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At the end of the 1960s, René Thom was the first scientist to develop a general
mathematical theory of morphogenetic processes. This chapter presents the fundamen-
tal principles of that theory.

1 General content of the model
Let S be a system satisfying the following hypotheses:
(a) Tthere exists an internal process (usually unobservable) X which defines the inter-
nal states that system S can occupy in a stable manner, and the number of these states
is finite;
(b) the internal states of S are in competition with each other and mutually determine
each other, and the choice of one of them as the actual state makes the others virtual;
(c) there therefore exists an instance of selection I which, on the basis of criteria specific
to the system, selects the actual state from among the possible internal states;
(d) the system S is controlled by a certain number of control parameters varying within
a space W which we call, to distinguish it from the internal process X , the external
space (or control space or substrate space) of S.
We also assume that the control is continuous, in the sense that the internal process X
is a process Xw which depends continuously on the value w of the control. This process
varies continuously when w varies continuously in W and when it is deformed it also
deforms the structure of the internal states and their relations of mutual determination.
We denote X the space of possible internal processes X . If the above hypotheses are
verified, the system S will be described firstly by the (continuous) field σ : W →X
associating w ∈W with the process Xw and then by the instance of selection I.

The standard example is that of the thermodynamic phenomena of phase transi-
tions. In this case, the system S is the thermodynamic system considered, the internal
states are the thermodynamic phases (solid, liquid, gas), the instance of selection I is
provided by the principle of free energy minimisation and the control parameters are,
for example, pressure and temperature. As for the internal process Xw, indescribable
because of its complexity, it is the process of molecular dynamics. When the control

1



parameters cross certain specific values, known as critical values1, they present phase
transitions, i.e. discontinuities in their observable qualities and abrupt transformations
of their internal state. The critical values constitute a subset K of W , determining the
phase diagram: K partitions W into domains corresponding to the different phases that
S can present. In other words, it categorises it and externalises therein the competition
between internal states, in the form of a system of discontinuities.

This is a direct consequence of hypotheses (a)-(d). A system S = (W,X ,σ , I)
manifests itself phenomenologically by the observable qualities q1, . . . ,qn expressing
its internal state. In other words, the internal process Xw is externalized in perceptible
qualities qi

w. When the control w varies continuously, the actual internal state varies
continuously (hypothesis (d)) and the qualities qi

w therefore vary equally. But phe-
nomenologically speaking, a continuous variation is no more than a form of qualitative
invariance. It is therefore not significant. So René Thom denoted by regular point
of W a value w of the control such that the observable qualities qi

w vary continuously
— and therefore remain stable — throughout a neighbourhood U of w (this obviously
presupposes that we have defined the concept of neighbourhood on W , i.e. a topology).
By definition, the regular points constitute an open set RW of W , the open set of quality
stability. Then let KW be the closed set complementary to RW in W . By definition, the
points of KW are the values w of the control such that at least one observable quality qi

w
suffers a discontinuity. These are critical values, crossing which the system S presents
critical behaviour. They are also called catastrophic values, the closed set KW being
called the catastrophic set of S. The KW are also called external morphologies.

As René Thom often stressed, this concept of morphology is purely phenomeno-
logical. But it is closely connected to the mathematical concept of bifurcation. Let
us suppose that the control w follows a path γ in W . Let Aw be the actual internal
state initially selected by I. During the deformation of Xw along γ — and therefore,
under hypothesis (d), of the structure of Aw and under hypothesis (b), of the relations
of mutual determination it has with the virtual states Bw, Cw, etc. — when Aw crosses a
critical value, it no longer satisfies the criteria of selection imposed by I under hypothe-
sis (c). The system therefore spontaneously bifurcates from Aw towards another actual
(but hitherto virtual) state Bw. This catastrophic transition of internal state manifests
itself by a discontinuity in some of the observable qualities qi

w. In other words, it is the
destabilisation (relative to the instance I) of actual internal states under the variation of
the control which induces, in the external space W , a set of qualitative discontinuities
KW . In the right cases, the set KW will constitute a system of interfaces, analogous
to a phase diagram, partitioning the external space W into domains, each of which
corresponds to a zone in W where one of the internal states is dominant.

