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1. Introduction

Emmanuel asked me to explain in a not too technical way why and
how sub-Riemannian geometry could be operational for models of
visual perception.

This SRGI (I for “interaction”) is easy to formulate but difficult to
carry out.
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2. Introduction (continued)

1. The links between lived (experienced) visual perception and
geometry are obvious. Visual perception is highly geometrically
structured, and conversely, geometry is largely an idealization and
abstract generalization of perceptual intuitions.

2. We have known since antiquity a host of things about visual
perception: phenomenology of visual lived experience, psychology
of perception (Gestalt), psychophysics.

It all comes under psychology, that is, the study of the mind.
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3. Introduction (continued)

3. But until very recently, absolutely nothing was known about the
neural correlates of perception, which in turn come under the study
of the brain.

The neural implementation was a black box. At most, we knew
that such or such lesion produced such or such visual deficit.

It was not until the end of the 1950s that the activity of a few
neurons activated by perceptual tasks began to be recorded by
means of electrodes.

But the data remained very local, sparsed and scattered.
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4. Introduction (continued)

4. It was only much later, at the turn of the 1980s and 1990s, that
the imagery revolution made it possible to obtain global images of
the activity of visual areas.

This break made it possible to begin to investigate the links
between the psychology of perception (mind) and its
neurophysiology (brain).

The implementation of perceptual software by neural hardware
then became a cutting edge problem and a new research horizon.
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5. Introduction (continued)

This is the challenge I would like to address in this presentation. It
will necessarily be only a sketch. If you are interested in more
precise experimental data, you can consult my book Elements of
Neurogeometry. Volume 1: Functional Architectures of Vision,
Springer 2017.
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6. Introduction (continued)

A preliminary epistemological and methodological question is how
to think about implementation.

Indeed, we cannot use the analogy with computers as universal
Turing machines because brain hardwares are dedicated. It is their
material hardware architecture that explains the abstract structures
of the mind softwares that are implemented in.
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7. Introduction (continued)

We then come up against a fundamental problem.

The geometry of visual perception involves many differential
computations. But neurons cannot compute. They are simply
active and connected, their connections allowing them to transmit
activities.

It is their connectivity that can “compute” something.

It is therefore necessary to understand how a connectivity can
perform differential computations. It must have a very special
functional architecture.

I will try to show that this functional architecture can be modeled
by jet spaces, contact structures and sub-Riemannian metrics.
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8. Planets cannot compute

It is perhaps relevant to give here a completely different, but very
well-known, example of a similar problem.

In the Newtonian theory of gravitation, we have the differential
equations giving by integration the trajectories of the planets
(i) within the framework of a globally Euclidean space-time
background structure (classical Galilean relativity), and
(ii) with the crazy hypothesis of long distance instantaneous forces.

But planets cannot “compute” anything: they can only follow
inertial motions.

So, how then can simple inertial motions be equivalent to
complicated observed and computed trajectories?
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9. Riemannian geometry can compute Gravitation

How is it possible to explain gravitation purely locally and
inertially?

It was general relativity that provided the solution by changing the
globally Enclidean-Galilean background structure and using
(semi-)Riemannian geometry.

Trajectories become geodesics and, in this new framework, can
now be as complicated as needed to fit the empirical data.
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10. Sub-Riemannian geometry can compute Vision

The same is true here.

We observe complicated geometric structures of visual perception
and we compute models using the Euclidean plane R2 as
background structure (2D image theory).

But neurons can’t compute anything. They are simply active and
connected.

Their connection systems must therefore be equivalent to the
computations.

To “achieve this goal” (even if it is Darwinian and without
“goal”), biological evolution has progressively implemented, in
sophisticated modular connectivities, fiber structures of dimension
2 + n as jets, contact structures, and sub-Riemannian metrics . . .
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11. Outline

I will sketch the following propositions:

1 a class of cortical neurons detect contact elements (a, p);

2 the fibration (a, p)→ a is neurophysiologically implemented;

3 the contact structure of the 1-jets of plane curves is
neurophysiologically implemented;

4 the sub-Riemannian geometry of this contact structure is
neurophysiologically implemented.

Each of these propositions points to crucial neurophysiological
discoveries which are all experimental “tours de force”.

That biological evolution has been able to lead, from simple
photosensitive sensors, to such genetically controlled
neurophysiological structures is a real miracle.
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12. A fun story and a long journey

Let us now begin a fun story and a long journey.

It begins, as often in science, with a revolution in the means of
observation.

Extraordinary advances in recording and imaging techniques have
transformed the brain from a “black box” to a more “transparent”
box.

This led to a complete transformation of our understanding of
mental activities.
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13. Functional architectures

Since the early 1990s, methods of “in vivo optical imaging based
on activity-dependent intrinsic signals” enabled to visualize the
extremely special connectivity of the primary areas of the visual
cortex, what is called their “functional architectures”.

Single cortical visual neurons detect very local geometric cues
(positions, contrasts, orientations, tangents, curvatures, inflection
points, cusps, corners, crossings, etc.).

But it is the intracortical architectures that explain how these local
cues can be integrated and generate the global geometry of the
perceived images, with all the well-known phenomena studied since
Gestalt theory, in particular long range illusory contours.
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14. Neurogeometry

In the 1990s, I coined the expression “neurogeometry of vision” to
refer to geometrical models of functional architectures.

The very particular connectivity of the functional neuroanatomy of
these areas explains the geometry of percepts and must therefore
be implemented in the synaptic weights of the neural nets used for
modelling.

Neurogeometry is mainly based on the discovery that the
functional architecture of V 1 (the first primary visual area)
implements the contact structure and the sub-Riemannian
geometry of the 1-jet space of plane curves.
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15. Illusory contours as geodesics

From there, illusory contours can be interpreted as geodesics of
this contact structure.

