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Neurogeometry concerns the neural
implementation of the geometric
structures of visual perception.

These structures are very different from
the Euclidean 3D structure of the
objective external space which is the
ouput of a very sophisticated cognitive
construction.

Many non trivial mathematical structures
have been introduced recently to explain
the neural implementation of natural low

level vision.

| will focus on two of them:;

— Receptive fields of neural cells and wavelet
analysis.

— Differential geometry and neurogeometry of
the functional architecture of area V1.

We will see how contact, symplectic and
sub-Riemannian geometry arise
naturally in modeling V1 functional
architecture.

In relation with wavelet analysis this
leads to harmonic analysis on
Heisenberg type groups.
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* V1 has a thickness of = 1.8mm with 6
layers. The input layer is the layer 4C.

New experimental devices allow to
observe the activity of the neural micro-
modules involved in visual processing.

But they are extremely difficult to
interpret because the underlying
connectivity is extremely complex (“local”
means hundreds or even thousands
neurons each with hundreds or even
thousands synapses).
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« The classical receptive field (RF) of a
visual neuron is the domain of the retina to
which it is connected through the neural
connections of the retino-geniculo-cortical
pathways, and whose stimulation elicitates
a spike response.

This concept of “minimal discharge field”
(MDF) has to be refined to take into
account all the complexity of the
subthreshold activity of neurons
(membrane potential and “synaptic
integration field”).

For simplicity reasons, we will consider
only the MDF (spiking responses) of
simple neurons.

* The RF is decomposed into ON
(excitatory) and OFF (inhibitory) zones.




« Sophisticated techniques enable to record
the level curves of their receptive profile
(RP) or transfert function as linear filters.

» Level curves of the receptive profiles of the
ganglionary cells and of the LGN (G. De
Angelis) can be modeled by Laplacians of
Gaussians.




* Level curves of the receptive profiles of
some simple cells of V1 can be modeled

— by second order derivatives of Gaussians,

— by Gabor wavelets

(real part).




* There exist also RP of simple cells which
are like third order derivatives of
Gaussians (De Angelis).




B SIMPLE




« If we add time (spatio-temporal RPs) we
find even fourth order derivatives.

— White noise method. Correlation between (i)
random sequences of flashed bright / dark
bars at different positions , and (ii) sequences
of spikes. The time is the correlation delay.

200] 1200




There is a lot of technical discussions
concerning the exact form of RP.

Richard Young. « The Gaussian Derivative
model for spatio-temporal vision », Spatial
Vision, 14, 3-4, 2001, 261-319.

— « The initial stage of processing of receptive
fields in the visual cortex approximates a
‘derivative analyzer’ that is capable of
estimating the local spatial and temporal
directional derivatives of the intensity profile in
the visual environment. »

How ?

How do the RPs operate on the visual
signal?

Let /(x,y) be the visual signal (x,y are
visual coordinates on the retina).

Let o(x-x,,y-y,) be the RP of a neuron N
whose receptive field is defined on a
domain D of the retina centered on (x,,,)-




« N acts on the signal / as a filter :

Ly (%0, 50) = [1(X'. ¥ )(x" = xq," = yo)dx'dy’
D

A field of such neurons act therefore by
convolution on the signal (wavelet
analysis)

Ip(x.y)= [1()p(x = xy - y)dx'dy = (I* g)(x.y)
D

 But from the classical formula
IF-DG = D(I-G)

for G a Gaussian and D a differential
operator, the convolution of the signal /
with a DG-shaped RF amounts to apply D
to the smoothing (the regularization) /G of
the signal | at the scale defined by the
width of G.

Hence a wavelet analysis which is a
multiscale differential geometry.




A « mother » profile ¢, is transformed
under the Lie group G of tanslations of
positions, rotations of positions, rotations
of orientations 6, and scaling o.

For a given position a = (x,,Y,), the filters
with variable orientations 6 constitute an
hypercolumn in the sense of Hubel and
Wiesel.

For a typical Gabor RP, given a curve C,
the RP centered at a point a = (x, y)
which gives the maximum response has

— 6 = orientation of C,

— o codes dist(a, C).
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and ] is the direction of C at c.




o Citti-Sarti : If we look at the maximal
responses of the receptive profiles
centered at a, and if ¢ is the nearest point
of C relative to a, then
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d((z,y),¢c) =

and ] is the direction of C at c.

The simple cells of V1 detect a
preferential  orientation  (static  or
dynamic : moving gratings).

They measure, at a certain scale, pairs
(a, p) of a spatial position a in the visual
field and of a local orientation p at a.

Pairs (a, p) are called contact elements in
contact geometry. Simple neurons of V1
detect contact elements.




The hypercolumns associate
retinotopically to each position a of the
retina R a full exemplar P, of the space P
of orientations p at a.

An hypercolumn is = 200-500u wide.

This functional architecture implements the
fibration © : RxP— R with base R, fiber P,
and total space V = RxP.

The hypercolumnar structure has been
discovered in the late 50s by Vernon
Mountcastle in the somatosensorial cortex
of the cat and in the early 60s in the visual
cortex by David Hubel and Torsten Wiesel,
and after in the motor cortex and the
auditory cortex.

How a curve C in R is represented in
V=RXxXP?




 If p=Tan(0), V= RxP is the space J'(R, R) of 1-
jets of curves Cin R.

» If Cis a curve in R (a contour), it can be lifted to
V via the jet map

j:C>V=RxP

ae C— (a, p,) where p,is the orientation of the
tangent of C at a.

* I represents C as the enveloppe of its tangents
(projective duality).

» The structure of fibration formalizes
Hubel ’s concept of “engrafting”
“secundary” variables (orientation, ocular
dominance, color, direction of movement,
etc.) on the basic retinal variables (x,y) :

— « What the cortex does is map not just two but
many variables on its two-dimensional surface.
It does so by selecting as the basic
parameters the two variables that specify the
visual field coordinates (...), and on this map it
engrafts other variables, such as orientation
and eye preference, by finer subdivisions. »
(Hubel 1988, p. 131)




* |t is the functional architecture of cells with
a prefered orientation which explains how
V1 can perform global tasks such as
contour integration.

The fibrationt : Rx P >R is of
dimension 3 but is implemented in neural

layers of dimension 2.




« Many experiments have shown that
hypercolumns are geometrically organized
in pinwheels.

— The cortical layer is reticulated by a network of
singular _points which are the centers of the
pinwheels.

— Locally, around these singular points all the
orientations are represented by the rays of a
“‘wheel”,

— and the local wheels are glued together in a
global structure.

* The method (Bonhoffer & Grinvald, ~ 1990) of
“in vivo optical imaging based on activity-
dependent intrinsic signals™ allows to acquire
images of the activity of the superficial cortical
layers.

The experimental challenge is extremely
difficult. Millions of neurons are connected with
hundreds and even thousands of synapses for
each neuron.

Single cells recordings or post mortem
visualization of the cortical activity via 2-
deoxyglucose maps are not sufficient.




In vivo optical imaging methods have a good
spatial resolution (50u) but a bad temporal
resolution.

They can analyze slow intrinsic changes of
optical properties of the cortical layer.

To visualize the cortical dynamic one needs
other methods such as voltage-sensitive dyes
which stain active cells : dye molecules are
bound to cell membranes and act as molecular
transducers transforming changes in membrane
potential into optical signals.

Temporal resolution < 1ms.

» A piece of cortex is exposed in an oil-filled
chamber and illuminated by orange light
(605nm).

The amplitude of orientation maps is very
weak w.r.t. the light intensity of recorded
cortical images. One substracts the mean
intensity for all orientations (cocktail
blank).

One does the summation of the images of
V1 ’s activity for the different gratings and
constructs differential maps.




* The low frequency noise is eliminated.

« The maps are normalized (by dividing the
deviation relative to the mean value at
each pixel by the global mean deviation).

In the following picture the orientations are
coded by colors and iso-orientation lines are
therefore represented by monocolor lines.

William Bosking, Ying Zhang, Brett Schofield,
David Fitzpatrick (Dpt of Neurobiology, Duke)
1997, « Orientation Selectivity and the
Arrangement of Horizontal Connections in
Tree Shrew Striate Cortex », J.of
Neuroscience, 17, 6, 2112-2127.

» Layers 2/3 of a Tree Shrew (Tupaya) :

LGN — layer 4 — (strictly feed foorward) —
layers 2/3.










There are 3 classes of points :

— regular points where the orientation field is
locally trivial;

— singular points at the center of the pinwheels;

— saddle-points localized near the centers of the
cells of the network.

Two adjacent singular points are of
opposed chiralities (CW and CCW).

It is like a field in W generated by
topological charges with « field lines »
connecting charges of opposite sign.

At the boundary between V1 and V2 the
configuration is different. Pinwheels of the
same chirality are aligned along the
boundary (Shigeru Tanaka, Riken
Institute).




* In the following picture due to Shmuel
(cat’'s area 17), the orientations are coded
by colors but are also represented by
white segments.

« We observe very well the two types of
generic singularities of 1D foliations in the
plane.
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They arise from the fact that, in general,
the direction @in V1 of a ray of a pinwheel
IS not the orientation p, associated to it in
the visual field.