1Here, the term critical value is related to bifurcation theory (and, in the rest of this chapter, to catas-
trophe theory), and not to the language of thermodynamics. As a general rule, these critical values do not
correspond to a critical point in the thermodynamic sense (a particular point where the distinction between
the different phases disappears and the phase transition becomes continuous, the singularity manifesting
itself in thermodynamic derivatives, of free energy, for example).
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2 Morphodynamics and structural stability
Thomian morphodynamics is based on the possibility of specifying the general model
in mathematical terms. The first specification consists in assuming that, with regard to
their nature, the internal processes Xw constitute a space X equipped with a natural
topology T significant for the type of process studied. This means that we can tell
when two internal processes X and Y are neighbours and we can therefore rigorously
define the continuity of the field σ : W → X . By moving in X we can therefore
deform its elements X .

We then assume that we can define the qualitative type of the processes X . The
qualitative type is a relation of equivalence (generally defined by the action of a group
G on X ), which is a weak, qualitative identity. Let X̃ be the class of equivalence
of X for the qualitative type (i.e. the orbit of X under the action of G). We seek to
characterise that which remains invariant when X varies in X̃ (i.e. varies for a con-
stant qualitative type) by means of discrete information, for example the values of a
finite number of invariants. At the level of the invariants, the variation in a class of
equivalence X̃ is reduced to the identity. Therefore, there is only qualitative variation
when a deformation in X causes a change in the class of equivalence. The variation is
manifested by a discontinuity in the value of certain invariants and we find the “right”
situation of the general model.

Compared to a standard approach, which would consist in studying, for each phys-
ical system of type S = (W,X ,σ , I), the internal processes Xw as isolated entities,
morphodynamics introduces a double shift in perspective. Firstly, it takes as its object
of study not only the processes Xw but also the parameterized families (Xw)w∈W , by
focusing on the geometry of the catastrophic sets KW induced in the external spaces W
by the destabilisation of the internal states defined by Xw. Secondly, and above all, it
considers these families as the image of fields σ : W →X sending the external space
W (which is generally a part of the standard space Rn with n dimensions) into the
generalised space X .

Now, from the moment that we possess, for a space X , a topology T and a rela-
tion of equivalence defining the qualitative type, we can define a concept of structural
stability. Let X ∈X . We say that X is structurally stable if all Y close enough to X
(in the sense of T ) are equivalent to X . The process X is therefore structurally stable
if its qualitative type resists small perturbations, or if the class X̃ is open (in the sense
of T ) in X . Let KX then be the closed subset of X composed of the structurally
unstable X ∈X . KX is an intrinsic catastrophic set, canonically associated with X .
It is categorised by a discriminating morphology, which classifies the qualitative types
of its structurally stable elements.

Let σ : W → X be the characteristic field of a system S = (W,X ,σ , I). Let
K′W = σ−1(KX ∩ σ(W )) be the trace of KX on W through the intermediary of σ .
The hypothesis of morphodynamic modelling is that the catastrophic set KW of S can
be deduced from K′W on the basis of the instance of selection I. This means that a value
w of the control belongs to KW (i.e. is a critical value) if and only if the situation in w is
correlated in the manner regulated by I with a situation belonging to K′W . The external
morphology is essentially the apparent outline on the substrate space of the internal
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dynamics. It is therefore the analysis (at the same time local and global) of the intrinsic
catastrophic sets KX that lies at the heart of this theory.

If we introduce the additional hypothesis that a field σ can only concretely exist if
it is itself structurally stable, we see that such a constraint drastically limits the com-
plexity that K′W can present. In the right cases, we can even obtain a classification of the
local structures of K′W and therefore of the local external morphologies. The theory thus
brings to light purely mathematical constraints acting on the domain of morphogenetic
phenomena.

