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The term ‘‘neurogeometry’’ denotes the geometry of the functional architecture of visual
areas. The paper reviews some elements of the neurogeometry of the functional architec-
ture of the first visual area V1 and explains why contact geometry, sub-Riemannian geom-
etry, and noncommutative harmonic analysis are brought in as natural tools. It emphasizes
the fact that these geometries are radically different from Riemannian geometries.
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1. Introduction

In the late 1990s, we coined the term ‘‘neurogeometry’’
to denote the geometry of the functional architecture of vi-
sual areas. In general, in neural net models, few hypotheses
are made concerning the precise geometry of the connec-
tivity defined by the synaptic weights and yet it is this
geometry which explains the structure of percepts.

In this paper, we review some elements of a neurogeo-
metrical model of the functional architecture of the first vi-
sual area V1. We show that the underlying neurogeometry
belongs to what is called in mathematics contact geometry,
sub-Riemannian geometry, and noncommutative harmonic
analysis. We emphasize the fact that these geometries are
radically different from Riemannian geometries. Finally,
we show how a process as fundamental as diffusion de-
pends heavily upon them.
2. The functional architecture of V1

Let us begin with a very rough outline of V1’s functional
architecture. In the linear approximation, ‘‘simple’’ neu-
rons of V1 (there exist also ‘‘complex’’ ones) operate as fil-
ters on the optic signal coming from the retina. Their
receptive fields, that is the bundle of photoreceptors they
are connected with via the retino-geniculo-cortical path-
ways, have receptive profiles (or transfert function) with
a characteristic shape, highly anisotropic and elongated
along a preferential orientation. They can be modeled
either by second order derivatives of Gaussians,
uðx; yÞ ¼ @2G

@x2 (with G = exp (�(x2 + y2))) or by Gabor wave-
lets u(x,y) = exp (i2x) exp (�(x2 + y2)) (real part) (see
Fig. 1).1

Linear receptive fields operate by convolution on the vi-
sual signal and perform a wavelet analysis (for an introduc-
tion to wavelets, see [18]). Due to their characteristic
shape, they detect a preferential orientation. They mea-
sure, at a certain scale, pairs (a,p) of a spatial (retinal) posi-
tion a and a local orientation p at a. Pairs (a,p) are called
contact elements in differential geometry.

The discovery of the first part of the functional architec-
ture of V1 won David Hubel and Torsten Wiesel the Nobel
Prize in 1981. For a given position a = (x0,y0) in the visual
field or the retina R, the simple neurons with variable ori-
entations p constitute an anatomically definable micro-
module called an ‘‘hypercolumn’’. Hypercolumns
associate retinotopically to each position a of the retina R
a full exemplar Pa of the space P of orientations p at a. So,
this part of the functional architecture implements what
is called in geometry the fibration p:V = R � P ? R with
base R, fiber P, and total space V = R � P.

Fibrations mathematize Hubel’s concept of ‘‘engrafting’’
‘‘secundary’’ variables (orientation, ocular dominance, col-
or, direction of movement, etc.) on the basic retinal vari-
ables (x,y):
rocessing
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Fig. 1. Two models for the RF of a ‘‘simple’’ neuron of V1: a second order derivative of a Gaussian uðx; yÞ ¼ @2 G
@x2 ðG ¼ expð�ðx2 þ y2ÞÞÞ or an even Gabor

wavelet u(x,y) = exp (i2x) exp (�(x2 + y2)) (real part).
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What the cortex does is map not just two but many
variables on its two-dimensional surface. It does so by
selecting as the basic parameters the two variables that
specify the visual field coordinates (. . .), and on this
map it engrafts other variables, such as orientation
and eye preference, by finer subdivisions (Hubel [15],
p. 131).

But, as is well known, the ‘‘vertical’’ retinotopic structure
is not sufficient. To implement a global coherence, the visual
system must be able to compare two retinotopically neigh-
boring fibers Pa and Pb over two neighboring points a and
b. This is what is called in geometry a problem of parallel
transport. It has been confirmed at the empirical level by
the discovery of ‘‘horizontal’’ cortico-cortical connections,
which are slow (� 0.2 m/s) and weak and connect neurons
of almost similar orientation in neighboring hypercolumns.
This means that the system is able to know, for b near a, if the
orientation q at b is the same as the orientation p at a.

So, the retino-geniculo-cortical ‘‘vertical’’ connections
implement the relations between (a,p) and (a,q) (different
orientations p and q at the same point a), while the
‘‘horizontal’’ cortico-cortical connections implement the
relations between (a,p) and (b,p) (same orientation p at
different points a and b). Moreover cortico-cortical connec-
tions connect neurons coding pairs (a,p) and (b,p) such
that p is approximately the orientation of the axis ab. This
fascinating functional architecture is summarized by Bos-
king et al. [6]:

The system of long-range horizontal connections can be
summarized as preferentially linking neurons with co-
oriented, co-axially aligned receptive fields.

So, the well known Gestalt law of ‘‘good continuation’’
is neurally implemented. We meet here a foundational ele-
ment of geometry.

Many other experiments have confirmed and improved
this functional architecture. In particular, a certain amount
of curvature is allowed in alignments and the pure co-
alignment constraint is too strict.

3. Neural dynamics and entoptic vision

Encoding a functional architecture into the synaptic
weights of a neural net enables to explain many puzzling
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visual phenomenal. Building on previous works of Erment-
rout and Cowan [10], a beautiful example has been worked
out by Bressloff, Cowan, Golubitsky, Thomas, and Wiener for
explaining hallucinations in entoptic vision (see [7] and [8]).

Entoptic vision concerns geometrical patterns of phos-
phenes which are perceived after a strong pressure on the
eyeballs (mechanical stimulation), electro-magnetic stimu-
lations (transcranial magnetic stimulation, electrical stimu-
lation via implanted micro-electrodes), exposures to a
violent flickering light, headaches, absorptions of sub-
stances such as mescaline, LSD, psilocybin, ketamine, some
alkaloids (peyote) (neuropharmaco stimulation), or near
death experiences. They depend upon an increased abnor-
mal excitability of the photo-receptors and of V1. Subjects
see spontaneously and vividly typical morphological pat-
terns such as tunnels and funnels, spirals, lattices (honey-
combs, triangles), cobwebs. As was explained by Frégnac
in [11],

Such visual imagery is dynamic and the illusory con-
tours usually explode from the center of gaze to the
periphery, appearing initially in black and white before
bright colors take over, and eventually pulsate and
rotate in time as the experience progresses.

In the case of ingestion of a drug, a qualitative explana-
tion is that the substance shifts the balance of activity of
the brain away from its ground state, by a vector repre-
senting the profile of binding affinities at different recep-
tors. The bifurcation of the brain state explains the
hallucination.

The key move of Bressloff et al. [7] is to take the Hop-
field equations of a neural net and to encode the functional
architecture of V1 into its synaptic weights. The authors
Fig. 2. Left (I, II, III, IV): visual hallucinations drawn by the neurophysiolog
neurogeometrical models of Klüver’s data in Bressloff et al. [7].
take R ¼ R2; P ¼ S1 and work therefore in the fibration
p : VS ¼ R2 � S

1 ! R2 with coordinates v = (a,h) (a = (x,y),
h = the angle of the preferred orientation p) labelling the
‘‘simple’’ neurons. Let u(a,h, t) be the activity of V1. They
look for the integro-differential equation governing the
evolution of a:

@uða;h;tÞ
@t

¼�auða;h;tÞ

þl
p

Z p

0

Z
R2

wha;hja0;h0irðuða0;h0;tÞÞda0dh0 þhða;h;tÞ

where r is a non linear gain function (with r(0) = 0), h an
external input, wha,hja0,h0i the weight of the connection be-
tween the neuron v = (a,h) and the neuron v0 = (a0,h0), a a
decay parameter (a can be taken = 1), and l a parameter
of excitability of V1. The increasing of l models an increas-
ing of the excitability of V1 due to the action of substances
on the nuclei which produce specific neurotransmitters
such as serotonin or noradrenalin. After having made the
encoding, the authors suppose that there exist no external
input (h = 0) and that l = 0: that is the subject is in a dark
room and see nothing, his V1 activity being in its ‘‘ground
state’’ (which can be very complex due to endogeneous
activity, spontaneous noise, etc.). In the model, the ‘‘ground
state’’ state is the homogeneous state u � 0. It is stable and
the activity u measures therefore in fact the shift of the V1
state away from the ‘‘ground state’’ when h = 0 but l – 0.

Now, the analysis of the evolution equation shows that,
as the parameter l increases, this initial activation state
u � 0 can become unstable and bifurcate for critical values
lc of l. The bifurcations can be analyzed using classical
methods:
ist Heinrich Klüver in 1926 after ingestion of mescal. Right (a,b,c,d):
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� linearization of the equation near the solution u � 0 and
the critical value lc;
� spectral analysis of the linearized equation;
� computation of its eigenvectors (eigenmodes);
� hypothesis of periodicity w.r.t. a lattice K of R2.

The last step is to reconstruct from eigenmodes in V1
virtual retinal images in R2 by using the retinotpic map be-
tween the retina and V1. Fig. 2 shows how well the math-
ematical model (on the right) fits with the empirical data
(on the left).
4. 1-jets and contact structure

It is therefore very important to understand better the
neurogeometry of the functional architecture of V1. The
first idea we introduced in the late 1990s was that the
experimental results mean essentially that the contact
structure of the fibration p:R � P ?R is neurally
implemented.
4.1. The first model: the space of 1-jets of curves c in R2

Let us begin with the model pJ : VJ ¼ R2 � R! R2 with
R ¼ R2 the visual plane and P ¼ R the line of the tangent
p = tan (h) of the orientations h. This fibration underlies
the concept of jet, due to Charles Ehresmann, which gener-
alizes the classical notion of Taylor expansion and confers
it an intrinsic geometric meaning. Consider in R2 endowed
with coordinates (x,y) a smooth curve c that is the graph
{x, f(x)} of a real function f on R. The first order jet of f at
x, j1f(x), is characterized by three slots: the coordinate x,
the value y = f(x) of f at x, and the value p = f0(x) of the first
derivative of f at x. So, a 1-jet is nothing else than a pair
c = (a,p), that is a contact element. Conversely, to every
pair c = (a,p), one can associate the set of smooth functions
f whose graph is tangent to c at a. J1ðR;RÞ denotes the fiber
bundle pJ : VJ ¼ R2 � R! R2 of the 1-jets of smooth
curves in R2.