Such sub-Riemannian models generalize a previous model due to
David Mumford and based on the theory of elastica.

They have many applications, in particular for inpainting
algorithms.
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16. An example of sub-Riemannian inpainting

The following picture shows how a highly corrupted image can be
very well restored using sub-Riemannian diffusion.

The face of our friend Jean-Paul appears out of the blue.

J. Petitot Neurogeometry (SRGI, 9/9/2020)



17. Perceptual geometry. I

“Neurogeometry” concerns mathematical models for the neural
algorithms processing perceptual geometry.

The relationships between visual perception and geometry are as
old and diverse as geometry itself since antiquity.

The geometry of visual perception have been described, but not
modeled, since the times of Goethe, Helmholtz, Hering, Brentano,
Poincaré, Husserl and Gestalttheorie (von Ehrenfels, Wertheimer,
Stumpf, Koffka, Köhler, Klüver, etc.), from Kanizsa to Marr in
psychology, from Evans to Peacocke or McDowell in philosophy of
mind.
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18. Perceptual geometry. II

In modern times consider, for example, Helmholtz’s answer “On
the facts underlying geometry” [Über die Tatsachen, die der
Geometrie zum Grunde liegen] (1868) to the founding text of
Riemann (1854), “On the hypotheses which underlie geometry”
[Über die Hypothesen welche der Geometrie zu Grunde liegen].

The so-called Riemann–Helmholtz “Raum Problem”, concerning a
system of axioms for perceptual space, was solved by Sophus Lie
and Friedrich Engel in the third volume of their “Theory of
transformation groups” [Theorie der Transformationsgruppen]
(1888-1893).
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19. Perceptual geometry. III

Regarding Henri Poincaré, consider Chapters IV and V of “La
Science et l’Hypothèse” (1902) “L’espace et la géométrie” and
“L’expérience et la géométrie”.

And also “Science et Méthode” (1908).
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20. Completion and Gestalt theory

Phenomena studied by Gestalt theory are very striking.

Consider for example this well-known Kanizsa triangle. Local cues
as pacmen and end-points induce very long-range global illusory
contours (what is called “modal completion”).
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21. Kanizsa triangle
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22. Curved Kanizsa square

Illusory contours are particularly interesting when they are curved.
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23. Watercolor (neon) effect

Furthermore, these contours act as boundaries for a diffusion of
color inside the square (what is called the “neon” or “watercolor
effect”). It is not easily seen on a screen but can be measured with
adequate psychophysical methods.
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24. Koffka cross

Consider also the Koffka cross:
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25. Bistability

The end points activate locally (area V 2 is necessary) the
orthogonal orientations.

Moreover, subjects perceive alternately circles and squares, which
means that there exists a competition between two completion
strategies:

circle: illusory contours with a maximal diffusion of curvature,

square: piecewise linear illusory contours (curvature = 0) with
corners (singularities of curvature =∞).
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26. Koffka cross, bis repetita
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27. Illusory contours are neurally real. I

Illusory contours are neurally real (Catherine Tallon-Baudry, 1999).

We consider the EEG of an illusory triangle and of a real triangle
(three pacmen with global coherence, top of the following figure)
and a no-triangle stimulus (three pacmen with no global
coherence, bottom of the figure).
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28. EEG image
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29. Illusory contours are neurally real. II

We observe

“two successive bursts of oscillatory activities [...]. A first
burst at about 100ms and 40Hz. It showed no difference
between stimulus types. A second burst around 280ms
and 30-60Hz. It is most prominent in response to
coherent stimuli.”

Yet, the second activation burst, which corresponds to the
integration of local sensory data into a global percept, is the same
for both types of triangles, whether real or illusory,
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30. EEG image (bis repetita)

The second burst is framed.
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31. The antinomy of perceptual geometry. I

QUESTION:
How the visual brain can be a neural geometric engine?
How differential and integration routines can be neurally
implemented?

Visual cortical neurons are very local detectors and even “point-like
processors”.

They can only code a single numerical value by means of their
“firing rate”.

They emit action potentials (spikes) defining their “rate coding”.
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32. The antinomy of perceptual geometry. II

Such point-like processors cannot implement directly classical
differential and integration routines (the classical versions of
“differentiation” and “integration” do not work).

They cannot “compute” anything.

They can only be more or less active and propagate their activity
along more or less inhibitory or excitatory connections.

But maybe they can implement a geometrization of differential
calculus in complex networks of point-like processors if the
connectivity of the network is so specific that, for it, to be
activated turns out to be equivalent to computing differential and
integration routines.
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33. Binding hypothesis

We must emphasize here the neurophysiological principle called
“binding hypothesis”.

The global coherent features of percepts emerge from pixelized
stimuli when the involved neurons synchronize their activity
through their connections: the local data detected by the neurons
become “bound” together .

“Binding hypothesis” :
connections → synchronization → binding → propagation of
coherent activity → saliency → pop out of global features.
No connections, no synchronization ← no binding ← no
propagation of coherent activity ← no saliency ← no pop-out of
global features.

J. Petitot Neurogeometry (SRGI, 9/9/2020)



34. The antinomy of perceptual geometry. III

My hypothesis is that we can use to solve the antinomy the long
and deep tradition of geometrizing the differential calculus: Pfaff,
Jacobi, Clebsch, Grassmann, Frobenius, Lie, Engel, Darboux,
Cartan, Weyl, Goursat.

In neurogeometry, this type of geometry (jet-spaces, differential
forms, contact structures, etc.) becomes “internal”, “immanent”,
neurally implemented, and explains the “external”, “transcendent”,
ideally formalized, perceptual geometry.