3 The theory of dynamical systems
The main mathematical specification of the general model consists in postulating that
the internal process X is a differentiable dynamical system on a differentiable manifold
M of internal parameters characteristic of the system S considered. We call the space
M the internal space (to distinguish it from the external space W ). A dynamical system
X on M consists in associating with each point x of M a tangent vector X(x) of M at x,
a vector varying differentiably with x. X is therefore a vector field differentiable on M,
in other words, in terms of local coordinates x1, . . . ,xn, a system of ordinary differential
equations:

dxi

dt
= fi(x1, . . . ,xn)

where the fi (components of the field) are differentiable functions of x j and where
t is the time parameter. Given such a field, integrating it consists in finding, in M,
differentiable curves parameterised by time (i.e. differentiable applications γ : R→
M, t 7→ γ(t) = (x1(t), ...,xn(t)) which admit at each point for velocity vector dx/dt =
dγ(t)/dt the field vector X(x) = X (γ(t)). We say that the field is a dynamical system
if we can integrate the trajectories over an infinite time (i.e. if the trajectories do not
leave M); if one and only one trajectory passes through each point (the principle of
determinism: the initial condition x(0) at time t = 0 univocally determines the future
evolution x(t) for t > 0 and the past evolution x(t) for t < 0); and if the trajectories vary
differentiably according to the initial conditions.

Then let ft : M → M be the application which assigns to every point x of M the
point at time t of the trajectory emanating from x at time t = 0. It is easy to see that
ft is a diffeomorphism of M (an automorphism of its differentiable manifold structure)
and that the application t 7→ ft of the additive group R in the group of diffeomorphisms
of M is a morphism of the group. f is called the flow of the dynamical system X . It is
the integral version of the vector field X .

René Thom suggested that the models S = (W,X ,σ , I) where the internal pro-
cesses Xw are dynamical systems should be called metabolic models. Their internal
states need to be defined. The basic idea is to introduce a difference between fast and
slow dynamics, in other words between two timescales, one internal and fast, the other
external and slow. In the internal space, the fast internal dynamics creates attractors
that specify the local phenomenological quality of the substrate. The slow external
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dynamics operates in the substrate space W . As we assume that the internal dynamics
of the evolution of instantaneous states is infinitely fast compared to the external dy-
namics of evolution in the external spaces W (a condition known as adiabaticity), the
only significant states are the asymptotic states (for t→+∞) defined by the Xw, i.e. the
limit regimes.

Now, the analysis of these asymptotic states has proved to be unexpectedly and
formidably difficult. The complexity of a general dynamical system is prodigious.
Firstly, the ideal determinism — which is mathematical — does not in any way entail
determinism in the physical sense of the term (in the sense of “predictability”). An
initial condition can only be defined approximately. It is not represented by a point x0
in M but by a small domain U that “thickens” x0. For determinism to be physical,
the trajectories emanating from U must form a tube that “thickens” the trajectory of
γ emanating from x0. This means that the trajectory γ is stable with respect to small
perturbations of its initial condition. A physically deterministic dynamical system is
therefore a dynamical system (by definition ideally deterministic) which has stable
trajectories.

There is no reason why this should generally be the case. There are even dynamical
systems (for example geodesic systems in Riemann manifolds with negative curvature)
presenting the property that all their trajectories are unstable, and presenting it in a
structurally stable way. As Vladimir Arnold observed ([1], p. 314–315, our transla-
tion):

The possibility of structurally stable systems with complicated move-
ments, each of which is in itself exponentially unstable, is one of the most
important discoveries to be made in differential equation theory in recent
years. [. . . ] In the past, it was assumed that systems of generic differen-
tial equations could only contain simple, stable limit regimes: positions of
equilibrium and cycles. If the system was more complicated (conserva-
tive, for example), it was accepted that under the effect of a weak modi-
fication in the equations (for example by taking into account small, non-
conservative perturbations) the complicated movements “break down” into
simple movements. Now we know that this is not the case, and that in the
functional space of vector fields, there exist domains composed of fields
where the phase curves [the trajectories] are more complex. The conclu-
sions to be drawn from this affect a large number of phenomena in which
deterministic objects have “stochastic” behaviour.

Physical indeterminism (chaos, chance, randomness, etc.) is therefore perfectly
compatible with mathematical determinism. As Thom pointed out ([4], p. 124):

What we call “laws of chance” are in fact no more than properties of
the most general deterministic system.