One can give a more geometric version of the fibration
pJ. In général, if M is a smooth n-manifold, one can consider
at every point a of M the set CaM of the hyperplanes of its
tangent space TaM. CaM is isomorphic to the projective
space Pn�1. The total space CM gluing these fibers is called
the contact bundle of M. In our case, n ¼ 2;M ¼ R2, and the
hyperplanes are the lines of R2 through the origin 0. So
CM ¼ R2 � P1. We will denote it by VP .

VP is the compactification of the space of 1-jets
J1ðR;RÞ ¼ VJ associated to the choice of coordinates (x,y).
To see this, it is enough to interpret the coordinate in its fi-
bers CaR

2 in terms of TaR
2. Let (n,g) be the coordinates of

TaR
2 associated to the base @

@x ;
@
@y

� �
. Then, over any open

set which does not contain the ‘‘vertical’’ line n = 0, an
admissible local coordinate for CaR

2 is p ¼ g
n and, in the

neighborhood of n = 0, another admissible local coordinate
is q ¼ n

g. An element c of CR2 ¼ VP is therefore individuated
by coordinates (x,y,p) = (a,p) or (x,y,q) = (a,q) with
p; q 2 P1, and so VP ¼ R2 � P1.

The difference between VP and VJ ¼ J1ðR;RÞ is that the
fiber of J1ðR;RÞ is not the P1 of the angles h ðmodpÞ but the
R of the values of tan (h), h being measured w.r.t. the x-axis
and remaining – p

2. The fiber P1 of VP corresponds to that
of VJ via the stereographic projection P1 ! R; h # tanðhÞ.

4.2. The functionality of jets

Jan Koenderink strongly emphasized the functional
importance of the concept of jet. Without jets, it would
be impossible to understand how the visual system could
extract geometric features such as the tangent or the cur-
vature of a curve. Indeed, neurons are ‘‘point processors’’
that can only measure the numerical value encoded in
their firing rate. And it is impossible to compute directly
differential features using only point processors. As Koend-
erink claimed,

geometrical features become multilocal objects, i.e. in
order to compute boundary curvature the processor
would have to look at different positions simulta-
neously, whereas in the case of jets it could establish
a format that provides the information by addressing
a single location. Routines accessing a single location
may aptly be called points processors, those accessing
multiple locations array processors. The difference is
crucial in the sense that point processors need no geo-
metrical expertise at all, whereas array processors do
(e.g. they have to know the environment or neighbours
of a given location). ([17], p. 374).

The main functional interest of jet spaces is that they al-
low to implement differential features in networks of
‘‘point processors’’ provided a functional architecture is
introduced.

The key idea is

1. to add new independent variables describing local fea-
tures such as orientation;

2. to introduce an integrability condition enabling to inte-
grate them into global structures.

Neurophysiologically, it comes to add differential fea-
ture detectors and to couple them via a functional architec-
ture in order to ensure a binding process that integrates
them.

It is the beginning of neurogeometry.

4.3. The contact structure and its integral curves

In the following, we will work in VJ with coordinates
ðx; y; pÞ ¼ ða; pÞ; p ¼ tanðhÞ ¼ dy

dx and, to have a bijection with
VP with coordinates ðx; y; hðmodpÞÞ ¼ ða; hðmodpÞÞ, we al-
low the value p = ±1 (i.e. h ¼ � p

2).
If c is a parametrized smooth curve a(s) = (x(s),y(s)) in

the base plane R2 (a visual contour), it can be lifted to VJ .
The lifting C is the 1-jet map j1c(a(s)) of c that associates
to a(s) = (x(s),y(s)) the contact element (a(s),pa(s)) with
paðsÞ ¼ y0 ðsÞ

x0 ðsÞ (the slope of the tangent to c at a(s)). So
C = v(s) = (a(s),pa(s)).

This lift C – called in differential geometry a Legendrian
lift – represents c as the envelope of its tangents: biological
evolution of the visual system found out projective
duality!.
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To every smooth curve c in R2 is associated a skew
curve C in VJ . But the converse is of course completely
false. If

C ¼ vðsÞ ¼ ðaðsÞ; pðsÞÞ ¼ ðxðsÞ; yðsÞ;pðsÞÞ

is a curve in VJ , the projection a(s) = (x(s),y(s)) of C is a
curve c in R2. But C is the Legendrian lift of c if and only
if p(s) = pa(s). In other words, if C is locally defined by equa-
tions y = f(x), p = g(x), there exists a curve c in R2 such that
C = j1c iff g(x) = f0(x), that is iff p = y0.

This condition is called an integrability condition. Let us
denote by

t ¼ ða; p;a;pÞ ¼ ðx; y;p; n;g;pÞ

the tangent vectors to VJ at the point v = (a,p) = (x,y,p).
Along c (we suppose x is the independent variable)
t = (x,y,p;1,y0,p0) and the integrability condition p = y0

means that we have in fact t = (x,y,p;1,p,p0). It is straight-
forward to verify that this condition is equivalent to the
fact that t is in the kernel of the 1-form xJ = dy � pdx,
xJ = 0 meaning simply that p ¼ dy

dx. Indeed, to compute the
value of a 1-form - on a tangent vector t = (n,g,p) at
(x,y,p), one applies the rules dx(t) = n, dy(t) = g, dp(t) = p.
So, if ti and -i are the components of t and - w.r.t. the
bases of TVJ and T�VJ associated to the coordinates
(x,y,p), one gets -ðtÞ ¼

P
-iti and therefore, in our case,

xJ(t) = �p.1 + 1.p + 0.p0 = �p + p = 0 since xJ = �pdx + 1.dy +
0.dp.

So the kernel of the 1-form xJ is the field K of planes Kv
– called the contact planes – with equation �pn + g = 0, and
the tangent vectors X1 ¼ @

@xþ p @
@x ¼ ðn ¼ 1;g ¼ p;p ¼ 0Þ

and X2 ¼ @
@p ¼ ðn ¼ 0;g ¼ 0;p ¼ 1Þ are evident generators.

Now we can express purely geometrically the integra-
bility condition: a curve C in VJ is a Legendrian lift iff it
is everywhere tangent to the field K of contact planes.
The field K is called the contact structure of VJ and the
Legendrian lifts C are called its integral curves.

It must be emphasized that the vertical component
p = p0 of the tangent vector of C at v = (a,p) is the curvature
of the projection c at a. Indeed, p = y0 implies p0 = y00 and
therefore p = p0 = y00.
Fig. 3. The field of contact planes Kv spins too rapidly to be integrable.
4.4. SE(2)-invariance of the contact structure

The contact structure is invariant under the action of
the special Euclidean group SE(2) of rigid motions in the
plane, which is the semi-direct product SEð2Þ ¼ R2

oSOð2Þ
of the rotation group SO(2) and the translation group R2.
If (p,rh) is an element of SE(2), it acts on a point a of R2 by

ðp; rhÞðaÞ ¼ pþ rhðaÞ:

If (p,rh) and (q,ru) are two elements of SE(2), their (non
commutative) product is given by the formula:

ðq; ruÞ 	 ðp; rhÞ ¼ ðqþ ruðpÞ; ruþhÞ:

This product is noncommutative since (p,rh)	(q,ru) =
(p + rh(q),rh+u) and in general q + ru(p) – p + rh(q).

The rotation rh acts on the fibration VJ by rh(a,p(u)) =
(rh(a),p(u + h)), this very particular form of action
expressing the fact that the alignment of preferential direc-
tions is invariant.
4.5. The non integrability of the contact structure

A fundamental point must be underlined concerning
the contact structure K. It is defined as the field of planes
v 2 VJ # Kv 
 TvVJ which are the kernels of the 1-form
xJ = dy � pdx and the Legendrian lifts are its integral
curves. There exist therefore a lot of 1-dimensional inte-
grals. But, nevertheless, there exist no 2-dimensional inte-
grals, no surfaces S of VJ which are tangent to Kv at every
point v 2 S, i.e. such that TvS = Kv. This is due to the fact that
the field Kv spins too rapidly with p to be integrable: Kv is
the ‘‘vertical’’ plane above the ‘‘horizontal’’ line of slope p
and, when p varies along the fiber Ra above a, it rotates
with p (see Fig. 3).

More precisely, the non integrability of K results from
the violation of the Frobenius integrability condition saying
that a 1-form - admits integral surfaces S iff - ^ d- = 0
(that is d-(t,t0) = 0 for all tangent vectors t and t0 such that
-(t) = -(t0) = 0). This condition follows itself from the the-
orem saying that - is integrable iff for every local basis
{t1,t2} of the kernels Kv of -, the Lie bracket [t1,t2] belongs
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to Kv or, in other words, iff Kv is a Lie subalgebra of TvVJ .
Now, for xJ = dy � pdx one gets

dxJ ¼�
@p
@x

dx^dxþ@p
@y

dy^dxþ@p
@p

dp^dx
� �

þd2y�pd2x

¼�dp^dx¼dx^dp

and therefore

xJ ^ dxJ ¼ ð�pdxþ dyÞ ^ dx ^ dp ¼ dy ^ dx ^ dp

¼ �dx ^ dy ^ dp:

But this 3-form is a volume form of VJ and vanishes no-
where. By the way, for the basis

t1 ¼
@

@x
þ p

@

@y
¼ ð1;p; 0Þ; t2 ¼

@

@p
¼ ð0; 0;1Þ

� �
of Kv one has ½t1; t2� ¼ t3 ¼ � @

@y ¼ ð0;�1;0Þ and the
vector t3 = (0, � 1,0) R Kv since it satisfies �pn + g = �0 +
(�1) = �1 – 0.

The non-integrability of the contact structure K shows
that K is functionally dedicated to the integration of
curves. Moreover, it implies that the neurogeometry of
the functional architecture of V1 is completely different
from Euclidean geometry, even at the infinitesimal level,
and is therefore even no Riemannian. We will see that it
is in fact a typical sub-Riemannian geometry.

5. The contact structure as a group structure

A key point concerning the contact structure on VJ is
that it is left-invariant for a noncommutative group struc-
ture which is isomorphic to the Heisenberg group and
called the polarized Heisenberg group.