When the ray spins around the singular
point with an angle 6 the associated
orientation rotates with an angle 6 /2. Two
diametrally opposed rays correspond to
orthogonal orientations.

There are two cases.

If the orientation p, associated with the
ray of angle 6is p,= a+ 0/2( « being the
orientation of the ray 6 = 0), the two
orientations will be the same for

po=a+02=0
that is for 6 = 20

As o is defined modulo mt, there is only one
solution : end point.
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- |If the orientation p, associated with the
ray of angle 0 is p, = a - 6/2, the two
orientations will be the same for

that is for 6 = 20/3.

 As o is defined modulo =&, there are three
solutions : triple point.
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« P. E. Maldonado, |. Godecke, C. M. Gray,
T. Bonhoffer (« Orientation Selectivity in
Pinwheel Centers in Cat Striate Cortex »,
Science, 276 (1997) 1551-1555) have
analyzed the fine-grained structure of
orientation maps at the singularities. They
found that

« orientation columns contain sharply tuned
neurons of different orientation preference
lying in close proximity ».




« James Schummers « Synaptic integration
by V1 neurons depends on location within
the orientation map » (Neuron, 36, 2002,
969-978) has shown that

— « neurons near pinwheel centers have
subthreshold responses to all stimulus
orientations but spike responses to only a
narrow range of orientations ».

Scales.

— Left (far for from a pinwheel): 8 spikes/s,
10mV, 2s.

— Right (at a pinwheel): 3 spikes/s, 8mV, 2s.

Far from a pinwheel cells « show a strong
membrane depolarization response only
for a limited range of stimulus orientation,
and this selectivity is reflected in their
spike responses ».

At a pinwheel center, on the contrary, only
the spike response is selective. There is a
strong depolarization of the membrane for
all orientations.

« The stimuli are moving oriented gratings.
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* |t is an original solution to the problem of
singularities.

» But the spatial (50u) and depth resolutions
of optical imaging is not sufficient.

* One needs single neuron resolution to
understand the micro-structure.




« Two-photon calcium imaging /in vivo
provides functional maps at single-cell
resolution.

— Kenichi Ohki, Sooyoung Chung, Prakash
Kara, Mark Hibener, Tobias Bonhoeffer
and R. Clay Reid,

— Highly ordered arrangement of single neurons
in orientation pinwheels, Nature 442, 925-
928 (24 August 2006) .

 (In cat) pinwheels are higly ordered at the
micro level and « thus pinwheels centres
truly represent singularities in the cortical
map ».

Injection of calcium indicator dye (Oregon
Green BAPTA-1 acetoxylmethyl esther)
which labels few thousands of neurons in
a 300-600u region.

Two-photon calcium imaging measures
simultaneously calcium signals evoked by
visual stimuli on hundreds of such neurons
at different depths (from 130 to 290u by
20u steps).




* One finds pinwheels with the same
orientation wheel.

* « This demonstrates the columnar
structure of the orientation map at a very
fine spatial scale ».




» Analyzing carefully the pattern of neural
activity elicitated by a thin and long line
stimulus, William Bosking (Nature
Neuroscience, 5, 9, 2002) has shown the
independance of position and orientation.

The fibration t : Rx P —> R is really
implemented.

The following picture (a) shows the
population (stripe) of V1 neurons activated
by a line stimulus located at a precise
(vertical) position (scale bar = 1mm).

(b) The stripe is embedded in the
population of V1 neurons responding to
the same vertical orientation but at
different positions.




« When the position of the line moves in the
visual field, the stripe moves in V1.

The following picture shows that the
position preference map (stripes, 0.5°
intervals) and the orientation preference
map (pinwheels) are essentially

independent.
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« S0, Bosking has shown that
« the map of visual space in V1 is orderly at a
fine scale and has uniform coverage of
position and orientation whithout local
relationships in the mapping of these

features. »

* This means that the local triviality of the

fibration © : RxP— R is neurally
implemented.



» A good example of neural implementation
of a gluing process is given by the callosal
connexions between the two hemispheric
parts of V1.

The region near the visual midline (VM) is

mapped on the two parts of V1 near the
boundary V1 / V2.
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» For the tree shrew, if one injects
rhodamine in a small region of V1, with
vertical preference (red circle in a black
region) and fluorescein in another small
region with horizontal preference (green
circle in a nearby white region), the
callosal projections on V1, show no
orientation specificity.




W. Bosking et al., The Journal of Neuroscience, 2000, 20(6),
2346-2359

« Chantal Milleret and Nathalie Rochefort
(College de France, Paris) have shown
that it is completely different for the cat :
callosal connections preserve orientation
selectivity.

If one cuts the chiasma, the right visual
hemifield projects onto the left V1 via the
the left eye and the activity of the right V1
is entirely due to the callosal
connections.
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* The principal result is that, for each
orientation, the domains activated by the
callosal connections are the same as
those activated by the retino-geniculo-
cortical pathway.




» Other variables are “engrafted” in the
pinwheel structure, in particular :

— The spatial frequency distributed along the
rays of the pinwheels. Hubener : boundaries of
the low spatial frequencies (gray) domains .
Statistically, the pinwheels are centered in the
frequency regions and the iso-orientation lines
are orthogonal to the boundaries.




The variation of phase (De Angelis 1999) :
in a single column « spatial phase is the
single parameter that accounts for most of
the difference between receptive fields of
nearby neurons ».

The figure compares the complete RFs (X,
Y = space and T = time = delay
correlation) of two nearby cells in a
column.

Stimuli = randomly flashed (40ms) small
bars (1.5°) of the prefered orientations of 2
simple neurons in the same column which
are simultaneously recorded.

One measures the cross-correlation
between the sequence of stimuli and
the response (spike trains) with several
correlation delays.

Visuotopy, orientations, spatial
frequencies are essentially the same,
but not the spatial phases.
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 The relation between the pinwheels and
the domains of ocular dominance is also
very Interesting : their boundaries are
essentially orthogonal to the iso-orientation
lines.




« Hubener (Hubener, Shoham, Grinvald,
Bonhoffer, “Spatial relationships among
three columnar systems in cat area 177, J.
of Neurosc., 17 (1997) 9270-84) :

— Many iso-orientation lines cross the borders
between ocular dominance domains close to
right angles, and the pinwheel centers are
preferentially located in the middle of these
OD domains.




* Michael Crair has shown that the peaks of
ocular dominance are localized near the
centers of the pinwheels.

— M. Crair et al., “Ocular Dominance Peaks at
Pinwheels Center Singularities of the
Orientation Map in Cat Visual Cortex”, J. of
Neurophysiology, 77 : 3381-3385, 1997.




« The “vertical” retinotopic structure and the
trivial locality are not sufficient.

« To achieve global coherence, the visual
system must be able to compare two fibers
P, et P, over two neighboring points a and

* This is a problem of parallel transport. At
the neural level it is implemented in the
horizontal cortico-cortical connections.

nl(a)




- Cortico-cortical connections are slow
(= 0.2m/s) and weak. They essentially
connect neurons of the same orientation in
neighboring hypercolumns.

This means that the system is able to
know, for b near a, if the orientation g at b
is the same as the orientation p at a (local
parallelism).

The  retino-geniculo-cortical  "vertical®
connections give an internal meaning for
the relations between (a, p) and (a, q)
(different orientations p and g at the same
point a) .

While the "horizontal” cortico-cortical
connections give an internal meaning for
the relations between (a, p) and (b, p)
(same orientation p at different points a
and b).




q P=q pP=q

a a b
Vertical connections : Horizontal connections :
a=b azb
pP#q pP=q

 The next slide (William Bosking) shows
how biocytin injected locally in a zone of
specific orientation (green-blue) diffuses
via horizontal cortico-cortical connections.
The key fact is that :

— short range (inside a single hypercolumn)

diffusion is isotropic, but

— lon range diffusion (between different
hypercolumns) is on the contrary highly
anisotropic and restricted to zones of the
same orientation (the same color) as the initial
one.




 Moreover, cortico-cortical connections
connect neurons coding pairs (a, p)and
(b, p) such that p is the orientation of the
axis ab (William Bosking).

« The system of long-range horizontal
connections can be summarized as
preferentially linking neurons with co-
oriented, co-axially aligned receptive
fields ».
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 These results mean essentially that the
contact  structure of the fibration
n . RXP—R is neurally implemented.




* First model.

« We work in the fibration ©: V= RxP—>R
with base space R and fiber P = set of
orientations p.

A local coordinate system for V is given by
triples (x, y, p).

» Let C be a smooth curve in the base space
R. We have seen that it can be lifted to a
curve I''in V' : its 1-jet or Legendrian lift.

 If vy = y(x) is a local equation of C, the
equation of I is

X%y, p)= XYy )

e The contact elements are connected by
horizontal connections.




Conversely, let I = (x(s), y(s), p(s)) be a
curve in V with projection Cin R.

I' is the lifting of C iff

p(s) = y(s) ] x(s).

Frobenius integrability condition .

In the following slide we show curves in V
which don’t satisfy the integrability
condition. The contact elements are not
connected by horizontal connections.







« Geometrically, the integrability condition
means the following. We suppose x is the
basic variable. Let

t=x,y,p;1,y,p)
be a tangent vector to V at the point
(@ p)= (X, ¥, p)

If y~ = p we have

t=x,y,p; 1, P, p°).