ANSWER to the QUESTION:
Main hypothesis: the visual brain can be a neurally implemented
Lie-Cartan geometric engine!
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35. Jan Koenderink

Jan Koenderink strongly emphasized this crucial point:

“Geometrical features [are] multilocal objects, i.e., in
order to compute [boundary or curvature] the processor
would have to look at different positions simultaneously,
whereas in the case of jets it could establish a format that
provides the information by addressing a single location.
Routines accessing a single location may aptly be called
point processors, those accessing multiple locations array
processors. The difference is crucial in the sense that
point processors need no geometrical expertise at all,
whereas array processors do (e.g., they have to know the
environment or neighbours of a given location).”
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36. The visual brain. I

Here are two images of the human brain. They show the neural
pathways from the retina to the lateral geniculate nucleus (LGN
thalamic relay) and then to the occipital primary visual cortex
(area V 1).
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37. The visual brain. II
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38. Retina layers

For the retina, there are already complicated connections between
5 layers.

1 Photoreceptors, few µm and around 6× 106 cones and
120× 106 rods in humans.

2 Horizontal cells,

3 Bipolar cells,

4 Amacrine cells,

5 Ganglion cells (around) 1.5× 106. Axons =⇒ optical nerve.

The compression ratio (“degree of convergence”) of the
photoreceptors onto the ganglion cells is of the order of 100.
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39. Retina image
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40. Receptive fields and receptive profiles

In a very rough linear approximation, neurons act as filters on the
optical signal transduced by the photoreceptors.

They are connected to a small domain D of the photoreceptor
layer, called their receptive field.

Their receptive profile is their transfer function as filter. It is a
function φ(x , y) on D whose value is > 0 or < 0 according to the
fact that the impulse response of the neuron to a Dirac light
impulse at (x , y) is excitatory (ON) or inhibitory (OFF).

The receptive profiles are well modeled by derivatives of Gaussian
G or by Gabor patches (i.e. sinusoidal functions modulated by
Gaussians G ).

The width σ of G defines a scale and the neuron is a point-like
processor at this scale.
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41. Example of receptive field

Level sets of receptive profiles can be recorded. It is an
experimental “tour de force”.

Here is an example from a cortical neuron in V 1 (Gregory
DeAngelis).

Left: Level sets ON (excitatory, red)/OFF (inhibitory, green)

zones. Right: model using a third derivative ϕ(x , y) = ∂3G
∂x3 ).
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42. Wavelet analysis

The filtering of the signal is like a wavelet analysis (a spatially
localized and multiscale Fourier analysis).

It is a compromise between a spatial representation and a
frequency representation. We discussed this point very early with
Stéphane Mallat.

The receptive fields of the ganglion cells are like Gaussian
Laplacians.

David Marr explained in Vision (1982) that their function was to
detect local discontinuities.

Since Marr, vision has been considered one of the earliest empirical
sources of wavelet analysis.
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43. Coherent states and harmonic analysis. I

Wavelets are related to the notion of a coherent state (well known
in quantum mechanics).

1. We want to analyse signals considered as vectors of a Hilbert
space H (here L2

(
R2
)
).

2. A locally compact group G is available (here the Euclidean
group SE (2) of direct isometries of the plane) which acts on H
through a unitary irreducible square-integrable representation.

3. A basic receptive profile ϕ0 ∈ H is also available, which is well
localised both in the position space and in the Fourier space.
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44. Coherent states and harmonic analysis. II

4. We suppose that ϕ0 satisfies a condition of “admissibility” and
we take the orbit {ϕg}g∈G of ϕ0 under the action of G . We get a
coherent state.

5. We perform the harmonic analysis of the signals f ∈ H using
these coherent states. This allows to represent signals as
superpositions of elementary functions and this way, in our
neurogeometrical context, to measure them neurophysiologically.

Giovanna Citti and Alessandro Sarti worked a lot on this SE (2)
harmonic analysis.
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45. Efficient coding

These receptive profiles can be retrieved from general hypotheses
of information theory. They optimize the efficiency of the neural
representation of information.

The “pixelized” transduction by photoreceptors is extremely
redundant and fundamentally inefficient.

The system has to compress it using a “sparse” coding
decorrelating the signal and reflecting the statistics of natural
images, which is very particular.

Optimal sparse representations for the class of natural images lead
to basic functions which are very similar to the receptive profiles of
visual neurons (Bruno Olshausen, David Field, Karol Gregor, Yann
Le Cun, Eeno Simoncelli ).
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46. Efficient coding (image)

J. Petitot Neurogeometry (SRGI, 9/9/2020)



47. Area V1

From now on I will focus on the first primary area V1 (cat’s area
17).
I won’t say anything about

1 the feedback of V 1 onto the LGN;

2 the post-V 1 processing of visual images by other cortical
areas.

This restriction is of course a drastic limitation: reality is much
more complex!
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48. V 1− V 2− V 3

This image shows how V 1 is surrounded by V 2 and V 3.
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49. LGN −→ V 1 (layer 4)

The retino-geniculo-cortical pathway projects the retina onto the
layer 4 of V 1:
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50. Hubel & Wiesel crucial experiments

The crucial discovery of a functional architecture of V 1 was made
in 1959 by David Hubel and Torsten Wiesel (1981 Nobel Prize).

They implanted electrodes into cortical neurons and recorded the
sound transduction of their activity.

By scanning the visual field with a small bar, they were able to
locate very precisely the receptive fields.

They then discovered, almost by accident (it is a typical case of
serendipity), that some of these neurons (they called “simple” )
were activated only when the bar had a specific well-defined
orientation (modulo π).
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51. Images of H&W

Here are two images of a 40s breakthrough recording.
Left: a bar aligned along the prefered orientation (noisy firing).
Right: a bar orthogonal to the prefered orientation (quiet, no
firing)
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52. Detecting contact elements

We can say that, at its proper scale (the size of its receptive fild),
a simple neuron is a point-like processor detecting a pair (a, p) of a
position a (its receptive field) and an orientation p at a.