5.1. The polarized Heisenberg group

The product law is given by the formula:

ðx; y; pÞ � ðx0; y0; p0Þ ¼ ðxþ x0; yþ y0 þ px0; pþ p0Þ:

It is straightforward to verify that this law is associative,
that the origin (0,0,0) of VJ is its neutral element, and that
the inverse of v = (x,y,p) is v�1 = (�x,�y + px,�p). Due to
the asymmetry of the coupling term px0, the product is
noncommutative. VJ is a semi-direct product VJ ¼ R2

oR.
The base plane R2 of the fibration pJ : VJ ¼ R2 � R! R2

is the commutative subgroup of translations and the center
Z of VJ is the y-axis. Indeed, v 0 = (x0,y0,p0) commutes with
all v 2 VJ iff for every v = (x,y,p) we have px0 = p0x, which
implies x0 = p0 = 0.

If t = (n,g,p) are vectors of the Lie algebra VJ ¼ T0VJ of
VJ , then VJ has Lie brackets

½t; t0� ¼ ½ðn;g;pÞ; ðn0;g0;p0Þ� ¼ ð0; n0p� np0;0Þ

and is generated as a Lie algebra by the basis of Kv:
X1 ¼ @

@xþ p @
@y ¼ ðn ¼ 1;g ¼ p;p ¼ 0Þ and X2 ¼ @

@p ¼ ðn ¼ 0;

g ¼ 0;p ¼ 1Þ at v = 0. Indeed, at 0, X1 = (1,0,0),
X2 = (0,0,1) and [X1,X2] = (0,�1,0) = �X3 (the other
brackets = 0).

It is essential to emphasize the fact that the basis
{X1,X2} of the field of planes K Lie-generates the whole
tangent bundle T�VJ . K is said to be bracket generating or
to satisfy Hörmander condition.

Computations in VJ become very easy if we use the ma-
trix representation

v ¼ ðx; y;pÞ ¼
1 p y
0 1 x

0 0 1

0B@
1CA

and

t ¼ ðn;g;pÞ ¼
0 p g
0 0 n

0 0 0

0B@
1CA:

Indeed, the product in VJ becomes the matrix product v.v 0
and the Lie product in VJ becomes the commutator
[t,t0] = t.t0 � t0.t. Using this trick, let us summarize the basic
elements of the theory of VJ as a Lie group. Consider first
the left translation Lv of VJ defined by Lv(v0) = v.v0. It is a dif-
feomorphism of VJ whose tangent map at 0 is the linear map

T0Lv : VJ ¼ T0VJ ! TvVJ

t ¼ ðn;g;pÞ# T0LvðtÞ ¼ ðn;gþ pn;pÞ:

The matrix of T0Lv is

T0Lv ¼
1 0 0
p 1 0
0 0 1

0B@
1CA:

This shows that the coordinate basis f @
@x ;

@
@y ;

@
@pg – also called

an holonomic basis – of the tangent bundle TVJ associated
to the coordinates {x,y,p} is not left-invariant. This is the
source of non holonomy. To get a left-invariant basis, we

must translate via the Lv the basis @
@x ;

@
@y ;

@
@p

n o
0

at 0. We

get the non holonomic basis f @
@xþ p @

@y ;
@
@y ;

@
@pg, that is {t1,�t3,

t2} = {X1,X3,X2} (remember that [t1, t2] = t3, the other brack-
ets vanish).

5.2. Left invariance of the contact structure

Now let t be a vector of the contact plane K0 at 0. Since
g = pn and p = 0, we have g = 0. Its translated T0Lv(t) is
therefore (n,pn,p), and since g = pn,T0Lv(t) is an element
of the contact plane Kv and the contact structure
K ¼ fKvg is nothing else than the left-invariant field of
planes left-translated from K0. In fact, the 1-form xJ itself
is left-invariant. Indeed, at the origin xJ = dy � pdx is sim-
ply (xJ)0 = dy. If we put (xJ)0 = xJ,0 and translate xJ,0 to
the point v, we get xJ;v ¼ T0L�vðxJ;0Þ defined by the formula

xJ;vðtÞ ¼ xJ;0 T0L�1
v ðtÞ

� �
for t ¼ ðn;g;pÞ 2 TvVJ . But

T0L�1
v ¼

1 0 0
�p 1 0
0 0 1

0B@
1CA

and

T0L�1
v ðtÞ ¼

1 0 0
�p 1 0
0 0 1

0B@
1CA n

g
p

0B@
1CA ¼ n

�pnþ g
p

0B@
1CA:
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So

xJ;vðtÞ ¼ dyðn;�pnþ g;pÞ ¼ �pnþ g ¼ dyðtÞ � pdxðtÞ
¼ ðxJÞvðtÞ:
5.3. Adjoint and coadjoint representations

The left-translation Lv translates the situation at 0 to the
equivalent situation at v. One can come back to 0 using the
right-translation Rv�1 . One gets that way what is called an
inner automorphism of the Lie group VJ (it is trivial to ver-
ify that it is a group morphism):

Av : v 0 # v:v 0:v�1

ðx0; y0;p0Þ# ðx0; y0 þ px0 � p0x;p0Þ

As 0 is a fix point of Av, the tangent map Adv = T0Av of Av at
0 is well defined and is an automorphism of the Lie algebra
VJ ¼ T0VJ . We have the formula:

Adv ¼
1 0 0
p 1 �x

0 0 1

0B@
1CA

which yields what is called the adjoint representation of the
Lie group VJ on its Lie algebra VJ .

If, in a second step, we look at the tangent map of Adv
itself, we get a morphism of Lie algebra adt from the Lie
algebra VJ into the Lie algebra EndðVJÞ (endomorphisms
of VJ) of the Lie group AutðVJÞ (automorphisms of VJ). If
t ¼ ðn;g;pÞ 2VJ , the matrix of adt is

adt ¼
0 0 0
p 0 �n

0 0 0

0B@
1CA:

We have therefore adt(t0) = (0,n0p � n p0,0) = [t, t0] and the
Lie bracket of VJ can be retrieved from the adjoint
representation.

To express diffusion along the contact structure, we
will need the orbits of the adjoint representation. They
are easy to compute. If v = (x,y,p) varies in VJ and if
t ¼ ðn;g;pÞ 2VJ is fixed, then Adv(t) = (n,pn + g � xp,p)
generates the line ~t ¼ ðn;R;pÞ if n – 0 or p – 0. When
n = p = 0, then Adv(t) = t and all elements t = (0,g,0) are
fixed points: ~t ¼ ftg.

It is straightforward to dualize these constructions. For
the co-adjoint representation, take the basis {dx,dy,dp} of
the cotangent bundle T�VJ of VJ . At 0 we get the space
V�

J of 1-forms on VJ which is the dual vector space of
VJ . If - is a 1-form on VJ , it can be written as - = n⁄dx + g⁄

dy + p⁄dp = (n⁄,g⁄,p⁄).2 If t 2VJ , the convention is to denote
h-,ti the value -(t). The co-adjoint representation is then
defined by the duality Ad�vð-Þ; t

� 	
¼ h-;Ad�vðtÞi. It is easy

to see that it is a representation of the Lie group VJ on V�
J . As
2 We chose the notation n⁄, etc. to maintain the relation between roman
and greek letters while indicating the dual nature of a covector w.r.t. a
tangent vector.
h-;Ad�vðtÞi ¼ n�dxþ g�dyþp�dp;h

n
@

@x
þ ð�pnþ gþ xpÞ @

@y
p @

@p



¼ n�nþg�ð�pnþgþ xpÞ þp�p
¼ ðn� � g�pÞnþg�gþ ðp� þg�xÞp;

one get Ad�v ð-Þ ¼ ðn
� � g�p;g�;p� þ g�xÞ. For g⁄– 0, the or-

bits are the planes ðR;g�;RÞ and for g⁄ = 0, every point of
the (n⁄,0,p⁄) plane is an orbit.

If we take the tangent map of the co-adjoint representa-
tion, we get the adjoint map ad⁄ of the map ad. It is the
morphism of Lie algebras from VJ into EndðV�

J Þ defined by

ad�t ð-Þðt0Þ ¼ ad�t ð-Þ; t0
� 	

¼ -; ad�tðt0Þh i ¼ -;�½t; t0�h i
¼ n�dxþ g�dyþ p�dp; ð0;�n0pþ np0;0Þh i
¼ g�ð�n0pþ np0Þ:

But as n0 = dx(t0) and p0 = dp(t0), we get ad�t ð-Þ ¼
ð�g�p;0;g�nÞ.
6. Subjective contours and sub-Riemannian geometry

6.1. Kanizsa illusory contours

We now focus on a fundamental visual phenomenon,
namely the construction by the visual system of long range
subjective contours completing incomplete ones. Their exis-
tence is well known to the specialists of Gestalttheorie
since the celebrated works of Kanizsa [16]. Their function
is to complete lacunar sense data. We consider curved Kan-
izsa contours because their exact shape yields a fundamen-
tal information on the neural mechanisms of contour
integration. Fig. 4 gives an example of a curved Kanizsa
illusory contour.

That the functional architecture of V1 implements the
contact structure of V ¼ R� P will enable us to understand
the strange formation of long range subjective contours.
Indeed, as a first approximation, we can consider that the
pacmen define boundary conditions (a,p) and (b,q) and
Fig. 4. An example of a curved Kanizsa illusory contour.
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that the subjective contour is a solution to a variational
problem.

6.2. A first sub-Riemannian model

In our neuro-geometrical framework, we can easily
interpret the variational process giving rise to illusory con-
tours. We still work in the fibration of 1-jets
pJ : VJ ¼ R2 � R! R2 idealizing V1. The pacmen define
two contact elements (a,p) and (b,q) and an illusory con-
tour interpolating between (a,p) and (b,q) is a skew curve
C in VJ from (a,p) to (b,q) which is at the same time:

1. a Legendrian lift of a curve c in the base plane R2, that is
an integral curve of the contact structure, a curve satis-
fying the integrability condition p(x) = y0(x);

2. ‘‘as straight as possible’’, that is ‘‘geodesic’’ in VJ for a
certain metric, which means, since the variation of p
measures the curvature j of c, to minimize at the same
time the length and the curvature of the projection c.