« This is equivalent to the fact that ¢ is in the
kernel of the 1-form

® = dy - pdx
o= 0 means simply p = dy / dx.

« But this kernel is in fact a plane called the
contact plane of V at (a, p).




* The curves in V of the form j’C are

therefore the integral curves the field of
planes K: v — K.

» This non integrable field is the contact
structure of V, and wis its contact form.

 |f we add scale, we get the
symplectification of the contact structure.




* The Frobenius integrability condition is a
geometrical formulation of the Gestalt law
of “good continuation” (J-M. Morel, Y.
Fréegnac, S. Mallat) .

Its empirical counterpart has been studied
psychophysically by David Field, Anthony
Hayes and Robert Hess and explained via
the concept of association field.

Let (a,, p;) be a set of segments embedded
in a background of distractors. They
generate a perceptively salient curve (pop-
out) iff the p, are tangent to « the » curve C
interpolating between the a..

Experiments show that some curvature is
admissible. This means that the contact
plane is implemented (the curvature of C is
the vertical component of the lifting).

But there is a limit to curvature. It has to be
added to the model.




— « Elements are associated according to joint
constraints of position and orientation. »

— « The orientation of the elements is locked to
the orientation of the path; a smooth curve
passing through the long axis can be drawn
between any two successive elements. »

« This is a psychophysical formulation of the
integrability condition.




« The pop-out of the global curve generated
by the (a, p;) is a typical translocal
phenomenon resulting from a binding
induced by the horizontal connections.

 Binding is a wave of activation along
horizontal connections which synchronizes
the cells (Singer, Gray, Konig).

« Second model. It is more natural to work
with angles in the fibrationt: V=R x P
— R with P = S and with the contact
form

@ = —sin(6)dx + cos(0)dy




* The contact planes are spanned by

with Lie bracket

(X1, Xo] =sin (0) 0, — cos (0) 0, = —

* V becomes a Lie group isomorphic to the
Euclidean group E(2) which is the semi-
direct product

E(2) = SO(2) x R?

Y1 + xosin (f1) + yo cos (01)

T + xo cos (91) — Y2 81N (91) )
(91 + 92




* Inverse
(—xcos () — ysin (0),xsin (f) — ycos (0) , —0)

* Leftinvariance

translates into

{cos (0) 0y +sin () 0y = X1, —sin (0) O + cos (0) 9y = X3,00 = Xo},

wo = dy

translates into the contact form w.




* The group structure on V of the first
model is isomorphic to the Heisenberg
group :

(2, y,p). ("9, ) = (e + 2",y +y +pa’,p+ )

« If t = (& n, x) are the tangent vectors of

T,V, the Lie algebra of V has the Lie
bracket

v

= [(&n,7), (.0, 7")] = (0,m = &', 0)

 |tis generated by

N T
1T 0r Py T PR T g T

(the other brackets = 0).




This Lie algebra can be represented by
nilpotent matrices m(&, n, )

0 ™ 7
0 0 &
0 0 O

and the elements (x, y, p) of the group V
by matrices M(x, y, p) =1+ m(x, y, p)

But we can also exponentiate and
represent the elements (x, y, p) of the
group V by matrices

exp(m(g, n, 7)) =
I+ m(x, y, p)+ 1/2 m(0, px, 0) =

M(x, p, y+1/2px)

The group law on V becomes
(X, ¥, p)-(X’, y', p) =
(x+Xx,y+y +1/2(px’—xp’), p+ p’)




e This is the Heisenberg group.

* The center Z of the two groups is the y
axis.

So harmonic analysis on V is strongly
related to that on the Heisenberg group,
which is very well known in quantum
mechanics.

We can therefore transfer many results
(Gerald Folland : Harmonic Analysis in
Phase Space, Vladimir Kisil, etc.).

In particular, the Stone — Von Neumann
theorem implies that every irreducible
unitary representation in an Hilbert space
which is not trivial on the center Z is
equivalent to a Schrodinger
representation :

pi(z,y,p)f(t) = e*™uentwDrel) £

with f (f) e L>(R), D =dlotand T =
multiplication by ¢ (h is the Planck
constant).




« The natural context of signal analysis in

natural vision is therefore that of coherent
states. We have

AUl ET I 7 — [ 2 (R?)
— A (locally compact) Lie group G acting on #
via an irreducible unitary representation .

— A well localized « mother » wavelet [tIESEy

» Coherent state = G-orbit S IPte of ¢,

« Harmonic analysis of a signal f:




 The Gabor transform corresponds to the
analysis

Gy(a,w) = / flx)e =Yg (z —a)" dr € L? (R?)
J R

with the synthesis

* For classical wavelets, the coherent states
are

* The synthesis is given by Calderon identity
with




« Coherent states enable to represent a
signal = H by its transform

A

- Itis what is done by V1, the [N being
the measure of f by the receptive profiles
Dy-

A typical example of the problems of
neurogeometry is given by well known
Gestalt phenomena such as Kanizsa
illusory contours.

» The visual system (V1 with probably
some feedback from V2) constructs very
long range sharp virtual contours.




* |In the neon effect, virtual boundaries are
boundaries for the diffusion of color.




 Kanizsa subjective modal contours
manifest a deep neurophysiological
phenomenon.

Here is a result of Catherine Tallon-Baudry
in « Oscillatory gamma activity in humans
and its role In object representation »
(Trends in Cognitive Science, 3, 4, 1999).

Subjects are presented with coherent
stimuli  (illusory and real triangles)
« leading to a coherent percept through a
bottom-up feature binding process ».




» « Time—frequency power of the EEG at
electrode Cz (overall average of 8
subjects), in response to the illusory
triangle (top) and to the no-triangle
stimulus (bottom ».

« « Two successive bursts of oscillatory
activities were observed.

— A first burst at about 100 ms and 40 Hz. It
showed no difference between stimulus types.

— A second burst around 280 ms and 30-60 Hz.
It is most prominent in response to coherent
stimuli. »

A Stimuli B Time-frequency power average
(electrode Cz)

"
G)k

real triangle

1 —>
%2 ¢ .
‘no-triangle' stimulus

+
curved illusory triangle
(target)

40




 The contact structure K_defines sub-
Riemannian metrics on V.

* One considers metrics ngefined only on

the planes of ‘K and only curves I' in V
which are integral curves of K,

* We apply sub-Riemannian geometry to
the analysis of curved Kanizsa illusory
contours (the sides of the internal angles
of the pacmen are not aligned).




« Shimon Ullman (1976) introduced the idea
of variational models.
« A network with the local property of trying to
keep the contours “ as straight as possible ”

can produce curves possessing the global
property of minimizing total curvature. »

« Horn (1983) introduced the curves of least
energy.

David Mumford (1992) used elastica:
« Elastica and Computer Vision »,
Algebraic Geometry and Applications,
Springer.

Elastica are curves minimizing the integral
of the square of the curvature x, i.e. the

energy

E =] (ox+B)2ds




* For natural vision, we have developped a
slightly different variational model using
the sub-Riemannian geometry associated
to the contact structure.

« Two pacmen of respective centers a and b
with a specific aperture angle define two
contact elements (a, p) and (b, q) of V.

A K-contour interpolating between (a, p)
and (b, q) is

— 1. a curve C from a to b in R with tangent p at
a and tangent g at b;

— 2. a curve minimizing an "energy" (variational
problem).




We lift the problem in V. We must find in V
a curve I' interpolating between (a, p) and
(b, ) in V, wich is at the same time:

— 1. "as straight as possible”, that is "geodesic" ;

— 2. an integral curve of the contact structure.

In general T" will not be a straight line
because it will have to satisfy the
Frobenius integrability condition.

It is "geodesic" only in the class of integral
curves of the contact structure.

We have to solve constrained Euler-
Lagrange equations for satisfying the
condition of minimal length.

This is a typical problem of sub-
Riemannian geometry.




* Let vand v'be 2 points of V. We define
their distance dgév,v’) as the inf of the Jx-
length of the integral curves joining v to

V.

It can be shown — Chow theorem — that
such curves always exist due to the fact

that the Lie brackets of ‘K generate the
whole tangent bundle TV.

dic(v,v') = inf /||F'(s)|| ds
I

[' integral curve of K,
['0)=v,I'(1) =2



* A geodesic between v and v’ for the sub-

Riemannian metric is then an integral
curve of K which realizes everywhere

locally the distance dQQ

 One of the specificity of sub-Riemannian
geometry is that there can be many
geodesics (even an infinity) sharing the
same initial conditions.

« There exists a quite good theory for sub-
Riemannian geometry of contact manifold,
especially in dimension 3.




* |n particular, for the 1-form

@ = —sin(6)dx + cos(6)dy

and the metric making {X1, X2, X3}

an orthonormal basis, the problem has
been recently solved by Andrei Agrachev
and lgor Moiseev (SISSA, Trieste).

They work in the fibration V=R x S’
where the Legendrian lifts are solutions
of the control system :

T = uy cos (6)
Yy = wuy sin (@)
0 = U9

Sub-Riemannian geodesics are the
projections on R of the integral curves of
an Hamiltonian system on V.




