and therefore 
int (V) = V, 
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r E reV n V) S.t. for every x E V U V, rex) = s(x)*t(x). But this is no longer a true 
union. It is rather a "sum" in an algebraic sense. 

The concept of sum has to be redefined according to the fact that in sheaf theory 
the concept of union (of gluing) depends on the concept of prolongation of a section. 
Let rp be a predicate for sections. Let us use the term rp-section for a section 
satisfying rp. We look at the possibility of eXlending a rp-section SEre V) to a larger 
open set V c V. We look therefore at sections I E reV) s.t. V c V ASCI A rp(I). I is a 
maximal rp-section if: 

Vr(rp(r)AtCr:::;'r = I). 

A maximal rp-section I satisfies the matrix of DC4: 

Vw(wOI¢} 3v(rp(v) A wOv)). 

but this is no longer a definite description. Let [x: rp(x)] = [.(M) be the sel of 
maximal rp-sections. The TC3 theorem becomes: 

Vx(rp(x):::;' 3z E [x:rp(x)](xCz)). 

The universe is no longer a single element. It is the set [m(M) of maximal sections. 
We have of course reM) c [m(M): global sections are maximal ones. 

As concerns the topological part of Smith's system, too, the sheaf model permits 
also to solve some difficulties. The APt, AP2a, band AP3 axioms are trivially 
satisfied. The AP4 axiom Vx( rp(x) :::;, xPy):::;' [x : rp(x )]Py is also evident. Indeed, if all 
the rp-sections x are interior parts of one single section y, then the set [x: rp(x)] of 
maximal rp-sections is reduced to one element Xm and xmPy. But, on the other hand, 
the "very strong" APS axiom 3y (x Py ) will not be satisfied in general, not because 
M cannot be an interior part of itself (it is an axiom for any topology that the global 
space is always clopen, that is close and open) but because there exist in general 
many global sections r E [(M), and it is therefore possible that different sections can 
be prolongated to different maximal sections. 

The definition DP6 of the interior of an object, int(x):=[y:yPx], does not raise 
any problems. Let I E [(V). The sum [s :SPI] of the s such that sPI is a singleton 
{int (I)} with int (1):= rl'nt(V). t But the situation is not as straightforward for the 
definition DP4 of the closure of an Object, cl (x):= xU [y :yBx J. 

In fact, we meet here a very delicate point. As we have already stressed, all the 
classical topological concepts (interior, closure, boundary, etc.) are at hand in the 
sheaf model because the base space M is a manifold. But, as we have seen, the 
topological basis of a sheaf of sections constitute only one half of the structure. The 
other half is constituted by the values of the sections. And there is a worrying 
problem concerning the extension of topological concepts to this last level. Indeed, if 
we impose the constraints of continuity, or differentiability, or analyticity, etc. on 
sections, then it is a well known fact that the problem of extending sections to the 
boundary of their domain is an extremely difficult one, and that, in general, it is even 
without solution. 

Let us evoke briefly only one example concerning the theory of holomorphic 
dynamical systems, and in particular the (filled connected) Julia sets and the 

tin general the domain V of I will be open, and therefore int (t) =- t. 
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Mandelbrot set which have become so popular as typical "beautiful" fractals.t They 
give examples of what can be an infinitely complex compact, connected, closed set in 
C = [J;l2, the complement of which is connected and simply connected in the Riemann 
sphere C U {oc), and the interior of which is constituted by infinitely many open discs 
of different scales. Let K be such a closed set. A well known th,:orem of Riemann 
says that there exists a conformal map rjJ from C - K to C - ~ (where ~ is the closed 
unit disc). On the other hand, a deep theorem due to Caratheodory says that the 
inverse rjJ -1 of rjJ can be prolongated continuously-but not holomorphicalJy in 
general-to the boundary a~ = S' of ~. But in general rjJ cannot be prolongated, 
even continuously, to the boundary aK of K. In short, it is in general difficult, even 
impossible, to extend maps defined on open sets to the boundary of their domain. 

The definition DP4, cl (x):=x U [y:yBxl, is therefore problematic for sections in 
the sheaf model. In fact, it is meaningful only if the sheaf model is endowed with 
more restrictive structures (differentiable, holomorphic, etc.) than the simple 
topological one. 

We can therefore conclude that the mereology of sections-in the sheaf model 
which axiomatizes Husserl's pure eidetic description-shows that some mereological 
axioms are "evident" only for purely extensional mereology, and are by no means 
"evident" for the more sophisticated sort of (non-extensional) mereological 
axiomatics. 

8. Conclusive remark 

It is a well known fact that the category of sheaves defined on a base space 
constitutes what is called a topos and that every topos possesses an internal 
(intuitionist) logical language.t This internal logic provides a natural formal 
language for the phenomenon of Uberdeckung. This point will bl: further developed 
in another work (Petitot, in press). 
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