In other words, it detects (at its proper scale) a contact element.
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53. Improving H&W’s experiments

Hubel and Wiesel analyzed the dependence of the orientation
tuning curve w.r.t. the position of the bar, its orientation, its
thickness, its length, its contrast, etc.

After them, other types of neurons have been studied, “complex”
neurons with no privileged orientation, etc. And also detectors of
other local geometric cues than mere orientations.

Today, many experiments explore the response to more complex
stimuli, in particular pieces of natural images.
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54. Conformal retinotopy

Let us now come to the key discovery of a neuronal
implementation of geometrical structures structuring the set of
contact elements. It is carried out by connections between neurons.

The first fundamental fact is that the retino-geniculo-cortical
pathway projects the retina onto V 1 in a well-behaved way called
“retinotopy”.

It can be shown experimentally that the retinotopic map is a
conformal isomorphism.

The following figure shows an fMRI of the retinotopic projection of
a (human) visual hemifield onto the corresponding V 1 hemisphere.
Concentric circles and rays are coded by colors.
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55. fMRI image
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56. Axon guidance and chemotaxis

The genetic control of retinotopy is a fascinating morphogenetic
process.

It requires extremely accurate targeting and axon guidance.

A key mechanism is axon chemotaxis, which occurs through
gradients of chemo-attractive and chemo-repulsive molecules like
the “ephrins” with their Eph receptors, the “semaphorins” for the
axons of the corpus callosum, “Netrin 1’ for the thalamocortical
pathways, “slits” for the optic chiasm and the corpus callosum, etc.

The idea of chemoaffinity introduced by Roger Sperry in the 1950s
asserts that there is an address system, i.e., molecular tags,
distributed in complementary gradients on the axons and their
targets, which determine the specificity of the axon connections in
topographical maps.
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57. Eph / ephrin gradients

The following figure due to Benjamin Reese schematizes the
gradient-controlled dynamics for the retina → tectum projection in
the non mammalian brain of the chicken (the optic tectum is the
analogous of the superior colliculus in mammals).

It is much simpler than the projection LGN → V 1 but is already a
fine example.

It shows how the increasing naso↗temporal (N ↗ T ) EphA and
dorso↗ventral (D ↗ V ) EphB gradients of the ganglion cell layer
allows the axon growth cone of these cells to reach a precise
position in the tectum defined by the increasing complementary
gradients of rostro-caudal (R ↗ C ) ephrin-A and lateromedial
(L↗ M) ephrin-B with opposite EphA and EphB gradients.
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58. Reese’s image

The retinotopic map N → C , T → R, D → L, V → M.
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59. The gap reality → model

This shows the immense gap that separates genetically controlled
neurophysiological reality from mathematical modeling.

Modeling layer 4 of V 1 as a plane endowed with a differentiable
structure and, what’s more, a conformal or metric structure, is
immensely non-trivial.
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60. The functional architecture

We will simplify the situation by assuming that the retinotopic
conformal map is simply the identity.

Simple neurons of V 1 are parametrized by triples (a, p) where
a = (x , y) is a position on the retina (identified with R2) and p is
an orientation (modulo π) at a.

So, simple cells of V 1 constitute a field of orientations.

This field is the basis of the “functional architecture” of V 1.

What could be its structure?
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61. H&W discovery

H&W discovery of this structure is schematized in the following
figure. It was a great discovery.

Neurons detecting all the orientations p at the same position
a ∈ R2 constitute an anatomically well delimited small neural
module called an “orientation hypercolumn”.
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62. Orientation hypercolumns

1 Along a “vertical” electrode penetration, orthogonal to the
cortical surface, the detected contact element (a, p) remains
essentially constant.

This “vertical” redundancy defines orientation columns, which are
micromodules of about 20µm.

2 But, along an “oblique” electrode penetration, almost parallel
to the cortical surface, the prefered orientation p varies from
0◦ to 180◦ in steps of about 10◦.

This “horizontal” grouping of columns defines orientation
hypercolumns, which are neuronal micromodules from 200µm to
1mm wide.
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63. H&W discovery (bis repetita)
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64. Braitenberg abduction

The first global reconstruction of an orientation field from the
sparse local data provided by electrodes was infered abductively in
1979 by Valentino and Carla Braitenberg.

This was long before the introduction of modern in vivo optical
imaging techniques. They claimed:

“We believe that the most natural explanation of the
facts observed would be in terms of orientations arranged
with circular symmetry around centers, either radially or
along concentric circles.”
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65. Orientation centers

The introduction of centers of orientation explained the observed
inversion of chirality of orientations along a linear penetration.
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66. Swindale’s abduction

After Braitenberg, in an astonishing 1987 paper (still before the
advent of optical imaging techniques), Nicholas Swindale
reconstructed the “spatial layout” of the orientation map.

What are now called pinwheels.

He thus confirmed Braitenberg’s abduction.

Using Fourier transform techniques, he succeeded in interpolating
between the prefered orientations measured at the different sites
and reconstructed the “fine grained” map shown in the following
figure.
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67. Swindale’s image 1

J. Petitot Neurogeometry (SRGI, 9/9/2020)



68. Swindale’s image 2

Using a color code for directions, he got an orientation map.

This is a theoretical reconstruction and not an empirical
observation.
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69. Swindale’s image 3

He even reconstructed the possible singularities of the orientation
field: they can be end points or triple points.
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70. In vivo optical imaging. I

Braitenberg’s and Swindale’s abductions have been strikingly
confirmed in the 1990s by brain imagery.