« Hamilton equations in the cotangent
bundle T*V are :

y = 31—511 = p, sin® () + p. cos (6) sin ()

{ T = 35 = p. cos? (0) + p, cos (#) sin (9)

* p,and p, are constant. Write

Py, p,) = pexp(if) . Then

and H yields the first integral :

and the ODE for 6 (¢, p and B are cst.) :

o’ = pi = c — p*cos® (0 — 3)




« For =0 (rotation invariance), the

equations become :
4

i = pcos? ()

= pcos (0)sin (8) = £ psin (26)
0 = Po

\ Py = 5p?sin (20)

* Forp=1, o =m/2-0,and u=2¢=
w— 260, we get a pendulum equation

ji = — sin (1)

with first integral

P +sin® () = o

 We show the trajectories in the (¢, @)




the system can be integrated via elliptic
functions.

e For the modulus 1/c < 1 ;

Ficure 30. Différentes géodésiques sous-riemanniennes pour ¢ décroissant
de2al:c=2 (rouge), c = 1.5 (violet), ¢ = 1.1 (bleu), ¢ = 1.001 (vert),
¢ =1 (noir). (D’apres les calculs d’A. Agrachev).




e For the modulus 1/c > 1 :
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Ficure 31. Différentes géodésiques sous-riemanniennes pour ¢ croissant
de0.1al:¢c=0.1 (rouge), c = 0.5 (violet), ¢ = 0.9 (bleu), ¢ = 0.99 (vert),
c =1 (noir). (D’apres les calculs d’A. Agrachev).

* The sub-Riemannian sphere and the
wave front are more complex than those
of the Heisenberg group.

» For the Heisenberg group, the formulas
for geodesics are much simpler (R.
Beals, B. Gaveau, P. Greiner, A.M.
Vershik, V.Y. Gershkovich) and the wave
front can be explicitely computed.




* Let v = (x,, X,, t) coordinates for H. The
group law is:

1 — r175))

* It is isomorphic to the jet space
(x, y, p) through the change of
variables :

X=Xq Y=1t+2Xx.%,, p=4x,.

» The tangent vectors X, and X,
generating the contact planes K, are :

 If T=(0,0,1), [X,, X;] = 4T,
[X,, T]1 =0, [X,, T] = 0.




« Many geodesics can have the same
initial conditions

v(0) = (x4(0), x5(0), ¥0))
v(0) = (x4(0), x 0), £(0)) .

* |n the Hamiltonian formalism, initial
conditions are no longer defined by
tangent vectors but by cotangent vectors

o(0) = (54(0), 55(0), &0))




« Geodesics are projections on R? of
Hamiltonian trajectories of an
Hamiltonian H defined on the cotangent
bundle T *R3.

* They define an exponential map which
can be expressed in the following way.
Let ve R3and (,the submanifold of

T, "R®of energy H = 1/2.

« T, *R3is isomorphic to R x(, and the
exponential is the map &, : R x(, — R®
which associates to (s, @) the projection
of the end at time = 1 of the H-trajectory
starting at (s, @) .




The problem is that #, has singularities.

Sphere S(v, r)={w: d(v, w) =r}.

Wave front W(v, r) = { w: 4 a geodesic
v : Vv — wof length r}.

Cut locus of v={ w: w end point of a
geodesic v :Vv — w which is no longer

globally minimizing }.

» Conjugate locus of v = caustic = X, =
{ singular locus of & }.

» The geodesics are the projections of the
trajectories associated to the Hamiltonian

1 ‘
H (21,23, ,€1:6,0) = 5 | (€1 + 2220)° + (&2 — 2010)°]

(as H is independent of ¢, 8is constant)

and their equations from (0, 0, 0) to
(x1 = 21 (7), 29 = 2o(7),t = 1(7))

z1(s) = S22 (cos[2(s — 7)0] 21 + sin[2(s — 7)6] z2)

sin|2716

5?11[259] (COH[Q( 7-)(9] To — 5111[2( — 7')(9] 1171)

sin|27160

450 —sin|4s60
ts) = S (@) + (22))
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« We have
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F1cUrE 32. La fonction p(p) intervenant dans la construction des géodé-

siques sous-riemanniennes du groupe de Heisenberg.




To get geodesics with the same end point

(x1 = z1(7), 22 = z2(T),t = t(T))

we have to solve t = u(276) ||x||* in 76.

For instance for p(p) = 20 (and § = 1) we get 11
solutions: 71 = 1.36, 70 = 1.77, 73 = 2.84, 74 = 3.44,
75 = 4.34, 7¢ = 5.09, 77 = 5.83, 78§ = 6.75, T9 = 7.32,
T10 = 8.42, 711 = 8.80. If we take for instance z; =
z1(7) = 2 and 23 = z5(7) = 1, we get ¢t = 100 and 11
geodesics joining (0,0,0) to (2,1,100). In the following
figure we show the two cases 7; and 7.

FicURrRE 33. Deux géodésiques sous-riemanniennes du groupe de Heisen-
berg joignant (0,0,0) a (2,1,100). On représente les géodésiques dans V'

et leur projection sur le plan z.




 This structure of geodesics implies that
the sub-Riemannian sphere S and the
wave front W are rather strange.

» We show first their section in one
quadrant, then their entire structure.







* A. Agrachev, Gauthier and Zakalyukin
gave the normal forms of generic

caustics of sub-Riemannian metric on
contact structures in R3.




 There exists normal coordinates w.r.t.
which the Hamiltonian H writes as a
deformation of the Heisenberg case

H (z1,29,t,£,,&5,0) =

H(Ilw I3, t Elﬂ &-21 9)

l . P N . ) . P N . L9
= 5 [(..5;1 + B (€ xy — Ex71) + 2yx90) + (€, — B(Eyza — Eo7y) — 2"}’5’319_)“}

where f(x., x,, t) and Ax,, x,, t) satisfy
the boundary conditions (0, 0, t) = 0,
10, 0, t) =1, Vx’y)/(O, 0,)=0.

« AtO, B=y=x,=x,=0and y=1 and

so, H = 1/2 implies
g% —~_ &3 — 1a &-1 — COS (50) 352 — SiIl (‘70)

 For Heisenberg, the caustic X is the t-
axis.




* For the generic case it is, in the new variables

Z=Xx,+ix,,t=h?and ¢, at 4th orderin h

2(h, ) = h3 (3¢~ + %) + {h? (26—¢(2<p+<p0) 4+ ei(ﬁlap—l—cpo))
t(h) = h?

* ¢,is a module for the diffeo-equivalence.

* In the following figure we see the 4th order
approximation :

* The intersection of the cuspidal edges
with the plane t = h? is given by
dz/dp=0,i.e.

3ih* (€39 — e ) 4 4h! (e'heten) 1 gmieie)) = g




* To understand correctly V1, we would
have to correlate harmonic analysis and
sub-Riemannian geometry, and in
particular investigate the sub-elliptic
Laplacian and the heat kernel.

For the Heisenberg group, there are
works of R. Beals, B. Gaveau, P.
Greiner, D-Ch Chang.

The problem is rather difficult since there
are cut points in every neighborhood of
each point and the classical analysis of
heat equation fails at these singular
points (B. Gaveau, IHP, 26-10-2005).




 The contact structure of Vis defined as
the kernel field of the 1-form w .

« But this field is only defined up to a scale
factor s = €9, wand sw having the same
kernels.

* |t is therefore natural to enlarge the 3
dimensional contact space V=R? x S’ to
the 4 dimensional space G =R?x S" xR
with coordinates (x, y, 6, 0).

* G is the affine group of the plane and its
invariant basis is now
X1 =¢€7 (cos(0)0, + sin(#)0,)
X3 =€? (—sin(#)0, + cos(0)9,)
Xy =0,

the invariant 1-form being now

w=e 7 (—sin(f)dx 4 cos(0)dy)




* dwis the symplectic 2-form on G
(€77 cos(B)dx + e~ sin(6)dy) N dO +
(—e™7sin(f)dz 4+ e~ cos(@)dy) A do.

deduced via left translations from the
canonical symplectic 2-form at 0

dz A df + dy A do

* Indeed, the translated of dx and dy are

{ v =e 7 (cos(f)dx + sin(0)dy)

w = e 7 (—sin(f)dx + cos(0)dy)

Il /) — VA dO+ wAdo

e dw can be writen using an antisymmetric
matrix B

dw(X, X') = (BX,X')

—cos(f)  sin(f)
0 0 —sin(f) — cos(6)
cos(f)  sin(f) 0 0
—sin(#) cos(6) 0 0

* iS positive definite SRRy

and we can therefore consider

B=¢e°




J = BP 1 = ¢ BEEEISIENEEEY|

and defines a complex structure

0 0 —cos(f)  sin(f)
0 0 —sin(#) — cos(8)
cos(f)  sin(0) 0 0
—sin(f) cos(f) 0 0

J =

 |f we define a new scalar product by
(X|Y) = e (X|V)

 The planes { X,, X, } and { X3, X, } are
complex planes, on which J acts as
multiplication by 1.




e We can apply this to the mother wavelet
1

L0,0)(T;Y) = 20 e e

and look at the associatated coherent
state.

Let C be a closed boundary in R and
a = (x, y) a point inside C.

Citti-Sarti : If we look at the maximal
responses of the receptive profiles
centered at a, and if ¢ is the nearest point
of C relative to a, then

d((x,y),c)

and [l is the direction of C at c.