Such an idea has already been introduced, after pioneer-
ing works of Hoffman [14] and Ullman [26], by David
Mumford in 1992 in his celebrated paper ‘‘Elastica and
Computer Vision’’ [21], Euler’s elastica being curves c in
R2 minimizing at the same time the length and the integral
of the squared curvature, that is an energy of the type

E ¼
Z

c
ðaj2 þ bÞds:

Mumford’s idea was that a virtual contour constitutes a
chain of contact elements (ai,pi) along which the energy
leakage is minimal. But there are two types of leakages:

� a leakage proportional to the number N of elements in
the chain;
� a leakage due to the curvature, which is the sum of the

orientation deflections between successive elements. If
hi is the angle of the slope pi, one can take for instancePi¼N�1

i¼1 ðhiþ1 � hiÞ2.

At the limit N ?1, the first term tends towards the
length

R
c ds in the Euclidean plane R2, while the second

term tends towards the integral of the squared curvatureR
c j

2ds since j ¼ dh
ds. Minimizing the leakages leads there-

fore to the variational problem:

min
Z

c
ðaj2 þ bÞds

� �
which is well known in elasticity theory and comes back to
Euler. Its solutions are transcendent curves (the elastica),
which can be explicitly represented using elliptic
functions.

We have reformulated Mumford’s elastica model as a
variational model in VJ and no longer in the Euclidean
plane R2 (see e.g. [22] and [23]). The key idea was to use
a geodesic model in a sub-Riemannian geometry naturally
associated to the contact structure. Indeed, if K is the con-
tact structure on VJ and if one considers only curves C in
VJ which are integral curves of K, then metrics gK defined
only on the contact planes Kv enable to compute the length
of C. Such metrics are called sub-Riemannian metrics.
They are extremely different from Riemannian ones. For
an introduction to their theory, see e.g. [25] and [27].

As K is bracket generating and satisfies Hörmander
condition, a celebrated theorem of Chow says that every
pair of points (v,v0) of VJ can be connected by an integral
curve of K (and therefore by a geodesic, which is a mini-
mizing integral curve).

So the Kanizsa problem becomes to find an integral
curve C of K from (a,p) to (b,q) which is a geodesic for a
natural sub-Riemannian metric on K. It is quite difficult
to solve. As claimed Richard Beals, Bernard Gaveau and Pe-
ter Greiner who solved it for the Heisenberg group ([4], p.
634):

The results indicate how complicated a control problem
can become, even in the simplest situation.

Strangely, a search for a solution is quite recent. In 1977
Gaveau still said ([12], p. 114):

The variational problem is to minimize the energy of a
curve in the base manifold under the Lagrange condi-
tion that its lifting is given in the fiber bundle. It seems
that this problem has not yet been studied.

In the polarized Heisenberg group VJ ¼ J1ðR;RÞ with
coordinates (x,y,p = tan (h)), product

ðx; y; pÞ:ðx0; y0;p0Þ ¼ ðxþ x0; yþ y0 þ px0;pþ p0Þ

and contact planes generated by X1 ¼ @
@xþ p @

@y ¼ ð1; p;0Þ
and X2 ¼ @

@p ¼ ð0;0;1Þ with Lie brackets ½X1;X2� ¼
�X3 ¼ ð0;�1;0Þ ¼ � @

@y and 0, the geodesic problem can
be easily formulated as a control problem. If C = {v(s)} is
a smooth parametrized curve in VJ , to say that it is an inte-
gral curve of the contact structure is to say that
_vðsÞ ¼ u1X1 þ u2X2 for appropriate controls u1 and u2 or,
in other words, that

_x ¼ u1; _y ¼ pu1; _p ¼ u2;

the integrability condition _y
_x ¼ p being a priori satisfied.

To find the geodesics, we have to minimize the kinetic
energy 1

2 k _vk2
SR along such curves for a well chosen sub-

Riemannian metric SR with scalar product h	,	iSR and norm
k	kSR. Using Legendre transform, this Lagrangian can be
transformed into the Hamiltonian

hðv ;-Þ ¼ h-; _vi � 1
2
k _vk2

SR

¼ -ðu1X1 þ u2X2Þ �
1
2
ku1X1 þ u2X2k2

SR:

If - = n⁄dx + g⁄dy + p⁄dp = (n⁄,g⁄,p⁄), then

hðv ;-Þ ¼ n�u1 þ g�u1pþ p�u2

� 1
2

u2
1kX1k2

SR þ 2u1u2hX1;X2iSR þ u2
2kX2k2

SR

� �
:

It is natural to choose a left-invariant metric, and namely
the sub-Riemannian metric SRJ making {X1,X2}an orthonor-
mal basis of the contact plane Kv since {X1,X2} is the
left-invariant basis translating the standard Euclidean
orthonormal basis of K0. It must be strongly emphasized
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that this metric is not the Euclidean metric h	,	iE, k	kE. Due
to non holonomy, Euclidean metric is not left-invariant. By
the way, even if kX2kE = 1 and hX1,X2iE = 0 as in the Euclid-
ean case, kX1kE = 1 + p2 – 1 if p – 0. It is only on the (x,y)
plane that the two metrics are the same.

If we chose SRJ, then kX1kSRJ
¼ kX2kSRJ

¼ 1 and
hX1;X2iSRJ

¼ 0, and h(v,-) simplifies:

hðv ;-Þ ¼ n�u1 þ g�u1pþ p�u2 �
1
2

u2
1 þ u2

2

� �
:

One can then apply a fundamental result of control theory
called the Pontryagin maximum principle, which general-
izes the classical method of variational calculus using
Euler–Lagrange equations and Lagrange multipliers (see
[3]). We have a family of Hamiltonians huðv;-Þ ¼
-ðu1X1 þ u2X2Þ � 1

2 u2
1 þ u2

2

� �
;hu : T�VJ ! R. We want to

find the controls uj that maximize them and solve the
corresponding Hamilton equations. These controls uj,max

satisfy @h
@uj
¼ 0. Let H = Supu(hu) be the Hamiltonian humax .

Then the projections on VJ of the trajectories of H are
trajectories ‘‘in optimal time’’. As emphasized by
Gamkrelidze and Agrachev [3]:

The maximum principle is a first order optimality con-
dition, an elaboration of the classical Lagrange multipli-
ers rule, where -(t) plays the role of the Lagrange
multiplier.3

In our case, ‘‘optimal time’’ means ‘‘minimal length’’
and we can express the sub-Riemannian geodesic problem
in VJ as an Hamiltonian problem defined on the cotangent
bundle T�VJ . The maximization conditions are

@hu
@u1
¼ -ðX1Þ � u1 ¼ 0

@hu
@u2
¼ -ðX2Þ � u2 ¼ 0

(

and therefore u1,max = -(X1) and u2,max = -(X2). So

Hðv ;-Þ ¼ u1-ðX1Þ þ u2-ðX2Þ �
1
2

u2
1 þ u2

2

� �
¼ 1

2
u2

1 þ u2
2

� �
¼ 1

2
ðh-;X1i2 þ h-;X2i2Þ

and in terms of coordinates:

Hðx; y;p; n�;g�;p�Þ ¼ 1
2
ðn� þ pg�Þ2 þ p�2
h i

:

The structure of geodesics implies that the sub-Riemann-
ian sphere S (the ends of the geodesics starting at 0 and
of sub-Riemannian length = 1 that are global minimizers)
and the wave front W (the ends of geodesics starting at 0
and of sub-Riemannian length = 1 that are not necessarily
global minimizers) are rather strange. We will compute
them explicitly adapting computations already done by
Beals, Gaveau, and Greiner in [4] for the Heisenberg group.
We will see that a fundamental feature of this geometry,
compared with Euclidean geometry, is that the cut locus
of 0 (that is the ends of geodesics that stop being globally
minimizing), and the conjugate locus or caustic of 0 (that is
3 A supplementary second order condition is needed to warrant that the
so defined extrema are ‘‘good’’ maxima. It leads to the theory of Jacobi
curves.
the singular locus of the exponential map E integrating
geodesics) are rather complex.

6.3. Carnot groups and fractality of sub-Riemannian geometry

Before integrating Hamilton equations, let us strongly
emphasize the fact that the sub-Riemannian metric gK is
extremely anisotropic and inhomogeneous, singular and
even fractal. Indeed, VJ is of dimension 3, but its Hausdorff
dimension w.r.t. gK is 4!.

We meet here a very deep geometrical property shared
by a special class of groups – called Carnot groups – which
are (simply connected) Lie groups N, nilpotent and strati-
fied, whose Lie algebra N decomposes into a direct sum
N ¼ m

1 Vi, m < n = dimension of N, of vector sub-spaces
Vi satisfying Viþ1 ¼ ½V1;Vi� and ½V1;Vm� ¼ 0. V1 gener-
ates therefore through left-translations a field K of
tangent subspaces which is bracket generating. In our
case, VJ ¼V1 V2 with V1 ¼ SpanfX1;X2g ¼ K0 and
V2 ¼ SpanfX3g. The number m is called the ‘‘step’’ (or de-
gree of non-holonomy) of N and

Dh ¼
Xm

1

idimðViÞ– n ¼
Xm

1

dimðViÞ

is called the homogeneous dimension of N. In our case,
Dh = 1 � 2 + 2 � 1 = 4 while n = 3. In the formula giving
Dh, the factor i in front of dimðViÞ means that the compo-
nents of Vi are of ‘‘weight’’ i, which explains the strong
anisotropy of the Carnot groups N. In our case, the vari-
ables x,p are of weight 1, and the variable y of weight 2,
pdx is of weight 1 + 1 = 2, dy of weight 2, and the contact
1-form x = dy � pdx is therefore homogeneous of weight 2.

The strong anisotropy of Carnot groups is reflected in
their metric structure. For instance, a celebrated ‘‘ball-
box theorem’’ due to Gromov (see [13]) says that the ball
B(0,r) of center 0 and radius r is encapsulated into boxes
Box (r) with k-th side of order ri if the k-axis belongs to
Vi: there exist two constants c and C such that for every
r > 0

BoxðcrÞ 
 Bð0; rÞ 
 BoxðCrÞ

This theorem explains why the Hausdorff dimension of
N is Dh ¼

Pm
1 idimðViÞ since the (Euclidean) volume of

B(0, r) is of order rDh . Intuitively, it means that the infinites-
imal balls B(0,e) are flattened against V1: they are of order
e along V1 but of ordre ei along the directions of homoge-
neity degree i > 1. Even if, according to Chow theorem, any
point can be reached from 0 by an integral curve of K,
these curves are tangent to K and can go in another direc-
tion only using Lie brackets.