In the early 90s, Amiram Grinvald and Tobias Bonhöffer introduced
new revolutionary techniques of “in vivo optical imaging based on
activity-dependent intrinsic signals”.

They used the fact that the metabolic activity of cortical layers
change their optical properties (differential absorption of
oxyhemoglobin or deoxyhemoglobin whose fluorescence is an index
of the local depolarisation of neurons).

This enables to acquire in vivo images of the activity of the
superficial cortical layers.
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71. In vivo optical imaging, II

As Kenichi Ohki and Clay Reid have pointed out,

“optical imaging revolutionized the study of functional
architecture by showing the overall geometry of
functional maps.”

The scale of observation is a “meso”-scale. For a true
“micro”-scale observation at the level of single neurons, you need
more recent techniques such as “two-photon confocal microscopy”
(Ohki 2006).
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72. Orientation maps

Here is the functional architecture of the area V 1 of a tree-shrew
(tupaya) obtained by “in vivo optical imaging” (William Bosking
with David Fitzpatrick’s team at Duke University).

They used “grattings”, that is large grids of parallel dark stripes
translated in the visual field.

For every orientation (coded by the bottom-right color) they got a
global map of activity (dark = active).

This is an empirical observation and not a theoretical
reconstruction.
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73. Orientation maps. Image
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74. Pinwheels

When you code the orientations by colors and you superpose the
maps, you get Braitenberg-Swindale pinwheels !
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75. Pinwheels’ structure

The plane is V 1,

A colored point represents the mean of a small group of real
neurons (meso-scale).

Colors code for the preferred orientation at each point.

The field of isochromatic lines (i.e. iso-orientation lines) is
organized by a lattice of singular points (pinwheels) where all
orientations meet (distant about 1200µm in cats and about
600µm in primates).

There exist a “mesh” of the lattice of pinwheels (a sort of
characteristic length).

Pinwheels have a chirality.

Adjacent pinwheels have opposed chirality.
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76. Pinwheels (bis repetita)

Right: two pinwheels of opposed chiralities.
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77. Interspecific functional architecture

A pinwheel organisation can be found in many species: cat,
primate (marmoset), tupaya (tree shrew), prosimian Bush Baby,
tawny owl, etc.

The following figure shows pinwheels in the V 1 and V 2 areas of
the cat, (A) and (B), the marmoset (C) and (D), and the tawny
owl (E) and (F).
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78. Pinwheels in different species
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79. End points and triple points

If θ is the angle of a pinwheel ray, the associated orientation varies
as α± θ/2 according to the chirality.

In the following picture due to Shmuel (cat’s area 17), orientations
are coded by colors but are also represented by small white
segments.

We observe very well the two types of generic singularities of 1D
foliations in the plane:

end points (α + θ/2 = θ);

triple points (α− θ/2 = θ).

They correspond to the two possible chiralities of pinwheels.
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80. Shmuel’s orientation map
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81. Wolf-Geisel models

There exist beautiful models of pinwheels. They are analogous to
dislocations of phase fields in optics (see Michael Berry and Mark
Dennis’ works).

Fred Wolf and Theo Geisel proposed such models using a complex
valued field (of the real variables a = (x , y) but not necessarily of
the complex variable a + iy):

Z : R2 → C, a = ρe iθ 7→ r (a) e iϕ(a) = X (a) + iY (a)

where a = (ρ, θ) are polar coordinates, where the spatial phase
ϕ (a) codes the orientation (ϕ (a) varies as ±θ/2 near singular
points) and the modulus r (a) codes the orientation selectivity.
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82. Phase fields

Here is an example of a phase field (using values of one of Berry’s
examples).
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83. Periodicity of pinwheels

Orientation maps (image A: left) manifest a periodicity. The power
spectrum (the Fourier transform of the autocorrelation function of
the map) is concentrated on a ring of average radius k0 = 2π

Λ0

(image B: right)
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84. Superposition of plane waves

This means that, ideally, such phase fields with a characteristic
length are superpositions of plane waves with random phases but
sharing the same wave number k (k is the modulus of the wave
vector κ).

They are solutions of the Helmholtz equation:

∆Z + k2Z = 0 .
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85. Statistics of pinwheels and Gaussian fields

The statistics of singularities of Helmholtz phase fields is a
beautiful subject. Under some simplifying hypotheses, they can be
modeled by Gaussian fields.

In that case, you can prove that the density of singularities is
d = k2

4π = π
Λ2 with Λ = 2π

k .

It is remarkable that this density π
Λ2 was also found empirically in

pinwheels map.
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86. Pinwheels as blowing-up

In one way, pinwheels are blowing-up of points ai and the
orientation field is the closure of a section σ of the fiber bundle
π : V = R2 × P1 → R2 defined over the open subset R2 − {ai}.

Over the ai the closure of σ is the “exceptionnal” fiber P1
ai
.

These exceptional fibers P1
ai

are “contracted”and “folded” onto
small neighborhoods of the base points ai .
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87. V1 as fiber bundle

There is therefore a 3D → 2D dimensional collapse : an
orientation map is, in a way, a geometric object of “intermediate”
dimension between 2 and 3.

At the limit, when all the points of the base plane R2 are blown-up
in parallel, we get the fiber bundle π : V = R2 × P1 → R2.

So V can be considered as an idealized continuous approximation
of the concrete V 1.
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88. Geometrical interpretation

The fiber bundle π : V = R2 × P1 → R2, which is an abstract ideal
3D geometric structure, is materially implemented in a 2D neural
hardware.