 \We can therefore lift R to a surface 2'in G
= ‘(: y,0(x, ), (, z;})




 The tangent vecteur over a = (x, y)

X =¢€° ( L{l‘w{a} 0, + sin {@} 0y )
is parallel to C at ¢ which is at minimal

distance and therefore, as a derivative,
satisfies




 The tangent vector over a = (x, y)

is orthogonal to C at ¢ and Is constant
along this direction. Therefore

T

Now, the tangent plane to X: HiSssF9Y
IS generated by the 2 vectors

0

) Xo+ X, (7) X4

X3+ X3 (0) X2+ X3 (0) X4

But, since

X1+ X1 (6) X

X3+ X3(0) Xy

we see that dw vanishes on 7X: Y is a
Lagrangian submanifold of G.




» The transform of a closed contour C by
this coherent state realizes the
propagation of C via the eikonal equation
of geometrical optics (Huyghens or
« grassfire » model).

The singular locus of this propagation is
like the « symmetry axis » or « medial
axis » whose role in vision has been
strongly emphasized by many authors
after Harry Blum : René Thom, David
Marr, David Mumford, Steve Zucker,
James Damon, Benjamin Kimia, etc.

MA of a rectangle '

MA of an ellipse computed by A. Sarti
using the coherent state




It seems that illusory contours are in fact
boundaries of illusory minimal surfaces in
V1.

The theory of surfaces S in a contact
manifold endowed with a sub-Riemannian
geometry is rather difficult.

There are in general “characteristic” points
where S is tangent to the contact plane and
where the normal vector relative to K _is not

defined.

See Scott Pauls : « Minimal surfaces in the
Heisenberg group ».




* The geometry of the functional
architecture of V1 is a rich underlying
structure for the physics of neural activity
and the dynamics of propagating waves.

A beautiful application of this concerns
entoptic vision (Tyler 1978).

* It can be summarized by the following
comparison :
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« The key result is that these morphological
structures can be deduced from the
encoding of the functional architecture of
V1 into the Hopfield equations of a neural
net.

* Entoptic vision concerns some
geometrical patterns of phosphenes
which are perceived after strong
pressions on the eyeballs (mechanichal
stimulation), electro-magnetic
stimulations (transcranial magnetic stim.,
electrical stim. via implanted micro-
electrodes), exposures to a violent
flickering light, headaches, absorptions of
substances such as mescaline, LSD,
psilocybin, ketamin, some alkaloids
(peyote) (neuropharmaco stim.), or near
death experiences.




- They are related with an increased
abnormal excitability of the photorecptors
and of V1.

 They are in competition with the activity
coming from visual inputs (Rauschecker,
2004).

o Subjects see spontaneously vividely
typical forms : tunnels and funnels, spirals,
lattices (honeycombs, triangles), cobwebs.

 These typical forms can operate on the
drawings of any type of objects as in the
paintings from Indian Mexican tribes.

« The Huichol are an indigenous ethnic
group of Western Central Mexico that live
in the Sierra Madre Occidental.
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« « Such visual imagery is dynamic and the
illusory contours usually explode from the
center of gaze to the periphery, appearing
initially in black and white before bright
colors take over, and eventually pulsate
and rotate in time as the experience
progresses » (Yves Frégnac, J. of Physio-
Paris, 97, 2-3).

These illusory forms were already
classified a long time ago (1928) by the
great neurophysiologist Heinrich Kluver
(1897-1979) who provided many clinical
reports on them.

Kluver was a student of Max Wertheimer
and introduced the Gestalt psychology in
the United States.

He called the most typical forms
planforms.




The NIMH program

Programs at the National Institute of
Mental Health aiming at probing the
neuroreceptors with varied substances.

In the receptor space each substance
shifts the balance of activity of the brain
away from the origin, by a vector
representing the profile of binding
affinities at different receptors.

— « In a brain-centered reference frame, the
origin is based on absolute levels of activity
at each receptor population. The state of the
brain is constantly on the move. We can
think of it as a complex dynamical system, in
which the trajectory follows high-dimensional
orbits, and switches among many
"attractors”. »

— « In this dynamic reference frame, drugs will
create a perturbation along the binding
vector, thereby pushing the system into a
new attractor. » (Thomas Ray, Univ. of
Oklahoma)




Reference papers

The first paper on the subject was that of
Ermentrout and Cowan (1979):

« A mathematical theory of visual
hallucinations », Biol. Cybernetics, 34,
137-150.

Recently, the subject was completely
revisited by Paul Bressloff, Jack Cowan,
Martin Golubitsky, Peter Thomas, and
Matthew Wiener:

« Geometric visual hallucinations,
Euclidean symmetry and the functional
architecture of striate cortex », Phil.
Trans. R. Soc. Lond. B (2001) 356, 299-
330.




« See also the very recent Bressloff's
Cowan's paper:

« The functional geometry of local and
horizontal connections in a model of

V1 », Neurogeometry and Visual
Perception (J. Petitot, J. Lorenceau,
eds.), J. Physiology (Paris), 97, 2-3, 221-
236.

The authors work in the fibration

n:V=RxS' >R

with local coordinates (x, 6) (6 = the
angle of the orientation p).

Let a(x, 6, t) be the activity of V1. We
look for the PDE (partial differential
equation) governing the evolution of a.

« Standard Hopfield equations.




* Letu,,i=1, ..., Nbe formal neurons with activity
ait).

If time and space are discrete, standard Hopfield
equations are (local rules of interaction):

wijo (a;(t)) + hi(t)

where o is a non linear gain function (with
6(0) = 0), h an external input and w; the weight of
the connection between u; and u;.

If time is continuous and space discrete,
we get a system of N ordinary differential
equations :




* If time and space are continuous, we get a
partial differential equation :

da(g, 1)

Y :—a((bf)"’/ w(qlg’) o (alq’, t)) dg" + h(g,?)
, JV

* The authors use the following Hopfield
equation :

da(x,0,t)

: :—aa(x,e,l‘)—l—ﬁ / /u.' (x,0]x',0") o (a(x', 0, t)) dx'd0"+h(x, 6,1
ot T Jo JR

RSN is the weight of the
connection between the neuron v = (x, 6)
and the neuron v’ = (x’, "), xa
parameter of decay and u a parameter of
excitability of V1.




« The increasing of 4 models an increasing
of the excitability of V1 due to the action
of the substances on the nuclei (locus
coerulus, rapheé) which produce
neurotransmitters such as serotonin or
noradrenalin.

Encoding the functional architecture in
the synaptic weights

* The local vertical connections inside a
single hypercolumn yield a term:

where 0 is a Dirac function imposing

X=X




 The lateral horizontal connections between
different hypercolumns yield a term:

w <X_, 0]x’, 9/> = Wia (X —X',0)0 (60 — 6)

where the factor
) (9 — ¢ )

imposes 6= 6" and expresses the fact that the
horizontal cortico-cortical connections connect
coaxial pairs.

« Moreover, the coaxiality
is expressed by the fact that

Wiat (X — X',0) = wiag ()0 (x — X' — seg) = w (r—g (x — X))

where e, is the unit vector in the direction
6.




» As the weights w are E(2)-invariant under
the roto-translation group of motions of
the plane E(2), the PDE is itself E(2)-
equivariant if h = 0.

« The E(2) action is given by
{ y(x,0)=(x+y,0)

p(x,0) = (rox,0 4 ¢)
k(x,0) = (kx, —0)

* The action on the activity function a is :
va(x,0) = a(y71(x,0))

and on the synaptic weights is :
yw <Xa Q‘X,? 9/> = w <A/"‘_1 (Xa 0) |Al"'_1 (X/a 9,>>




The E(2)-invariances imply that the PDE

da(x.0.t
(az Y — Fla(x,6,t))

(we suppose the input h = 0) is E(2)-equivariant: vF(a) = F(va).
Martin Golubitsky,

“ The equivariance of the operator F' with respect to the
action of F/(2) has major implications for the nature of so-
lutions bifurcating from the homogeneous resting state. ”

Dynamically emerging morphologies and
bifurcations

We suppose that there exist no external
input, thatis h = 0. For u = 0, the state

a =0 is trivially the state of the network

and it is stable (you see nothing in a

black room).

« a=0 isthe ground state.




« Now, the analysis of the PDE shows that,
as the parameter u increases, this initial
activation state a =0 can become unstable
and bifurcate for critical values u of p.

* The new stable activation states present
spatial patterns generated by an E(2)
symmetry breaking.

» The bifurcations can be analyzed using
classical methods:

— Linearization of the PDE near the solution
a=0 and the critical value (..

— Spectral analysis of the linearized equation.
— Computation of its eigenvectors
(eigenmodes).

» Here are some examples of eigenmodes.




» Spectral analysis of the PDE.

— After having linearized the PDE around the
trivial solution a =0 we look at solutions of the
form :

a(x, 6, t) = eMa(x, 6)

When u = 0, A = — aand the solution is
a(x, 0, t) = et a(x, 6).

— The solutions are stationary only if A = 0.
Otherwise they decay (4 < 0) or diverge (4 > 0)
exponentially. In that case saturation imposed
by the non linear gain function stabilizes them.