We will now construct explicitly the sphere S(0, r) and
the wave front W of VJ .

6.4. Geodesics of the polarized Heisenberg group (a variant of
Beals, Gaveau, Greiner computations)

The Hamilton equations on T�VJ derived from the
Hamiltonian

Hðx; y;p; n�;g�;p�Þ ¼ 1
2
½ðn� þ pg�Þ2 þ p�2�



4 The main difference between Beals–Gaveau–Greiner computations and
ours is that in the Heisenberg group case, K is antisymmetric and
�KT + K = 2K.
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are the following
_xðsÞ ¼ @H

@n� ¼ n� þ pg�

_yðsÞ ¼ @H
@g� ¼ pðn� þ pg�Þ ¼ p _xðsÞ

ði:e: p ¼ _y
_x ¼

dy
dx ; integrability conditionÞ

_pðsÞ ¼ @H
@p� ¼ p�

_n�ðsÞ ¼ � @H
@x ¼ 0

_g�ðsÞ ¼ � @H
@y ¼ 0

_p�ðsÞ ¼ � @H
@p ¼ �g�ðn� þ pg�Þ ¼ �g� _xðsÞ:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
As H is independent from x and y, the derivatives

_n�ðsÞ ¼ � @H
@x and _g�ðsÞ ¼ � @H

@y vanish and the moments n⁄

and g⁄ are therefore constant along any geodesic: n� ¼ n�0
and g� ¼ g�0. This fact simplifies the equations since
_xðsÞ ¼ n�0 þ pg�0; _yðsÞ ¼ p n�0 þ pg�0

� �
, and _p�ðsÞ ¼ �g�0 n�0þ

�
pg�0Þ. We emphasize the relations €p ¼ _p� ¼ �g� _x and
€x ¼ g� _p, or ð€x; €pÞ ¼ g�0ð _p;� _xÞ, which mean that in the (x,p)
plane the acceleration is orthogonal to the velocity and
geodesics are circles whose radius increases when g�0 de-
creases (at the limit g�0 ¼ 0 the circle becomes a straight
line). By the way, Hðx; y; p; n�;g�;p�Þ ¼ 1

2 ð _x2 þ _p2Þ and the
Hamiltonian H is therefore the kinetic energy of the projec-
tion of the trajectories on the (x,p) plane.

For structuring computations, we introduce, as Beals
et al. did in [4] for the Heisenberg group, the complex var-
iable z = (x,p) in the contact plane K0, the complex moment
v⁄ = (n⁄,p⁄), and the new variable 1� ¼ ðn� þ pg�;p�Þ ¼
v� þ g�KðzÞ ¼ ð _x; _pÞ, with

K ¼
0 1
0 0

� �
; KT ¼

0 0
1 0

� �

�KT þK ¼ J ¼
0 1
�1 0

� �

J2 ¼ �1:

We verify that 2H is the norm of 1⁄:

Hðz; y;v�;g�Þ ¼ 1
2
h1�; 1�i ¼ 1

2
k1�k2 ¼ H0 ¼

1
2
h1�ð0Þ; 1�ð0Þi

¼ 1
2
k1�ð0Þk2

and that Hamilton equations become:

_zðsÞ ¼ @H
@v� ¼ 1�ðsÞ

_yðsÞ ¼ @H
@g� ¼ pðn� þ pg�Þ ¼ h1�;KðzÞi

_v�ðsÞ ¼ � @H
@z ¼ ð0;�g�ðn� þ pg�ÞÞ ¼ �g�KTð1�Þ

_g�ðsÞ ¼ 0; g� ¼ cst ¼ g�0:

8>>>><>>>>:
The differential equation for 1⁄ is:

_1�ðsÞ ¼ _v�ðsÞ þ g�K _zðsÞ ðsince g� ¼ csteÞ
¼ �g�KT1�ðsÞ þ g�K1�ðsÞ ¼ g�J1�ðsÞ

ð€x; €pÞ ¼ g�Jð _x; _pÞ;

J being the complex multiplication by i in the z-plane. The
solution is (the exponential being, as K, a 2 � 2 matrix act-
ing on 1⁄(0)):

1�ðsÞ ¼ e�sg� J1�ð0Þ:
This integration of 1⁄ yields explicit formulae for
geodesics.4

For g⁄ = 0, we have _1� ¼ _v� ¼ 0 and therefore
v� ¼ v�0 ¼ n�0;p�0

� �
and 1� ¼ 1�0 are constant. The variable

z ¼ sv�0 þ z0 moves along a straight line in the (x,p) plane
and we get

xðsÞ ¼ sn�0 þ x0

pðsÞ ¼ sp�0 þ p0

_yðsÞ ¼ h1�;KðzÞi ¼ 1�0;K sv�0 þ z0
� �� 	

¼ sn�0p�0 þ n�0p0

yðsÞ ¼ 1
2 s2n�0p�0 þ sn�0p0 þ y0:

8>>><>>>:
If z0 = 0, then z ¼ sv�0 and yðsÞ ¼ 1

2 s2n�0p�0 þ y0. If moreover
y0 = 0, then yðsÞ ¼ 1

2 s2n�0p�0.
For g⁄– 0 g� ¼ cst ¼ g�0

� �
, the situation is of course

more complex. Suppose that z0 = 0. Then, _z(s) = 1⁄(s) gives

zðsÞ ¼
Z s

0
1�ðrÞdr ¼

Z s

0
e�rg�0 J1�ð0Þdr ¼ �1�ð0Þ

Jg�0
e�sg�0 J � 1
� �

¼ J
g�0
ð1�ðsÞ � 1�ð0ÞÞ:

This value provides explicit formulae for the geodesics con-
necting in time s an origin (x0 = 0,y0,p0 = 0) to an end point
(x1 = x(s),y1 = y(s),p1 = p(s)). Indeed,

zðsÞ ¼ z1 ¼
J
g�0

1�ð0Þ e�sg�0 J � 1
� �

gives 1⁄(0) and then v�0 ¼ n�0;p�0
� �

. If e�isg�0 � 1 – 1, that is if
sg�0 – 2kp (if sg�0 ¼ 2kp then z(s) = z0), we get

zðsÞ ¼ e�sg�0 J � 1
e�sg�0 J � 1

z1 ¼
e�isg�0 � 1
e�isg�0 � 1

z1 ¼
e�is

2g
�
0 ðe�is

2g
�
0 � eis

2g
�
0 Þ

e�is2g
�
0 e�is2g

�
0 � eis2g

�
0

� � z1

¼ eiðs�sÞ
2 g�0

sin s
2 g�0
� �

sin s
2 g�0
� � z1:

In other words, we get for the (x,p) part of the geodesics
the formulae:

xðsÞ ¼ sin s
2g
�
0ð Þ

sin s
2g
�
0ð Þ

cos ðs�sÞ
2 g�0

� �
x1 � sin ðs�sÞ

2 g�0
� �

p1

� �
pðsÞ ¼ sin s

2g
�
0ð Þ

sin s
2g
�
0ð Þ

sin ðs�sÞ
2 g�0

� �
x1 þ cos ðs�sÞ

2 g�0
� �

p1

� �
:

8>><>>:
These are the equations of a circle in the z = (x,p) plane. In-
deed, we have

x2 þ p2 � xðx1 þ p1 cotðg
�
0s
2
ÞÞ � pðp1 � x1 cotðg

�
0s
2
ÞÞ ¼ 0

which is the equation of a circle passing through 0 and z1

and whose center is

xc ¼
1
2

x1 þ p1 cot
g�0s
2

� �� �
; yc ¼

1
2

p1 � x1 cot
g�0s
2

� �� �
and the radius

r2 ¼ 1
4

x2
1 þ p2

1

� �
1þ cot

g�0s
2

� �� �
¼ 1

4 sin2 g�
0
s

2

� � jz1j2



J. Petitot / Chaos, Solitons & Fractals 50 (2013) 75–92 85
We notice that the equality H ¼ H0 ¼ 1
2 h1�ð0Þ; 1�ð0Þi im-

plies that the constant value of the Hamiltonian along a
trajectory is:

H0 ¼
1
2
k1�ð0Þk2 ¼ g�20

8 sin2 g�0s
2

� � jz1j2 ¼
g�20

2
r2:

Indeed,

z1 ¼
i
g�0

e�is2g
�
0 e�is2g

�
0 � eis2g

�
0

� �
1�ð0Þ ¼ 2

g�0
e�is2g

�
0 sin

s
2
g�0

� �
1�ð0Þ:

For y(s), computations are more involved. We have
_yðsÞ ¼ h1�;KðzÞi ¼ pðn� þ pg�Þ and we already know 1⁄(s)
and z(s). Using the given values x1; p1;g�0 and s and the clas-
sical integrals:

R s
0 cosðg�rÞdr ¼ sinðg�sÞ

g�

R s
0 sinðg�rÞdr ¼ 1�cosðg�sÞ

g�

R s
0 cos2ðg�rÞdr ¼ 2g�sþsinð2g�sÞ

4g�

R s
0 sin2ðg�rÞdr ¼ 2g�s�sinð2g�sÞ

4g�

R s
0 cosðg�rÞ sinðg�rÞdr ¼ sin2ðg�sÞ

2g�

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
we get

yðsÞ�y0¼
1

8ðcosðg�0sÞ�1Þ �2g�0s x2
1þp2

1

� �
�4x1p1 cos g�0ðs�sÞ

� �
þ2 x2

1�p2
1

� �
sin g�0ðs�sÞ
� �

þ2x1p1 cos g�0ð2s�sÞ
� �

� x2
1�p2

1

� �
sin g�0ð2s�sÞ
� �

þ2x1p1 cos g�0s
� �

þ x2
1�p2

1

� �
sin g�0s
� �

þ2 x2
1þp2

1

� �
sin g�0s
� ��

In terms of n�0;p�0;g�0 and s, the formula writes:

yðsÞ � y0 ¼ n�20

2g�0sþ sin 2g�0s
� �

4g�20

� n�20

sin g�0s
� �
g�20

þ n�0p
�
0

�
sin2 g�0s

� �
g�20

� n�0p
�
0

1� cos g�0s
� �

g�20

þ p�20

�
2g�0s� sin 2g�0s

� �
4g�20

and we notice that, if we expand the expression to the
third order, we retrieve the limit yðsÞ � y0 ¼ 1

2 n�0p�0s2 when
g�0 ! 0.