Let us return to the specification of the general model. In terms of dynamical
systems, the internal states of S are the attractors of Xw. The very tricky concept of

5



attractor generalises the concept of stable equilibrium point. Intuitively, it is a sta-
ble asymptotic regime, a closed set A, X — invariant and indecomposable for these
two properties (i.e. minimal) — which attracts (i.e. captures asymptotically) all the
trajectories emanating from the points of one of its neighbourhoods. The largest neigh-
bourhood of A having this property is called the basin of attraction of A, denoted B(A).
In simple cases, the attractors have a simple topological structure (attractive point or
attractive cycle), they are finite in number and their basins of attraction are “good”
domains (of simple form) separated by separatrices. But this description is too opti-
mistic, because the attractors may be infinite in number, their basins of attraction may
be inextricable intermingled, and the attractors may have a very complicated topology
(strange attractors).

On an attractor, the trajectories of a dynamical system present recurrence. Intu-
itively, the recurrence of a trajectory γ means that if x ∈ γ , then γ passes arbitrarily
close to x again after an arbitrarily long time and so γ returns infinitely often close to
its initial position. The trivial cases of recurrence are the fixed points of X (the points
where X equals zero, i.e. the trajectories reduced to a point point) and the cycles of X
(closed trajectories). But there generally exists non-trivial recurrence. If γ is a compli-
cated recurrent trajectory and A is its topological closure, then A is a whole domain of
M (a non-empty closed set) where γ is dense.

Whatever we may make of these difficulties, Thom assumed in his morphodynamic
models that for almost all initial conditions x0 ∈ M (“almost all” and not all because
we must take into account the separatrices between basins), the trajectory emanating
from x0 is captured asymptotically by an attractor Aw of the internal dynamics Xw. This
corresponds to a hypothesis of local equilibrium: the fast internal dynamics drives the
system towards a stable asymptotic regime corresponding to an internal state.

Once these various hypotheses have been established, the general model becomes
a mathematical programme: general structure of dynamical systems (qualitative dy-
namics or global analysis); geometric characterisation of structurally stable dynamical
systems and their attractors; analysis of the ergodic properties of strange attractors;
analysis of possible causes of instability; analysis of the deformations (perturbations)
of structurally unstable systems; study of the geometry (which can be extremely com-
plex) of catastrophic sets KX ; etc. This programme, which we could call the Thom-
Smale programme, is an extension of that of Poincaré and Birkhoff. It is in fact the
programme of modern qualitative dynamics.

But if the Thom-Smale programme is of immense scope, it is also of immense
difficulty. That is why Thom proposed to simplify it.

4 The theory of singularities and “elementary” mor-
phogenetic models

As the complexity of general dynamical systems is too great to master, we can start
by carrying out a rough study, of a thermodynamic nature. This consists in ignoring
the fine structure (the complicated topology) of attractors. This step is all the more
necessary since the empirical catastrophic sets KW are usually much simpler than those
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induced by the bifurcations of general dynamical systems. The aim is therefore to un-
derstand how systems can be internally chaotic (stochasticity of the attractors defining
internal states) and externally ordered (simplicity of observable morphologies).

The idea is to apply to general systems that which can be observed to occur in the
case of gradient systems, namely the existence of gradient lines and level manifolds. To
do so, we use the fact that, if A is an attractor of a dynamical system X on a manifold
M, we can build, on the basin B(A) of A, a positive function f (called a Lyapunov
function) which decreases strictly along the trajectories in B(A)−A and vanishes on A.
This function is a sort of local entropy, expressing the fact that over time, B(A) contracts
on A analogously to a gradient system. But it does not allow us to say anything about
the internal structure of the attractor.

The next step is to retain, out of all the bifurcations of the attractors, only those
that are associated with their Lyapunov function. This reduction is similar to thermo-
dynamic averaging. It corresponds to a change in the level of observation, from the
fine level described by Xw to the rougher level described by fw. It is analogous to the
reduction that is performed in Landau’s mean-field theory of phase transitions. Thom
gives the following justification for it ([5], p. 521, our translation):

Personally, I like to think that what plays a role, is not the concept —
too fine — of attractor, but a class of equivalence of attractors, equiva-
lent because encapsulated in the level manifold of a Lyapunov function (a
quasi-potential), provided that the attractor avoids implosions of an excep-
tional nature. I believe that this may be the path to follow to find a sat-
isfactory mathematical definition of the concept of stationary asymptotic
regime of a dynamics. From this perspective, the fine internal structure of
the attractor is of little importance: the only thing that matters is the Lya-
punov function that encloses it in one of its level manifolds. But we can
consider that only the structure of the tube enclosing the attractor is phe-
nomenologically important, and we thus obtain a problem that is similar
to elementary catastrophe theory.