« We get an equation for the eigenvalues A
of the form :

T /
Aa(x,0)=—aa(x,0)+c" (0)u </ Wioe (0 — 0" )a(x, ﬁl)ﬁ—l—ﬁ/u;lnt(x —x'.0)a(x, 6’)(1}(’)
Jo T JR

where [ is a constant measuring the
relative strength of the vertical and
horizontal connections.

 Using Fourier series of a, w,,, and w,,, for
the periodic variable 6 and Fourier
transforms for the spatial variable x, and
identifying the coefficients of the terms of
the two sides of the equation we get
dispersion relations of the form

A== o+ pF()

where F is a function of the Fourier
coefficients.

e A =0 yields equations for critical y.




 For u=0, A=- o When uincreases, 4
will vanish for a certain F(W,,; ,, W,.(q))
(where W,,., and W,_(q) are Fourier

loc,n

coefficients) and a certain critical value p,.

« The bifurcation activates the
corresponding terms in the Fourier series
and transforms. Hence the eigenmodes.

« Symmetries imply very strong constraints.

» Solutions of the form : plane wave of
WEVCRY Yool k = (p cos ), psin )

modulated by a phase function
a(x,0) = u(f —)e™* + c.c.

|

be the Fourier series of u and w,,,




« Symmetries imply u even and U_,= U, or
uoddand U, = U,

» Dispersion relations :

They imply typical forms for u (see text).

When u crosses the critical ., some
eigenmodes are activated and we get
solutions like :

Problem : infinite degree of degeneracy .
The dispersion relations depend only on
p. All the wave vectors k sharing the
same critical module p. become unstable
together.

Main hypothesis.




The authors suppose that the solutions are spatially doubly periodic
relative to a lattice £ of R.

The solutions restricted by this double periodicity constraint are
called planforms. They are well known and

“There is a common approach to all lattice bifurcation prob-
lems 7 (Bressloff et al.)

The authors work in three lattices of the plane R: £ = {27wm4l; + 2wmsly}
(my, me € Z) and their dual lattices £* generated by the wave vectors
ki, ko such that 1;.k; = 6.

If k €£*, the plane wave e’** is L-periodic.

L P k, ko
Square (1,0) (0,1) | (1,0 (0,1)

Hexagonal (1, %) (0, %) (1,0) % (—1, ﬁ)

Rhombic | (1, —cotn) | (0, = (1,0) | (cosm,sinn)

where, in the rhombic case, n # 0, 3, 5.

The main advantage to restrict to a lattice £ is that the non compact
Euclidean group E(2) is reduced to the compact symmetry group

'y = Hy 4+ T?
where:

1. Hg is the holohedry group of L = the subgroup of rotations and
reflexions of O(2) preserving L,

2. T? is the 2-torus R?/L.

» This hypothesis is absolutely not evident
(Bennequin) as lines in V1 do not
correspond to lines in the visual field (see

below).




L carré cru()e™®* 4 cou (6 — Z) e 2X 4 e

cru(f)e™ X + cou (6 — 2r) ek2X 4 can (64 ) e X 4 e,
avec kg = — (k; + ko)

L rhombique ¢ u(8)e™ > + cou(f — n)e’ 2> 4 c.c.

L hexagonal

Action of the translations T?. Let 2n7 = (2r7m1l1 +2770ly) € T2 (11,72 €

0,1[) . Wenote it 7 = [71,72]. It acts as 7 (u(p)e™*) = u(yp)eC=2m7) =

e~ 2Ty (p)e™* and therefore

L square (71, 79| (c1,00) = (727 1ey, 7212 y)
L hexagonal [Ty, o] (¢1, ¢, ¢3) = ((-:‘%WTI 1, €220, @2“(71%—72)(_33)

L rhombic [71, 79 (¢, ) = (€727 1, €727 T2¢y)

L carré cl-u(Q)ei‘k"x + cou (9 - %) ek2X | e

cru(f)e™ X + cou (6 — 2r) ek2X 4 can (64 ) e X 4 e,
avec kg = — (kl + kz)

L rhombique cyu(8)e’ X 4 cou(f — n)e™ 2> + c.c.

» We can work directly on the coefficients
(0F

/

L hexagonal

« Example of the square. ¢ is the rotation
of n/2 and xis the reflection

K,— Ky, K, = —k,, 0 — —0.




N
We know therefore the action of I'y = Dy + T2 on K ~ C?:
L

1(c1, ) = (c1,c9),
¢ (c1,c0) = (€2,¢1),
52 (c1,c2) = (c1, %),
& (c1,00) = (2,77,
k(c1,c2) =% (c1,G2)
kE (c1, ) = % (T3, C1),
f{f? (c1,c9) = £ (C1, ¢2),
h‘,.f‘; ((.71, (.32) = =+ ((:25 (-71)‘

71, 2] (c1,¢2) = (75" ey, €722 cy).

Let I be a group acting on a R-vector space K and let ¥ be a subgroup of
I'. We note Fix () the subset of K fixed by ¥ (X is the isotropy subgroup
of Fix (X)) and we say that ¥ is axial if Fix (2) is of dimension 1.
Equivariant Branching Lemma. Let I' be a Lie group acting in a way
absolutely irreducible on K (that is the linear maps commuting with the
action of I' are scalar multiples of the identity) and let F' € £(I") (where
E(I") is the space of I'-equivariant germs at the origin 0 of C*° mappings
of K into K) be a bifurcation problem (depending on a bifurcation
parameter \) with symmetry group I'. Let ¥ be an axial isotropy
subgroup (dim Fix(2) = 1). Then there exists a unique smooth solution
branch to /' = 0 such that the isotropy subgroup of each solution is .

Let (c1,¢2) € K = C2. Using the T? action [11, 7o) (¢1, ca) = (€727l ey, 72720y
we may suppose that ¢, co € RT. We look at the isotropy group X of
(c1,¢2) and we ask if it is axial.

If ¢; >0, cg > 0, [71, 72] must be [0, 0] to fix (¢1,¢2).



The subgroup ¥ = {1752,,‘;,, htfg} = D, ({2 h?-) fixes all the (¢, ¢y)
real and dim Fix(¥) = 2. It is not axial.

But if ¢; = ¢, the subgroup ¥ = D, (&, k) fixes the diagonal which
is of dim Fix(D,) = 1. The subgroup D, is therefore azial and there
will be a bifurcating branch of planforms (eigenfunctions) called Fven
Squares:

a(x,) = wu(f)cos(k;.x)+u (0 — %) cos(ko.x)

= wu(0)cos(z) +u (0 - g) cos(y)

-
Computation of the case u( ) even: u(f) = cos(260) — 0.5 cos(46)
which vanishes for 2° = y° = % (z = 272°, y = 279°).

XX X

KM X X XK 2 2 2 X — - ———

X X XXX XX XXX XXXX X
0 X X X X X KXXXX XX XXX - - -_
% X XX X XXXXX X XXX X _ | + R
—_——— b
o —————— | | +————rane
M x X | | | | | >
X 2 X o—— X 303X 0.2p XXX | | | | XX Xxxx
NERY Fofeiet: ofedodod XXX X XXXXXX | | | | XXXXXX
XXX XX XXX X XxXXXX XXXXXXT LTI TTIXXXXXX
XX X 3 X 2<% X XXXXXXT I L] TXXXXXX
OFXXXXXXT I T1TIXXXXXX
AT = o5 o 5.5 1 Ts 0 0.2 0.4 0.6 0.8 1

1. Even squares. 2. Zoom on the even squares
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2. Even rolls.
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4. Even Hexagons II. 5. Even rhombs. 6. Even rhombic rolls.
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1. Odd squares. 2. Odd rolls. 3. Odd hexagons I (triangles).
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4. Odd hexagons II. 5. Odd rhombs. 6. Odd rhombic rolls.



e The last step is to reconstruct from
eigenmodes in V1, corresponding virtual
retinal images.

 For that, we must take into account the

retinotopic conformal map mapping the
retina on V1.




* The first model was a monopole model
Wole[v4 )

* A better model is a dipole model (Eric
Schwartz, 1994), for instance

Log[(z+0.333)/(z+6.66)].

* A better model is a wedge-dipole model
for V1, V2, and V3

Log[(w(z)*a)/(w(z)+b)]

where w(z) wedges the argument.

* Left G: human V1-V2-V3 (Horton & Hoyt
1991).

« Right H : fit with a wedge-dipole model
(Schwartz 2002).

X K 1
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* Lines in V1 correspond to spiral on the
retina.

* |f we apply the inverse of the conformal
map to the eigenstates of the PDE we get
quite exact models of Kluver's planforms.

Klaver's planforms are isomorphic to
eigenmodes of the bifurcated solution of
the neural network in the synaptic weights
of which the functional architecture of V1 is
encoded.
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 The contact structure is invariant under the
action of the Euclidean group E(2) of rigid
motions in the plane :

E(2) = 0(2)+R>

E(2) is the semi-direct product of the
orthogonal group O(2) and the translation
group R2.