This is mathematically trivial but not at all neurophysiologically
trivial as a result of biological evolution.
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89. Fiber bundles and “engrafted” variables

By the way, the intuition (not the mathematical concept) of a fiber
bundle was explicit in Hubel with his key concept of “engrafted”
variables:

“What the cortex does is map not just two but many variables on
its two-dimensional surface. It does so by selecting as the basic
parameters the two variables that specify the visual field
coordinates (...), and on this map it engrafts other variables, such
as orientation...”
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90. Contact elements and 1-jets

Now, the fiber bundle V = R2 × P1 is R2 × S1 modulo π and
R2 × S1 has an affine open subset which is the space VJ of 1-jets
of smooth plane curves.

As 1-jets can be processed by neural “point-like processors”, we
get a first answer to our initial question: “How the visual brain can
be a neural geometric engine?”

Low dimensional jet spaces are neurally implemented and jet spaces
are “prolongations” (in Cartan’s sense) dedicated to integrability.
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91. The contact structure of 1-jets

Let us recall the contact structure of the space of 1-jets.

A skew curve

Γ = v(s) = (a(s), p(s)) = (x (s) , y(s), p(s))

in VJ is the Legendrian lift of its projection γ = a(s) onto the base
plane R2

iff p(s) is the tangent p = dy/dx to the curve γ at the point
a(s),

iff it is an integral curve of the contact structure C = ker(ω)
of VJ , where ω is the 1-form

ω = dy − pdx
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92. The distribution of contact planes

The distribution C of contact tangent planes is maximally non
integrable since the 3-form

ω ∧ dω = (−pdx + dy) ∧ dx ∧ dp = −dx ∧ dy ∧ dp .

is a volume form, which is the opposite of the Frobenius
integrability condition ω ∧ dω = 0.

So, even if there exists a lot of integral curves of C (Legendrian
lifts), there exists no integral surface.
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93. The polarized Heisenberg group

Let’s remember that the contact structure C is left-invariant for a
group law making VJ isomorphic to the polarized Heisenberg
group Hpol .

(x , y , p).(x ′, y ′, p′) = (x + x ′, y + y ′ + px ′, p + p′) .

Its Lie algebra is generated by the basis of left-invariant fields
X1 = ∂

∂x + p ∂
∂y = (1, p, 0) and X2 = ∂

∂p = (0, 0, 1) with

[X1,X2] = (0,−1, 0) = − ∂
∂y = −X3 (the other brackets = 0).

The basis {X1,X2} of the distribution C is bracket generating (i.e.
Lie-generates the whole tangent bundle TVJ) (Hörmander
condition).

VJ = Hpol is a nilpotent group of step 2 (a Carnot group).
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94. The contact structure of SE (2)

This can be generalized to the Euclidean group SE (2).

The contact form of SE (2) is

ωS = cos (θ) dy − sin (θ) dx

The contact planes are spanned by the tangent vectors
X1 = cos (θ) ∂

∂x + sin (θ) ∂
∂y and X2 = ∂

∂θ with Lie bracket

[X1,X2] = sin (θ) ∂
∂x − cos (θ) ∂

∂y = −X3.
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95. The two models

Contrary to the polarised Heisenberg case, the Xj constitute an
Euclidean orthonormal basis and are therefore more natural.

The distribution C of contact planes is still bracket generating
(Hörmander condition). But SE (2) is no longer nilpotent. The
Carnot group VJ = Hpol is its “tangent cone”, its
“nilpotentisation”.
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96. Neural contact structure

The very key point, which is another striking experimental
discovery, is that the contact structure of V is implemented in a
specific class of neural connections.

Orientation hypercolumns correspond to the “vertical”
retino-geniculo-cortical connectivity.

But cortical neurons of V 1 are also connected by “horizontal”
cortico-cortical connections inside the cortical layer itself.

They are long-ranged (up to 6-8 mm), excitatory, slow (about
0.2 m / s) and distributed in a very anisotropic and “patchy” way.
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97. Necessity of a parallel transport

Such a second system of connections is necessary to explain
perceptual geometry.

The “vertical” retinotopic structure is not sufficient.

To implement a global coherence, the visual system must be able
to compare two retinotopically neighboring orientation
hypercolumns Pa and Pb over two different base points a and b.

It is a problem of parallel transport that requires long-range
“horizontal” cortico-cortical connections.
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98. Horizontal cortico-cortical connections

The following image (also due to Bosking et al.) shows how a
marker (biocytin) locally injected in a zone of about 100µm of the
layer 2/3 of V 1 of a tupaya (tree shrew) diffuses along horizontal
connections (black marks) in a selective, “patchy”, anisotropic way.

Short-ranged diffusion is isotropic and corresponds to
intra-hypercolumnar inhibitory connections.

On the contrary, long-ranged diffusion is highly anisotropic, and
corresponds to excitatory inter-hypercolumnar connections
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99. Biocytin diffusion

The injection site is upper-left in a blue-green domain.
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100. Parallelism and co-axiality

There are two main results:

1 The marked axons and synaptic buttons cluster in domains of
the same blue-green color (same orientation) as the injection
site, which means that horizontal connections connect
neurons detecting approximately parallel orientation and
therefore implement neurally a parallel transport.

2 Furthermore, the striking global clustering along the
top-left −→ bottom-right diagonal shows that almost all
blue-green cells are without any marked connections! This
crucial empirical fact means that horizontal connections
connect neurons detecting not only almost parallel but also
almost aligned “co-axial” orientations.
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101. Biocytin diffusion (bis repetita)
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102. The key result

“The system of long-range horizontal connections can be
summarized as preferentially linking neurons with co-oriented,
co-axially aligned receptive fields.”(W. Bosking)

This means that a chain of simple neurons (ai , pi ) is a chain of
“horizontally” connected simple neurons iff it is a discretization of
the Legendrian lift of a not too curved base curve interpolating
between the (ai ).