These equations explain the origin of the multiplicity of
sub-Riemannian geodesics connecting two points. Let us
indeed compute y1 � y0 = y(s) � y0. As cos g�0s

� �
� 1 ¼

�2 sin2 g�0s
2

� �
, we find
y1 � y0 ¼
�1

16 sin2 g�0s
2

� � �2g�0s x2
1 þ p2

1

� �
� 4x1p1 þ 2x1p1 cos g�0s

� �
� x2

1 � p2
1

� �
sin g�0s
� �

þ 2x1p1 cos g�0s
� �

þ x2
1 � p2

1

� �
sin g�0s
� �

þ 2 x2
1 þ p2

1

� �
sin g�0s
� ��

¼ 1

8 sin2 g�
0
s

2

� � 2x1p1 1� cos g�0s
� �� �

þ x2
1 þ p2

1

� �
g�0s� sin
� �

g�0sÞÞ
�

¼ 1
2

x1p1 þ
x2

1 þ p2
1

4

g�0s
2

� �
sin2 g�0s

2

� �� cos g�0s
2

� �
sin g�0s

2

� �
24 35

If we introduce the new variable u ¼ g�0s
2 , we see that we

must solve the equation

4 y1 � y0 �
1
2

x1p1

� �
¼ lðuÞkz1k2

where l(u) is the function

lðuÞ ¼ u
sin2ðuÞ

� cotðuÞ

It is the function l(u) which is the key of the strange
behavior of sub-Riemannian geodesics. l(u) is an odd
function that diverges for u = kp (k – 0) (i.e. g�0s ¼ 2kp,
we already met this condition) and presents critical points
when u = tan (u). But when u = tan (u), we have

lðuÞ ¼ tanðuÞ
sin2ðuÞ

� cotðuÞ ¼ 1� cos2ðuÞ
cosðuÞ sinðuÞ ¼ tanðuÞ ¼ u

and the minima of l(u) are on the diagonal. The graph of
l(u) is represented at Fig. 5.

To get geodesics connecting (0,y0,0) to the same end
point (x1 = x(s),y1 = y(s),p1 = p(s)), we must solve the equa-

tion 4 y1 � y0 � 1
2 x1p1

� �
¼ lðuÞkz1k2 in u ¼ g�0s

2 (we can take
g�0 ¼ 2 and s = u). For instance, for y0 = 0, x1 = 2, p1 = 4,
y1 = 104, we find l(u) = 20, which gives 11 solutions:
u1 = 2.737, u2 = 3.552, u3 = 5.695, u4 = 6.885, u5 = 8.680,
u6 = 10.195, u7 = 11.672, u8 = 13.506, u9 = 14.656,
u10 = 16.845, u11 = 17.608.

We can now display the strange structure of the sub-
Riemannian sphere S and wave front W. We must first
compute the length of geodesics. Let c be a geodesic start-
ing at 0 and ending at time s at (x1,y1,p1) = (z1,y1). If L is its
length, we have L ¼

R s
0 ‘ds with ‘2 = (n⁄ + pg⁄)2 + p⁄2 the

squared norm of _c in the contact plane endowed with the
orthonormal basis {X1 = @x + p@y,X2 = @p}. But ‘2 = 2H = 2H0

since the Hamiltonian is constant along its trajectories,
and we know that

H0 ¼
g�20

8
1

sin2 g�0s
2

� � kz1k2
:

So, with g�0s
2 ¼ u,

L ¼
ffiffiffi
2
p g�0s

2

� �
1

j sin
g�

0
s

2

� �
j
kz1k ¼

ffiffiffi
2
p u
j sinðuÞj kz1k



Fig. 5. The function l(u) occuring in the construction of sub-Riemannian
geodesics of the polarized Heisenberg group VJ (the scale of the two axes
are not the same).

Fig. 6. The sub-Riemannian sphere S. It has a saddle form with singular-
ities at the intersections with the y-axis. The white line corresponds to
u = 0.
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In the sub-Riemannian geometry of VJ , the sphere S and
the wave front W with radius

ffiffiffi
2
p

are given by the funda-
mental equation

kz1k ¼
j sinðuÞj

u
:

We get therefore

x1 ¼ j sinðuÞj
u cosðhÞ

p1 ¼ j sinðuÞj
u sinðhÞ

y1 ¼ 1
2 x1p1 þ u�sinðuÞ cosðuÞ

4u2 ¼ uþ2 sin2ðuÞ cosðhÞ sinðhÞ�cosðuÞ sinðuÞ
4u2

8>>><>>>:
We show at Figs. 6 and 7 images of S and W. The exter-

nal surface is the sub-Riemannian sphere S. The internal
part is W � S. It presents smaller and smaller circles of cusp
singularities which converge towards 0. Such a complex
behavior is impossible in Riemannian geometry.
Fig. 7. A part of the sub-Riemannian wave front W. The external surface is
the sub-Riemannian sphere S. The internal part is W � S. It presents
smaller and smaller circles of cusp singularities which converge towards
0.
7. Irreducible representations and noncommutative
harmonic analysis

7.1. Unirreps and Stone-von Neumann theorem

We have presented the sub-Riemannian geometry of VJ

which is left-invariant under its group structure. But such a
geometry acts as an infrastructure for dynamical processes
of transport along geodesics such as diffusion. It is therefore
relevant to study the heat kernel on VJ . As the central tool is
noncommutative harmonic analysis and noncommutative
Fourier transform, we must first define the dual V�J of the
group VJ , that is the set of its unitary irreducible represen-
tations (unirreps).

According to a variant of a celebrated result concerning
the Heisenberg group and called the Stone–von Neumann
theorem, every unirrep of the polarized Heisenberg group
VJ in an Hilbert space which is not trivial on its center Z
(the y-axis) is equivalent to a Schrödinger representation
qk(x,y,p) acting on the infinite dimensional Hilbert space
H ¼ L2ðR;CÞ via

qkðx; y; pÞuðsÞ ¼ eikðyþxsÞuðsþ pÞ; with k – 0 and uðyþ sÞ
an element of H

¼ L2ðR;CÞ:
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For k = 0 these unirreps degenerate into trivial representa-
tions of dimension 1 called ‘‘characters’’:

ql;mðx; y;pÞuðsÞ ¼ eiðlxþmpÞuðsÞ:

We must notice the relation between these unirreps
and the orbits of the coadjoint representation of VJ de-
scribed above: the planes ðR;g�;RÞ for g⁄– 0 and every
point of the (n⁄,0,p⁄) plane for g⁄ = 0. In fact, it is a necessity
due to a deep theorem of Kirillov.

7.2. Agrachev–Boscain–Gauthier–Rossi theorem

As shown in 2008 by Agrachev et al. [2], in the case of a
unimodular Lie group G of dimension 3 endowed with a
left-invariant sub-Riemannian geometry, one can use the
noncommutative generalized Fourier transform (GFT) de-
fined on the dual G⁄ of G to compute the heat kernel asso-
ciated to the hypoelliptic Laplacian DK ¼ X2

1 þ X2
2 equal to

the sum of squares of the generators {X1,X2} of the field
of planes K. The Laplacian is hypoelliptic due to the fact
that K is bracket generating and satisfies Hörmander
condition.

We have seen that the unirreps of VJ into the groups of
automorphisms UðHÞ are parametrized by k:

qk : VJ ! UðHÞ
v # qkðvÞ : H!H

uðsÞ# eikðyþxsÞuðsþ pÞ:

There exists a measure on V�J , called the Plancherel mea-
sure, given by dP(k) = kdk, which enables to make integra-
tions. To compute the Fourier transform of the sub-
Riemannian Laplacian DK, we have to look at the action
of the differential of the unirreps on the left-invariant vec-
tor fields X on VJ , which are given by the left translation of
vectors X(0) of the Lie algebra VJ of VJ . By definition,

dqk : X ! dqkðXÞ :¼ d
dt

����
t¼0

qkðetXÞ

and we get the Fourier transform bXi
k ¼ dqkðXiÞ.

It is easy to apply these formulae to our case.

X1ð0Þ¼ð1;0;0Þ
etX1 ¼ðt;0;0Þ
qkðetX1 ÞuðsÞ¼ eiktsuðsÞ

cX1
kuðsÞ¼dqkðX1ÞuðsÞ¼

d
dt

����
t¼0

qkðetX1 ÞuðsÞ¼ d
dt

����
t¼0

eiktsuðsÞ¼ iksuðsÞ;

X2ð0Þ¼ð0;0;1Þ
etX2 ¼ð0;0;tÞ
qkðetX2 ÞuðsÞ¼uðsþ tÞ

cX2
kuðsÞ¼dqkðX2ÞuðsÞ¼

d
dt

����
t¼0

qkðetX2 ÞuðsÞ¼ d
dt

����
t¼0

uðsþ tÞ¼duðsÞ
ds

:

The GFT of the sub-Riemannian Laplacian is therefore
the Hilbert sum (integral on k with the Plancherel measure
dP(k) = kdk) of the dDK

k with

dDK
kuðsÞ ¼ ððcX1

kÞ2 þ ðcX2
kÞ2ÞuðsÞ ¼ d2uðsÞ

ds2 � k2s2uðsÞ

This equation is nothing else than the equation of the har-
monic oscillator.
The heat kernel is then given by the integral

Pðv; tÞ ¼
Z

V�J

TrðetcDK
kqkðvÞÞdPðkÞ; t P 0:

If the dDK
k have discrete spectrum and a complete set of

normalized eigenfunctions uk
n

� �
with eigenvalues fak

ng
then

Pðv; tÞ ¼
Z

V�J

X
n

eak
nthuk

n;qkðvÞðuk
nÞi

 !
dPðkÞ; t P 0:

It is the case here. The eigenfunctions of the harmonic
oscillator are well known and satisfy:

d2uk
nðsÞ

ds2 � k2s2uk
nðsÞ ¼ ak

nuk
nðsÞ

with ak
n ¼ � 2nþ1

k . They are essentially the Hermite func-
tions scaled by k:

uk
nðsÞ ¼ ð2

nn!
ffiffiffiffi
p
p
Þ�

1
2k

1
4e�ks2

2 Hnð
ffiffiffi
k
p

sÞ

Hn being the nth Hermite polynomial.
In place of giving now an example of sub-Riemannian

diffusion we prefer to present a second model, more natu-
ral and richer, of the neurogeometry of the first visual area
V1.