Let (o) an element of E(2). (¢, r,) acts
on a point a of R by

(o, ry)(@) = otry(a)

If (o, r,y) and (B, rp) are 2 elements of E(2),
their (non commutative) product is given
by the formula:

(ﬂ’ r@) 9 (OC, r(p) = (ﬁ‘I’re(OC), r6+(p)




- The rotation r,, acts on the fibration V by

ro(@,0)= (re(a).0+¢)

 This particular form of action expresses
the fact that the alignement of preferential
directions is invariant.




* In fact, the “good” fibration to use would
be the principal bundle on the base
space R associated to the invariance
Euclidean group E(2). This would lead us
to Elie Cartan 's moving frame method.

» We can think that E(2) is neurally
implemented if we take into account areas
V1 and V2 and the fact that when an
element of contour is activated it is also
the case for the orthogonal direction.

The translations of E(2) can be
Kinesthesically interpreted: the motor
control of vision allows a change of moving
frame (see A. Berthoz).




e The contact structure of V = J'R can be
recovered as a translation-invariant
structure in an appropriate Lie group.

* Indeed, let us define a product in V by the
formula:

(X, ¥, p)-(X, ¥, p') = (x+xX', y+y+px’, p+p’)

(0, O, 0) is the 0 element and
(=x, —y+px, —p) the opposite of (x, y, p).

* The Lie algebra of V is the vector space
v = [,V endowed with the Lie bracket

[¢ t1=[(c,n,7), (&0’ 7)] = (0, S'm-¢ 7', 0).




Let us consider the left translation L, defined by
L,(v") = v.v'. Tt is a non linear diffeomorphism of V
whose tangent application at 0 is the linear map

T()LUZ T()V — TvV
t=(&n,m) — Toly(t)= (§,n+pE )

The matrix of TyL, is

ToL, =

1 0 O
p 1 0
0 0 1

That shows that the basis {a%v a@v 6@} of the tangent
y’ Op

bundle TV = T J'R associated to the coordinates sys-
tem {x,y,p} is not left-invariant. It is the origin of
non holonomy. To get a left-invariant basis we must

translate the basis {g—m, 8%, 8%}0 at 0 and this yields

. J o o o8 & :
the basis {% + D3y 5y 8—p} that is {t1, —ts, t2}.




Let us now consider a vector t of Ky. As n = pé
and p = 0, we have n = 0. Its transform TyL,(t) is
therefore given by (&,p€, ). As n = p€, ToLy(t) is an
element of the contact plane K, and the contact struc-
ture I = {K,} is nothing else than the left invariant
field of tangent planes generated by left translating K.
Equivalently, we can say that K is the field of kernels
of the 1-form w which is left invariant. Indeed, at the
origin 0, w = dy— pdx is simply wg = dy. If we translate
wo to the point v we get w, = ToL}(wp) defined by the
formula w,(t) = wo (ToL,*(t)) for t = (¢,n,7) € T,V.

wy(t) = dy(&, —p&+n, m) = —pé+n = dy(t)—pdz(t) = w(t).




* The Frobenius integrability condition is a
geometrical formulation of the Gestalt law
of “good continuation” (J-M. Morel, Y.
Fréegnac, S. Mallat) .

Its empirical counterpart has been studied
psychophysically by David Field, Anthony
Hayes and Robert Hess and explained via
the concept of association field.

Let (a,, p;) be a set of segments embedded
in a background of distractors. The
segments generate a perceptively salient
curve (pop-out) iff the p, are tangent to the
curve C interpolating between the a;.




* This is due to the fact that the activation of
a simple cell detecting a pair (a, p)
preactivates, via the horizontal cortico-
cortical connections, cells (b, q) with b
roughly aligned with a in the direction p
and g close to p. This is exactly a discrete
version of the integrability condition.




— « Elements are associated according to joint
constraints of position and orientation. »

— « The orientation of the elements is locked to
the orientation of the path; a smooth curve
passing through the long axis can be drawn
between any two successive elements. »

« This is a psychophysical formulation of the
integrability condition.




» The pop-out of the global curve generated
by the (a, p;) is a typical translocal
phenomenon resulting from a binding
induced by the co-activation.

 Binding is a wave of activation along
horizontal connections which synchronizes
the cells (Singer, Gray, Konig).

 We have seen in the introduction that it is
relevant to introduce a scale factor. Its
natural interpretation is that the receptive
profiles of the visual neurons are of the
form DG (with D a differential operator)
and a Gaussian G defines a scale.




When the resolution becomes infinite and
G becomes a Dirac distribution it seems
that the concept of scale becomes
irrelevant. But it is not the case.

Indeed, the contact structure of V= J'R
is defined as the kernel field

v=(x, Yy, p) > K, of the 1-form

® = dy—pax.

But this field is only defined up to a scalar
factor, wmand ow having the same
kernels.

It is therefore natural to enlarge the 3
dimensional space V = R? xR to the 4
dimensional space S = R2x R x R * with
coordinates (x, y, p, 0).




Formulae are more symmetrical and simpler if we
work with A. Sarti and G. Citti in the fibrations V' =
R2x S!' xRand S =V xR =R? x S! x R with the
I-form

= — sin fdx + cos Ody
and the scaling e®.
The contact planes in V' are then generated by the
orthonormal basis
X1 = cost0, + sinfo,
Xo g
whose Lie bracket is

(X1, Xo| = sinfd, — cos 00, = — X

which is unitary and orthogonal to the contact plane.

We get

dw = cosfdx N\ df + sin Ody A db
wAdw = —dx NdyANdf.

In S we get

X, = e*(cos 0, +sinto,)
AXQ — 00

X3 = e*(—sinf0, + cos 00,)
.X.l = (

and we consider the 1-form

S

= e (—sinfdx + cosfOdy)
We get the symplectic 2-form

da = —e ’ds A (—sinfdr + cosbdy)
—e*df N (cos Odx + sin Ody)




If for tangent vectors 7 = (&, 1), ¢, o) at points (z, y, 0, €°)
we write

do (7,7') = (A7, 7")

we get the antisymmetric matrix

0 0 —e fcost e ®sinf

0 0 —e ¥sinfl  —e fcost
e *cosl e Fsinfl 0 0

—e %sinfl e Fcosf 0 0

We have A? = —¢™2*[, and if P = V—A? = ¢7*1], the

matrix J = AP~ defines a complex structure on S
. . 9

satisfying J° = —1.

0 0 —cosf sind

0 0 —sinf)  — cost
cos sinf/ 0 0
—sinf cosf 0 0

J is of course symplectic and we define a new Rie-
mannian structure by




[t is immediate to verify that JX; = X, and
J X3 = e*Xy. Therefore the planes { X, Xo} and { X3, X4}
are complexr planes upon which J acts as the multipli-
cation by 1.

All these structures are integrated in an Hermitian
product on R* = C? defined by

h(r, 7"

In the initial frame, the matrix of A is the Hermitian
matrix

1 0 tcos) —isind
0 1 isinf) icost
—icosf) —isinf 1 0

1 sin —icosf 0 1

* Sub-Riemannian geometry is not
intuitive. To illustrate it, we have
computed the sub-Riemannian sphere of
the Heisenberg group which is
Isomorphic to the jet space.

We used explicit formulas for geodesics
due to R. Beals, B. Gaveau, P. Greiner,

A. Agratchev, A.M. Vershik, V.Y.
Gershkovich.




« Letv=(x,, x,, t) coordinates for H. The group

law is:

(21,22, t)- (2], 25, ") = (1 + 2, 22 + 25, t + ' + 2 (w2 — 212)))

It is isomorphic to the jet space (x, y, p) through
the change of variables :

X=Xg Y= 12X X, p = 4X,.

» The tangent vectors X, and X, generating the
contact planes K, are :

X,= (1,0, 2x,), X,= (0, 1, =2x,).
- If T=(0,0,1), [X,, X;] =—4T, [X,, T] =0,




* The Hamiltonian is :

1 .- ..
H (x1,x2,¢,81,£2,0) = B) [(51 + 2290)" + (€5 — 21’1‘9)2]

and the equations of geodesics from
(URORORON () = 2((7), 10 = 2(7),t =t

[ 21(s) = %ig (cos[2(s — 7)0] x1 + sin[2(s — 7)0] x2)
{ xa(s) = ::;:[j;g] (cos[2(s — 7)0] xo — sin[2(s — 7)0] x1)
450 —sin|4s6 2 2
IL(S) = 2(si11[27'[0])2] ((2171) + (IQ) )
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F1GURE 32. La fonction p(p) intervenant dans la construction des géodé-

siques sous-riemanniennes du groupe de Heisenberg.

To get geodesics with the same end point

(z1 = z1(7), 22 = T2(7), ¢ = (7))

we have to solve t = p(276) ||x||* in 76.

For instance for pu(yp) = 20 (and = 1) we get 11
solutions: 71 = 1.36, 70 = 1.77, 73 = 2.84, 74 = 3.44,
Ty = 4.34, Te — 5.09, Ty = 5.83, T8 — 6.75, Tg = 7.32,
Ti0 = 8.42, 711 = 8.80. If we take for instance z; =
z1(7) = 2 and z2 = 25(7) = 1, we get ¢ = 100 and 11
geodesics joining (0,0,0) to (2,1,100). In the following
figure we show the two cases 7; and 7.



FicURE 33. Deux géodésiques sous-riemanniennes du groupe de Heisen-
berg joignant (0,0,0) a (2,1,100). On représente les géodésiques dans V

et leur projection sur le plan z.