So, this means that,

up to some bound on curvature, the contact structure C is neurally
implemented in V 1.
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103. William Hoffman

Let me underline that the hypothesis that the notions of jet and
contact structure must be involved in a natural way in visual
perception was already explicitly formulated in 1989 by William
Hoffman in his pioneering paper “The visual cortex is a contact
bundle”.

It was before “in vivo” optical imaging.
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104. Association field

These neurophysiological results are corroborated by
psychophysical experiments on curve integration.

In a breakthrough paper of 1993, David Field, Anthony Hayes and
Robert Hess considered approximately aligned segments
vi = (ai , pi ) embedded in a background of randomly distributed
segments lacking any global structure

However, subjects perceive very well a global alignment.

This striking phenomenon of pop-out (perceptual saliency) is due
to a low-level integration processing: there exist local
neurophysiological binding rules which let a global perceptual
organization emerge.

We recognize here the “binding hypothesis” explaining saliency by
the propagation of coherent synchronized activity.
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105. Joint position–orientation constraints

After a lot of experimental measures, Field, Hayes and Hess
concluded that the pop-out comes from a specific connectivity,
which they called association field.

This connectivity is defined by what they called “joint conditions
on positions and orientations”:

1 two elements (a1, p1) and (a2, p2) are connected if one can
interpolate between them a curve γ (which is tangent to p1

and p2 at a1 and a2, respectively) that is not too curved;

2 otherwise the two elements are not connected.

It has been shown later (in particular by Jean Lorenceau) that the
“joint constraints on positions and orientations” correspond to
neural “horizontal” cortico-cortical connections.
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106. Schema of the association field

Thick lines: connected elements, thin lines: non connected
elements.

This specifies one of the fundamental laws of Gestalt theory called
“good continuation” (“Gesetz der guten Fortsetzung” or “Gesetz
der durchgehenden Linie”).
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107. Two vocabularies

So, we get a correspondance between two vocabularies, a
neurophysiological one and a mathematical one.

simple neurons (scaled) contact elements (a, p)

retin-geni-corti. retinotopy base space R2 of positions a

basic / engrafted variables fiber bundle R2 × P → R2

orientation hypercolumns
and pinwheels

1-jet space J1  R2 × P → R2

– long-range horizontal
connections,

Contact structure

– “co-oriented,
co-axially aligned RFs”,

– “joint constraints on
positions and orientations”

– “good continuation”
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108. Variational models for illusory contours

Let us come back now to curved illusory contours. Variational
models have been introduced since the late 70s.

1. Shimon Ullman (1976) explained that

“A network with the local property of trying to keep the
contours ‘as straight as possible’ can produce curves
possessing the global property of minimizing total
curvature.”

2. Berthold Horn introduced in 1983 “the curves of least energy”.

These models minimize an energy along curves in the base plane.
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109. Mumford’s elastica model. I

The best known is the elastica model proposed in 1992 by David
Mumford.

The energy to minimize is:

E =
∫
γ(ακ2 + β)ds

where γ is a smooth curve in R2.
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110. Mumford’s elastica model. II

Mumford argued that an illusory contour is a chain of pairs (ai , pi )
along which the loss of activity is as weak as possible.

But leaks can have a double origin:

1 leaks proportional to the number of elements of the chain lead
to the term

∫
γ βds with a constant factor β;

2 leaks due to curvature and equal to the sum of the deflections
of orientation between consecutive elements lead to the term∫
γ ακ

2ds
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111. A stochastic approach

Mumford developed also a stochastic explanation of his model.

His hypothesis is that the curvature κ(s) of the curve γ is a white
noise.

As κ(s) = θ̇(s), this means that θ(s) is a Brownian motion.

If we further suppose that the length of γ is a random variable with
an exponential law, then elastica are the most probable curves.
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112. Geodesic models

But for neural models (and not only 2D image processing) it is
natural to work in V 1, that is with the contact structure and the
Legendrian lifts.

It is why I proposed in the 90s variational models in the fiber
bundles V (VJ = Hpol , R2 × P1, R2 × S1, or SE (2)) modeling V 1.

It is here that sub-Riemannian geometry, finally, fully comes on
stage.

The natural idea is to introduce sub-Riemannian metrics on V and
look at geodesic models for curve completion and illusory modal
contours.
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113. Thom’s morphodynamical turn in the 70s-80s

Some historical landmarks.
My contribution to this story has only been

1 to recognize the contact structure of 1-jet space in pinwheels
maps and horizontal connectivity;

2 to renew the variational hypothesis in this new context;

3 to articulate the two hitherto completely heterogeneous
universes of differential geometry and neurophysiology of
perception.

In the late 60s and in the 70s, I worked a lot on singularity theory
and differential geometry with René Thom in a circle where I met
Bernard Teissier, Alain Chenciner, Jean-Pierre Bourguignon, and
later Daniel Bennequin and Marc Chaperon.
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114. Cognitive neurosciences in the 80-90s

I was introduced to neuroscience through the extraordinary
interdisciplinary network created in 1990 by the eminent specialist
in vision Michel Imbert.

It favored collaborations with specialists of neurosciences,
physiology and psychophysics like Michel Imbert himself, Yves
Frégnac, Alain Berthoz, or Jean Lorenceau.

In the 90s, a working group organized many conferences at the
“Fondation des Treilles” and also at the Institut Henri Poincaré
and Oberwolfach, with Bernard Teissier, Jean-Michel Morel, David
Mumford, Gérard Toulouse, Stéphane Mallat, Yves Frégnac, Jean
Lorenceau, Olivier Faugeras, Giuseppe Longo.
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115. Sub-Riemannian geometry in the 2000

In 2000, Alessandro Sarti, who worked since 1997 at Berkeley with
James Sethian on Kanizsa illusory contours joined me and we
started a cooperation involving also his colleague from Bologna
Giovanna Citti.