8. The SE(2) model

8.1. A natural hypothesis

With Alessandro Sarti and Giovanna Citti, we empha-
sized the fact that it is more natural to avoid any privileged
x-axis and to work using the fibration pS : VS ¼ R2�
S

1 ! R2 with the contact form xS = �sin (h)dx + cos
(h)dy, which is cos (h) (dy � pdx) = cos (h)xJ (see [9] and
[24]). The contact planes are spanned by the tangent vec-
tors X1 = cos (h)@x + sin (h)@y and X2 = @h with Lie bracket
[X1,X2] = sin (h)@x � cos (h) @y = �X3. Contrary to the polar-
ized Heisenberg case, the Xj constitute an Euclidean ortho-
normal basis and are therefore more natural. The
distribution K of contact planes is still bracket generating
(Hörmander condition) and maximally non integrable
since

dxS ¼ cosðhÞdx ^ dhþ sinðhÞdy ^ dh

and xS ^ dxS = �dx ^ dy ^ dh is a volume form which can-
not vanish. The Frobenius condition xS ^ dxS = 0 is still not
satisfied and there exists no integral surface of K in VS

(but there exist a lot integral curves of K: all the Legendri-
an lifts C in VS of curves c in the base plane R2). As for the
vector field X3, it is called the ‘‘characteristic field’’ (or Reeb
field) of the contact field Kv. It is orthogonal to Kv for the
Euclidean metric and defines a scale through

xSðX3Þ¼ð�sinðhÞdxþcosðhÞdyÞðX3Þ¼ sin2ðhÞþcos2ðhÞ
¼1:

The two contact structures on VJ ¼ R2 � R and
VS ¼ R2 � S1 seem to be alike but are nevertheless very
different. Indeed, let us look at their respective Lie alge-
bras. For VJ we have the algebra generated by
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ft1; t2; t3g t1 ¼ @
@xþ p @

@y ; t2 ¼ @
@p ; t3 ¼ � @

@y

� �
with [t1, t2] = t3

and [t1, t3] = [t2, t3] = 0. This is a nilpotent algebra. On the
contrary, for VS we have the algebra generated by
{X1,X2,X3} (X1 = cos (h)@x + sin (h) @y,X2 = @h,X3 = -
y,X2 = @h,X3 = �sin(h)@x + cos (h)@y) with [X1,X2] = �X3,
[X1,X3] = 0 and [X2,X3] = �X1. Due to the non vanishing of
[X2,X3], this Lie algebra is not nilpotent. Nevertheless, we
can notice that for small h, we have at first order p � h,
sin (h) � h and cos (h) � 1, and so xS = �sin (h)dx + cos
(h)dy can be approximated by x = �hdx + dy which is noth-
ing else than the 1-form xJ = dy � pdx. VJ is in some sense
‘‘tangent’’ to VS. In fact it is called the tangent cone of VS.
For this important concept and its role in sub-Riemannian
geometry, see e.g. [5,19].

As a Lie group, the group VS ¼ R2 � S
1 is in fact isomor-

phic to the special Euclidean group SEð2Þ ¼ R2
oSOð2Þ. Its

product is given by the formula

x1

y1

h1

0B@
1CA: x2

y2

h2

0B@
1CA ¼ x1 þ x2 cosðh1Þ � y2 sinðh1Þ

y1 þ x2 sinðh1Þ þ y2 cosðh1Þ
h1 þ h2

0B@
1CA

The origin (0,0,0) is the neutral element and the inverse of
(x,y,h) is

ð�x cosðhÞ � y sinðhÞ; x sinðhÞ � y cosðhÞ;�hÞ

The Lie algebra of VS is the vector space VS ¼ T0VS ’ R3

endowed with the Lie bracket:

½t; t0� ¼ ½ðn;g; sÞ; ðn0;g0; s0Þ� ¼ ð�sg0 þ gs0; sn0 � ns0;0Þ

The left-translation Lv defined by Lv(v0) = v.v 0 is a diffeo-
morphism of VS whose tangent map at 0 is the linear map:

T0Lv : T0VS ! TvVS t ¼ ðn;g; sÞ# T0LvðtÞ
¼ ðn cosðhÞ � g sinðhÞ; n sinðhÞ þ g cosðhÞ; sÞ:

In the basis (x,y,h), the matrix of T0Lv is therefore

T0Lv ¼
cosðhÞ � sinðhÞ 0
sinðhÞ cosðhÞ 0

0 0 1

0B@
1CA ¼ rh 0

0 1

� �

with rh the rotation of angle h in the (x,y) plane. One veri-
fies immediately that the basis {@x,@y,@h}0 of T0VS is trans-
lated at v by T0Lv on the basis of TvVS

cosðhÞ@xþsinðhÞ@y¼X1;�sinðhÞ@xþcosðhÞ@y¼X3;@h¼X2
� �

v

which shows that the basis {X1,X2,X3} is left-invariant.
In the same way, if we left-translate the value at 0,

xS,0 = dy, of the 1-form xS = �sin (h) dx + cos (h)dy, we
get, since xS;v ¼ T0L�v ðxS;0Þ is defined by xS;v ðt0Þ ¼
xS;0ðT0L�1

v ðt0ÞÞ for t0 ¼ ðn0;g0; s0Þ 2 TvVS, since

T0L�1
v ¼

cosðhÞ sinðhÞ 0
� sinðhÞ cosðhÞ 0

0 0 1

0B@
1CA

and since
T0L�1
v ðt0Þ ¼

cosðhÞ sinðhÞ 0
� sinðhÞ cosðhÞ 0

0 0 1

0@ 1A n0

g0
s0

0@ 1A
¼

n0 cosðhÞ þ g0 sinðhÞ
�n0 sinðhÞ þ g0 cosðhÞ

s0

0@ 1A;
the left-invariant 1-form

xvðt0Þ ¼ dyðT0L�1
v ðt0ÞÞ ¼ �n0 sinðhÞ þ g0 cosðhÞ

¼ � sinðhÞdxðt0Þ þ cosðhÞdyðt0Þ;

which is nothing else than xS.
Coming back from v to 0 using the right-translation

Rv�1 , we get the inner automorphism of VS:

Av :v 0#v �v 0 �v�1

v �v 0:v�1¼
xþðx0cosðhÞ�xcosðh0ÞÞ�ðy0sinðhÞ�ysinðh0ÞÞ
yþðx0sinðhÞ�xsinðh0ÞÞþðy0cosðhÞ�ycosðh0ÞÞ

h0

0B@
1CA:

Of course 0 is a fix point of Av and the tangent map Adv = -
T0Av of Av at 0 is an automorphism of the Lie algebra
VS ¼ T0VS, which defines the adjoint representation. We
have

Adv ¼
cosðhÞ � sinðhÞ y

sinðhÞ cosðhÞ �x

0 0 1

0B@
1CA

Taking again the tangent map, we get a morphism of Lie
algebras, adt, from the Lie algebra VS into the Lie algebra
EndðVSÞ of the automorphism group AutðVSÞ. If
t ¼ ðn;g; sÞ 2VS ¼ T0VS, the matrix of adt is

adt ¼
0 �s g
s 0 �n

0 0 0

0B@
1CA:

We retrieve the Lie bracket through adt(t0) = (�sg0 +
gs0,sn0 � ns0,0) = [t, t0].

8.2. The SE(2) sub-Riemannian geodesics (Agrachev)

After some discussions with us, Citti and Sarti on the
special Euclidean group endowed with the sub-Riemann-
ian metric making {X1,X2} an orthonormal basis of Kv, An-
drei Agrachev and his group at the SISSA of Trieste
(Sachkov, Boscain, Moiseev) solved the problem of geode-
sics (see [1] and [20]).

The formulation of the problem in terms of control the-
ory yields the differential system:ce:display>

_x ¼ u1 cosðhÞ
_y ¼ u1 sinðhÞ
_h ¼ u2

8><>:

Remark 1. Mumford’s elastica model corresponds to the
particular case _x ¼ cosðhÞ; _y ¼ sinðhÞ; _h ¼ j ¼ curvature. h
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Agrachev applies again Pontryagin maximum principle,
starting with the kinetic energy defined on the tangent
bundle TVS

1
2

_v2 ¼ 1
2
ðu1 cosðhÞÞ2 þ ðu1 sinðhÞÞ2 þ u2

2

� �
¼ 1

2
u2

1 þ u2
2

� �
and takes the Legendre transform defined on the cotangent
bundle T�VS:

hðv ;-Þ ¼ h-; _vi � 1
2

_v2;

- being a covector with components - = (n⁄,g⁄,#⁄) in the
basis dx, dy, dh of T�VS. One verifies immediately that

hðv ;-Þ ¼ h-;u1X1ðvÞ þ u2X2ðvÞi �
1
2

u2
1 þ u2

2

� �
:

According to the maximum principle, we get the Ham-
iltonian of geodesics by maximizing h(v,-) w.r.t. controls
u1 and u2. We make @h

@u1
¼ @h

@u2
¼ 0, whose solutions are

u1ðv;-Þ ¼ h-;X1ðvÞi ¼ n� cosðhÞ þ g� sinðhÞ
u2ðv;-Þ ¼ h-;X2ðvÞi ¼ #�;

�
the ui(v,-) = h-,Xi(v)i being the natural coordinates on the
cotangent bundle T�VS, together with

u3ðv ;-Þ ¼ h-;X3ðvÞi ¼ �n� sinðhÞ þ g� cosðhÞ

The Hamiltonian for geodesics on T�VS is then

Hðv ;-Þ ¼ 1
2

u2
1 þ u2

2

� �
¼ 1

2
ðh-;X1ðvÞi2 þ h-;X2ðvÞi2Þ

¼ 1
2

-2
1 þ-2

2

� �
¼ 1

2
ððn� cosðhÞ þ g� sinðhÞÞ2 þ #�2Þ

where {-1,-2,-3} are the components of the covector - in
the dual basis of {X1,X2,X3}.