 This structure of geodesics implies that
the sub-Riemannian sphere S and the
wave front are rather strange.

* \We show first their section in one

quadrant, then their entire structure.







* The dynamics of NA*, K*, Ca**, CI- ions
accross the ionic channels of the

membrane defines a rest potential (RP)
=—/5 mV

* The respective equilibrium potential (EP)
of ions are :

NA*= +62 mV,
K*=-80 mV,
Ca**=+123 mV,
Cl-=-65 mV.




* A depolarization increases RP. When it
crosses the threshold of —45 mV the
neuron “fires” and emits a spike (action
potential) which propagates along the
axon.

There is a positive feedback of
depolarization on the (fast) aperture of
NA* channels and RP increases
catastrophically up to +60 mV (= EP of
NA*).

Afterwards, NA* channels are
inactivated.

But this strong depolarization opens the
(slow) K* channels and the membrane is
repolarized and returns to the RP after a
period of hyperpolarization (-85 mV = EP
of K*).

Equations of Hodgkin & Huxley (1952,
Nobel Prize 1963).

* Dynamical analysis by C. Zeeman
(1972).
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« Spikes and subthreshold membrane
activity determine the neural coding.

— Rate coding,

— Sparse coding with robust temporal

structure,

— Rank coding (order of first spikes in neuronal

assemblies).




Examples of receptive fields of brain cells:

Stimulus  fe———Response =
(a) Lateral geniculate cell
with concentric field;
on-center foff-surround.

Period of stimulation

1. Response to light in b

center of cell’s field

2. Response to light in ]
periphery of cell’s feld

() Cortical cell sensitive
to orientation, This cell
responds strongly
only when the stimulus y
is 4 vertical stripe ‘

Corlical cell sensitive to
the direction of motion
This cell responds strongly
only when the stimulus
moves down, It responds
weakly to upward motion
and does not respoend at all
to sideways mobon

Lumiére

Axones — -

Cellule
ganglionnaire

Couche des
ganglionnaires

Cellule
amactine
Cellule
hipolaire
Couche
granuleuse
interne
Cellule
L horizontale
Batonnet
Couche des .
photorécepteurs Cone




-

Fibre optique ou axone

Cellule ganglionnaire |

Cellule amacrine _
Cellules bipolaires ] _] ] [:J
L
Collules e -  —
horizontales . . . . .

WA ]
Photorécepteurs fl_}’
JJJJ_L_J _LU_J
P
Crowow >

Champ rétinien

* In general the direction in V1 of an
orientation ray of a pinwheel is not the
orientation associated to it in the visual
field.

When the ray spins around the singular
point with an angle 6 the associated

orientation rotates with an angle 6 /2. Two
diametrally opposed rays correspond to
orthogonal orientations.




* |If the orientation p, associated with the
ray of angle 0 is p, = o + 6/2, the two
orientations will be the same for

Py =0+ 06/2=6
that is for 6 = 2.

* As o is defined modulo m, there is only one
solution : end point.

- |If the orientation p, associated with the
ray of angle 0 is p, = o — 6/2, the two
orientations will be the same for

that is for 6 = 20/3.

 As o is defined modulo =&, there are three
solutions : triple point.




« Other variables are “engrafted” in the
pinwheel structure, in particular :

— the variation of phase (De Angelis 1999) : in a
column « spatial phase is the single parameter
that accounts for most of the difference
between receptive fields of nearby neurons ».

— the spatial frequency distributed along the rays
of the pinwheels (Bressloff, J. of Phys., 2003) .

« P. E. Maldonado, |. Godecke, C. M. Gray,
T. Bonhoffer (« Orientation Selectivity in
Pinwheel Centers in Cat Striate Cortex »,
Science, 276 (1997) 1551-1555) have
analyzed the fine-grained structure of
orientation maps at the singularities. They
found that

— « orientation columns contain sharply tuned
neurons of different orientation preference
lying in close proximity ».

* The columnar redundancy vanishes at the
singular points.




« James Schummers (Neuron, 36, 2002)
has shown that

— « neurons near pinwheel centers have
subthreshold responses to all stimulus
orientations but spike responses to only a
narrow range of orientations ».

Analyzing carefully the pattern of neural
activity elicitated by a thin and long line
stimulus, William Bosking (Nature
Neuroscience, 5, 9, 2002) has shown the
independance of position and orientation.

The following picture (a) shows the
population (stripe) of V1 neurons activated
by a line stimulus located at a precise
(vertical) position (scale bar = 1mm).

(b) The stripe is embedded in the
population of V1 neurons responding to
the same vertical orientation but at
different positions.




« When the position of the line moves in the
visual field, the stripe moves in V1.

The following picture shows that the
position preference map (stripes, 0.5°
intervals) and the orientation preference
map (pinwheels) are essentially

independent.
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« S0, Bosking has shown that
« the map of visual space in V1 is orderly at a
fine scale and has uniform coverage of
position and orientation whithout local
relationships in the mapping of these

features. »

* This means that the local triviality of the

fibration © : RxP— R is neurally
implemented.



« To select a direction 6 and a scaling o is
the same thing as selecting a differential
1-form o such that

— 0= kernel K of ¢,

— o codes the value o(v) where v is the unitary
vector orthogonal to the kernel K
(« characteristic » vector).

* As the set of filters is invariant under the
action of the group G, we are therefore
led to consider G- invariant 1-forms c.
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» Connectivity implementing the sharp
orientation tuning near the centre.

» Dendritic tree near the centre C (few tens
i) in an iso-orientation domain D (yellow
dots = excitatory synapses).

— (a) d.t. biased towards D.

— (b) d.t. symmetric, but excitatory inputs biased
towards D.

— (c) d.t. sym., excit. inputs sym. but local and
therefore inside D (good segregation near C).

— (d) d.t. sym., excit.inputs sym. and integrated
uniformly over a large dendritic area.




« Jan Koenderink (1987) strongly
emphazised the importance of the concept
of jet. Without jets, it is impossible to
understand how the visual system could
extract geometric features such as the
tangent or the curvature of a curve.

« geometrical features become multilocal objects,
i.e. in order to compute boundary curvature the
processor would have to look at different positions
simultaneously, whereas in the case of jets it could
establish a format that provides the information by
addressing a single location. Routines accessing a
single location may aptly be called points
processors, those accessing multiple locations array
processors. The difference is crucial in the sense
that point processors need no geometrical expertise
at all, whereas array processors do (e.g. they have
to know the environment or neighbours of a given
location). »




« Coherent states enable to represent a
signal = H by its transform

.,\.

It is what is done by V1, the [SiR%®] being
the measure of f by the receptive profiles

?g-

The covariance of the measures follow
from the fact that the wavelets ¢, belong
to a sub-representation of the (left) regular
representation A of G in L?(G).

If T is the transform

we have the intertwining




 |f we add a scale s, we get the Weyl-
Heisenberg affine group G

(z,y,p,8).(a",y,p,s") = (q+sq¢,y +y + spz’,s ', ss)

whose elements g can be represented by
the matrices

* The elements of the Lie algebra are then
represented by matrices

« Unitary irreducible representations are
then deducible from the orbits of the co-
adjoint representaion Ad*(g) (C. Kalisa,
B. Torrésani).




» As the matrix of Ad*(g) operating on
covectors is

these orbits are easily computed.

F elliptic integral of the first kind of module

k
F. k) = /f N S

E elliptic integral of the second kind

E(3, k) = /

J0

2 1!_,
\/1 — ksin®(9)df

am Jacobi amplitude, inverse of F :
v = am(u, k) iff u = F(v, k),

Jacobi functions sn(u) = sin(y),
cn(u) = cos(w), dn(u) = (1—ksin?(y))"? .




« We get for t

* For ¢(0) =0 (6(0) = n/12), and ¢ > 1
(modulus 1/c < 1), the pendulum makes
complete turns.

1
p(t) = am (1‘\/? —) + km
C

#(t) = ct = /eE <’9(t)’ %>

y(t) = Ve (1 (wa l> _ 1>




* For c <1 (modulus 1/c > 1), the pendulum
oscillates between two extremal values
— QPex and + Dex where with Pex = Arcsin (\/E)

O(t) = Arccos (y/cam (t,c))
x(t)=t— FE(am(t,c),c)
Vel (o) D

Ficure 31. Différentes géodésiques sous-riemanniennes pour ¢ croissant
de0.1a1l:c=0.1(rouge), c = 0.5 (violet), ¢ = 0.9 (bleu), ¢ = 0.99 (vert),
¢ =1 (noir). (D’apres les calculs d’A. Agrachev).

» A way of describing the orientation maps (Wolf &
Geisel) is to consider the activity pattern E,(x) for
each orientation ¢, = 6,/2 and to construct the
complex field

Z(x)=) Ey (x)e'%

The development can then be described by a
PDE of the type

dz(x,t)

= F(z(x,1))+n(x,1)

where F is a non linear operator and 1 a random
term.




* The pinwheels centers are the zeroes of
Z(x).

« Such dynamics can be induced by an
Hebbian learning process, F(z(x)) being
the average of z(x) under very rapidly

changing stimuli A following a certain
probability law.

 The characteristic bifurcations are
fusions and splittings of pinwheels.