They have worked in particular on coherent states and the
harmonic analysis of SE (2).

At the same time, my colleague Helena Frankowska put me in
touch with the SISSA, and I met Andrei Agrachev and his group of
control theory and sub-Riemannian geometry (Jean-Paul Gauthier,
Ugo Boscain, Yuri Sachkov).

I remember a discussion with Andrei at the IHP where he explained
to us the pendulum equation underlying the geodesics of SE (2)!

J. Petitot Neurogeometry (SRGI, 9/9/2020)



116. The sub-Riemannian land

And so, after wavelets and coherent states, after jet spaces and
contact structures, after variational models using the classical
method of Lagrange multipliers and Robert Bryant and Phillip
Griffiths’ analysis of integrals

∫
(κ2/2)ds, I set out for the

sub-Riemannian enchanted land . . .

Some other of my guides have been Misha Gromov, Richard
Montgomery, André Belläıche, Jean-Pierre Pansu, John Mitchell,
Robert Strichartz, Anatoly Vershik.
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117. The sub-Riemannian Hpol

The sub-Riemannian geometry of the non polarized Heisenberg
group H has been explained in the 1980s by Richard Beals,
Bernard Gaveau and Peter Greiner.

It can easily be adapted to the polarized Hpol .

As you know, geodesics are the projections on Hpol of the
Hamiltonian on the cotangent space

H (x , y , p, ξ∗, η∗, π∗) =
1

2

[
(ξ∗ + pη∗)2 + π∗2

]
.

where (x , y , p) = q are coordinates in Hpol and (ξ∗, η∗, π∗)
coordinates in the cotangent space T ∗qHpol .
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118. The sub-Riemannian wavefront

The sphere S and the wave front W (with radius
√

2) are given by
the equations (where (x , p) are expressed in polar coordinates with

module |sin(ϕ)|
ϕ , ϕ > 0)

x1 = |sin(ϕ)|
ϕ cos (θ)

p1 = |sin(ϕ)|
ϕ sin (θ)

y1 = 1
2 x1p1 + ϕ−sin(ϕ) cos(ϕ)

4ϕ2

= 1
2

sin2(ϕ)
ϕ2 cos (θ) sin (θ) + ϕ−cos(ϕ) sin(ϕ)

4ϕ2

= ϕ+2 sin2(ϕ) cos(θ) sin(θ)−cos(ϕ) sin(ϕ)
4ϕ2

They are displayed in the following figure.

Such a complex behavior is impossible in Riemannian geometry.
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119. Image of the SR sphere and wave-front

The external surface is the sub-Riemannian sphere S . It has a
saddle form with singularities at the intersections with the y -axis.
The internal part is W − S . It presents smaller and smaller circles
of cusp singularities which converge to 0.
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120. Inpainting and SR diffusion

I will conclude this presentation with the problem of inpainting,
that is the completion of corrupted images.

It is natural to use diffusion along the horizontal connections, that
is the sub-Riemannian hypoelliptic Laplacian ∆ = X 2

1 + X 2
2 , and

the sub-Riemannian heat kernel.
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121. SR expertise

I learned a lot on these problems

with Giovanna and Luca Capogna,

with Andrei, Jean-Paul, Ugo, and their “intrinsic” formulation
of the sub-Riemannian Laplacian and their general theorem
for unimodular Lie groups of dimension 3,

Yuri for the elastica and the SE (2) conjugate points and cut
locus,

with the SRGI seminar: let me thanks warmly all of you and
in particular Emmanuel Trélat and Davide Barilari.
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122. Lifting level sets and filling-in the gaps

Given an image of intensity function I (x , y), we can consider the
Legendrian lifts of its level curves in V.

We get a surface Σ in V.

Let’s suppose that the image is corrupted and contains a gap Λ.

To restore the image and to fill-in Λ, the idea is to use the highly
anisotropic sub-Riemannian diffusion on V.

The idea is conceptually simple but computationnally difficult.
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123. Gauthier-Prandi inpainting

In their SpringerBrief on the sub-Riemannian neurogeometrical
model (2018), Jean-Paul Gauthier and Dario Prandi deeply
improved the computationnal efficiency of the model.

They used a semi-discrete version which is a left-invariant
sub-Riemannian structure no longer over SE (2) but over SE (2,N)
(SE (2) restricted to a finite number of rotations).

In the following display, they start with an image almost
completely concealed by a grid. The residual information is very
sparse and scattered.

They apply sub-Riemannian diffusion until the grid has vanished.

Despite its dramatic corruption, the geometry of the initial image
can be restored very correctly.
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124. Image

Top-left: initial image, top-right: highly corrupted image, bottom:
restored image.
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125. Further readings

Recently (Winter 2017) Matilde Marcolli (who worked with Misha
Gromov and Alain Connes) devoted with her colleague Doris Tsao
a very nice course on many of these topics (dynamical models of
the neuron, receptive fields and Gabor patches, conformal
geometry, contact geometry, segmentation and tracking, bistable
images, neural codes, neural networks, deep learning).

In March 2020, they co-organized a “Focus Program” at the Fields
Institute (Toronto).

Here is the presentation of their course. Look at Gromov’s
quotation.
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126. Geometry of Neuroscience at Caltech
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127. “die der Geometrie zum Grunde liegen”

A “broader mathematical framework” could be sub-Riemannian
geometry.

Using the nice expression “from within” that Gromov used for
sub-Riemannian geometry, I could say that neurogeometry seeks to
model “from within” the neuronal hardwares of the brain
functional architectures implementing the mind ideal softwares of
visual perception.

It adds new foundations for what Riemann and Helmholtz called
the Hypotheses and Facts underlying Geometry:

die der Geometrie zum Grunde liegen.
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