Hence the Hamilton equations:

_x ¼ @H
@n� ¼ n� cos2ðhÞ þ g� cosðhÞ sinðhÞ

_y ¼ @H
@g� ¼ g� sin2ðhÞ þ n� cosðhÞ sinðhÞ

_h ¼ @H
@#� ¼ #

�

_n� ¼ � @H
@x ¼ 0

_g� ¼ � @H
@y ¼ 0

_#� ¼ � @H
@h ¼ ðn

� cosðhÞ þ g� sinðhÞÞð�n� sinðhÞ þ g� cosðhÞÞ

8>>>>>>>>>>><>>>>>>>>>>>:
The sub-Riemannian geodesics are the projections of the
H-trajectories on VS. As n⁄ and g⁄ are constant, write them
(n⁄,g⁄) = qeib. Then

_#� ¼ 1
2
q2 sinð2ðh� bÞÞ

and the constant Hamiltonian H ¼ 1
2 ðq2 cos2ðh� bÞ þ #�2Þ

yields the energy first integral:

q2 cos2ðh� bÞ þ #�2 ¼ c

(with c = 1 if H ¼ 1
2) and the ODE for _h (c,q and b are

constant):

_h2 ¼ #�2 ¼ c � q2 cos2ðh� bÞ:
For b = 0 (rotation invariance), the equations become:
_x ¼ q cos2ðhÞ
_y ¼ q cosðhÞ sinðhÞ ¼ 1

2 q sinð2hÞ
_h ¼ #�

€h ¼ _#� ¼ 1
2 q2 sinð2hÞ

8>>>>><>>>>>:

For q = 1, 2h = p � l, and l = 2u = p � 2h, we get a pendu-
lum equation €l ¼ � sinðlÞ with first integral _u2 þ sin2ðuÞ.
As
dt ¼ � 1ffiffiffi
c
p duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1
c sin2ðuÞ

q

the system can be explicitly integrated using elliptic func-
tions. The computation of the sub-Riemannian sphere and
wave front are extremely involved (see [20]).
8.3. The SE(2) heat kernel

In [2], Agrachev, Boscain, Gauthier and Rossi computed
the heat kernel for VS, the hypoelliptic Laplacian being
again DK ¼ X2

1 þ X2
2. The sub-Riemannian diffusion on VS

is highly anisotropic since it is restricted to an angular dif-
fusion of h and a spatial diffusion only along the X1 direc-
tion. It is strongly constrained by the ‘‘good continuation’’
Gestalt law and its difference with classical (Euclidean) dif-
fusion is striking. The Fig. 8, due to Jean-Paul Gauthier,
starts with the image of an eye masked by a white grid
and applies the diffusion until the grid has vanished. In
spite of this very important diffusion the geometry of the
image remains quite excellent. The Fig. 9 shows how bad
would be a classical diffusion.

To compute the sub-Riemannian diffusion, the authors
use the noncommutative generalized Fourier transform
(GFT). The dual V�S of VS is this time the set of unitary irre-
ducible representations (unirreps) of VS in the Hilbert
space H ¼ L2ðS1;CÞ, and these unirreps are parametrized
by a positive real k:
qk : VS ! UðHÞ

v # qkðvÞ : H!H

wðhÞ# eikðx sinðhÞþy cosðhÞÞwðhþ aÞ

The Plancherel measure on V�S is still dP(k) = kdk and to
compute the Fourier transform of the sub-Riemannian
Laplacian we have to look at the action of the differential
of the unirreps on the left-invariant vector fields X. As pre-
viously explained,

dqk : X ! dqkðXÞ :¼ d
dt

����
t¼0

qkðetXÞ

and we have bXi
k ¼ dqkðXiÞ.

It is easy to apply these formulae to the VS ¼ SEð2Þ case.



Fig. 8. Diffusion in VS according to Jean-Paul Gauthier. The initial image is an eye masked by a white grid. Sub-Riemannian diffusion is applied until the grid
has vanished. In spite of this very important diffusion the geometry of the image remains quite excellent.

Fig. 9. To make the grid of Fig. 8 disappear using classical isotropic diffusion (Gaussian blurring), the image has to be completely blurred.
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X1ð0Þ ¼ ð1;0;0Þ
etX1 ¼ ðt;0;0Þ
qkðetX1 ÞwðhÞ ¼ eikt sinðhÞwðhÞ;

cX1
kwðhÞ ¼ dqkðX1ÞwðhÞ ¼

d
dt

����
t¼0

qkðetX1 ÞwðhÞ

¼ d
dt

����
t¼0

eikt sinðhÞwðhÞ ¼ ik sinðhÞwðhÞ

X2ð0Þ ¼ ð0;0;1Þ
etX2 ¼ ð0;0; tÞ
qkðetX2 ÞwðhÞ ¼ wðhþ tÞ

cX2
kwðhÞ ¼ dqkðX2ÞwðhÞ ¼

d
dt

����
t¼0

qkðetX2 ÞwðhÞ

¼ d
dt

����
t¼0

wðhþ tÞ ¼ dwðhÞ
dh

:

The GFT of the sub-Riemannian Laplacian is therefore
the Hilbert sum (integral on k with the Plancherel measure
dP(k) = kdk) of the dDK

k with

dDK
kwðhÞ ¼ ððcX1

kÞ2 þ ðcX2
kÞ2ÞwðhÞ ¼ d2wðhÞ

dh2 � k2 sin2ðhÞwðhÞ

which is nothing else than Mathieu equation. The heat ker-
nel is

Pðv; tÞ ¼
Z

V�S

TrðetcDK
kqkðvÞÞdPðkÞ; t P 0:
If the dDK
k have discrete spectrum and a complete set of

normalized eigenfunctions wk
n

� �
with eigenvalues ak

n

� �
then

Pðv; tÞ ¼
Z

V�S

X
n

eak
nt wk

n;qkðvÞ wk
n

� �� 	 !
dPðkÞ; t P 0:

It is the case here. The 2p-periodic eigenfunctions of the
Mathieu equation satisfy:

d2wðhÞ
dh2 � k2 sin2ðhÞwðhÞ ¼ EwðhÞ

and, as sin2ðhÞ ¼ 1
2 ð1� cosð2hÞÞ, this means:

d2wðhÞ
dh2 � k2

2
wðhÞ � EwðhÞ þ k2

2
cosð2hÞwðhÞ ¼ 0

d2wðhÞ
dh2 þ ða� 2q cosð2hÞÞwðhÞ ¼ 0;

with a ¼ � k2

2 þ E
� �

and q ¼ � k2

4 . The normalized 2p-peri-
odic eigenfunctions are known: they are even or odd and
denoted cen (h,q) and sen (h,q). The associated an(q) and
bn(q) are called characteristic values.
9. Conclusion

We have presented two neurogeometrical models of
V1;VJ and VS, whose contact structures and sub-Riemann-
ian geometries explain deep Gestalt phenomena such as
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subjective contours and anisotropic diffusion. To conclude
this survey, we notice that one can construct an interpola-
tion between the two models, which corresponds to a con-
fluence of singularities between the two associated
equations. Mohammed Zahaf and Manchon [28] con-
structed such an interpolation given by a family of models
Va and studied the confluence of the corresponding differ-
entials equations in the Fourier space. By appropriate
changes of variable, all these equations can be reduced to
the form

P0ðtÞy00ðtÞ þ P1ðtÞy0ðtÞ þ P2ðtÞyðtÞ ¼ 0

for well chosen polynomials P0(t), P1(t) and P2(t). The sin-
gularities of such a second order equation (considered as
an equation of the complex variable t) are the zeroes tj of
P0(t). They are called ‘‘regular’’ when ðt � tjÞ P1ðtÞ

P0ðtÞ
and

ðt � tjÞ2 P2ðtÞ
P0ðtÞ

are analytic in a neighborhood of tj.
The model Va can be summarized by the following

table:

Xa
1 ¼ cosðhÞ@x þ

1
a

sinðahÞ@y

Xa
2 ¼ @h

Xa
3 ¼ �a sinðahÞ@x þ cosðhÞ@y

Xa
1;X

a
2

 �
¼ �Xa

3

Xa
2;X

a
3

 �
¼ a2Xa

1

Xa
1;X

a
3

 �
¼ 0

Va ¼ SEað2Þ with S
1
a ¼

R

2pa�1Z

Xa
1ðwðhÞÞ ¼ ika�1 sinðahÞwðhÞ

Xa
2ðwðhÞÞ ¼ w0ðhÞ

bDk : w00ðhÞ � k2

a2 sin2ðahÞwðhÞ

w00ðhÞ þ ðl� k2

a2 sin2ðahÞÞwðhÞ ¼ 0:

The change of variable
sin2ðahÞ

a2 ! t yields the equation

tð1� a2tÞy00ðtÞ þ 1
2
ð1� 2a2tÞy0ðtÞ þ 1

4
ðl� k2tÞyðtÞ ¼ 0;

3 singularities : 0;a�2 are regular; 1 is irregular:

For a ¼ 1;V1 yields the VS model:

X1 ¼ cosðhÞ@x þ sinðhÞ@y

X2 ¼ @h

X3 ¼ � sinðhÞ@x þ cosðhÞ@y

½X1;X2� ¼ �X3

½X2;X3� ¼ X1

½X1;X3� ¼ 0

V1 ¼ VS ¼ SEð2Þ with S1 ¼ R

2pZ

X1ðwðhÞÞ ¼ ik sinðhÞwðhÞ
X2ðwðhÞÞ ¼ w0ðhÞbDk : w00ðhÞ � k2 sin2ðhÞwðhÞ
w00ðhÞ þ ðl� k2Þ sin2ðhÞwðhÞ ¼ 0:

The change of variable sin2ðhÞ ! t yields the equation

tð1� tÞy00ðtÞ þ 1
2
ð1� 2tÞy0ðtÞ þ 1

4
ðl� k2tÞyðtÞ ¼ 0;

3 singularities : 0;1 are regular; 1 is irregular:
For a ? 0 and small h (denoted p), V0 yields the VJ model:

X0
1 ¼ @x þ p@y

X0
2 ¼ @p

X0
3 ¼ @y

X0
1;X

0
2

h i
¼ �X0

3

Xa
2;X

a
3

 �
¼ 0

Xa
1;X

a
3

 �
¼ 0

V0 ¼ VJ with S1
0 ¼ R

X0
1ðyðsÞÞ ¼ iksyðsÞ

X0
2ðyðsÞÞ ¼ y0ðsÞbDk : y00ðsÞ � k2s2yðsÞ

y00ðsÞ þ ðl� k2Þs2yðsÞ ¼ 0:

The change of variable s2 ! t yields the equation

ty00ðtÞ þ 1
2

y0ðtÞ þ 1
4
ðl� k2tÞyðtÞ ¼ 0;

2 singularities : 0 is regular; a�2 ¼ 1 is irregular:
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