“Elementary” morphodynamic models consist in applying quasi-potentials — the
Lyapunov functions — to the gradient system derived from a potential. We assume
that the internal dynamics Xw is in fact the gradient dynamics associated with a dif-
ferentiable potential function fw : M → R. The internal states determined by fw are
then its minima (if f is equated with an energy, this principle is that of the energy
minimisation of the system). In Thomian terminology, this sort of system is called a
static model. Mathematically, the theory of static models is therefore an integral part of
the bifurcation theory of potential functions. Now, for potentials, there exists a simple
characterisation of structural stability (Morse theorem). Under the hypothesis that the
manifold M is compact, f : M→ R is stable if and only if:
(i) its critical points (i.e. its minima, maxima and saddle points) are non-degenerate,
in other words they are not fusions of several minima, maxima or saddle points; and
(ii) its critical values (i.e. the values f (x) for critical x) are distinct.
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There are therefore two causes of structural instability:
(i) the degeneracy of critical points, corresponding to what are called bifurcation catas-
trophes;
(ii) the equality of two critical values, corresponding to what are called conflict catas-
trophes.

Each of these two very distinct types of catastrophe has a corresponding type of
instance of selection I, which Thom called conventions:
(i) the convention of perfect delay, according to which the system S remains in an in-
ternal state (a minimum of fw) as long as that state exists: there can only be catastrophe
when a minimum disappears through fusion with another critical point (bifurcation);
(ii) the Maxwell convention, according to which the system S always occupies the ab-
solute minimum of fw: there can only be catastrophe when another minimum becomes
the absolute minimum (conflict).

5 The principles of morphodynamic models
As we have seen, morphodynamic models receive a natural interpretation within the
context of systems theory. In this setting, the space W is a control space and the phe-
nomena we seek to account for are of the critical type. Most of the rigorous and accu-
rate physical applications of morphodynamics are of this type: diffraction catastrophes
and wave-front dislocations in wave optics (with their consequences for semi-classic
approximation in quantum mechanics); the theory of phase transitions and phenom-
ena of spontaneous symmetry breaking in ordered media; stability of defects in me-
somorphic phases; bifurcation (buckling) of elastic structures; constrained differential
equations, singular perturbations and chaotic solutions (feedback-induced chaos); the-
ory of shock waves; analysis of singularities in variational systems; regime changes
in hydrodynamics, chemical kinetics and thermodynamics (dissipative structures and
spontaneous self-organisation of matter, etc.); strange attractors, deterministic chaos
and routes to turbulence; etc.

In these rigorous and accurate applications, we know the internal dynamics of the
system explicitly, one way or another. We therefore seek to derive mathematically
the catastrophic sets KW from our explicit knowledge of the fields σ : W →X and,
quite naturally, we postulate that the internal process Xw causally generates the external
morphology KW . Analysis of various physical examples shows that often, a “flesh” of
fine-scale complex processes (renormalisation groups, oscillating integrals, etc.) is
grafted onto a “skeleton” of medium-scale singularities. this allows us to speak with
a certain degree of precision about the morphological infrastructures of certain classes
of physical phenomena. Now, these infrastructures are phenomenologically dominant.
We therefore possess - for the first time - a link between the mathematical formalisms
of physical objectivity and the phenomenology of the manifestation.
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6 The models of morphogenesis
The junction between physical models and morphological schemes is made by consid-
ering that the control space W is the spatio-temporal extension of a material substrate.
Consequently, the models describe the qualitative variation of perceptible qualities that
can be observed in the substrate. This is the case for the models proposed by Thom for
embryogenesis. They are based on two guiding ideas.

The first is that the attractors of internal dynamics define local metabolic regimes on
the substrate (whence the name of metabolic models) and that, since these regimes are
controlled by the spatio-temporal extension of the substrate, their catastrophes (made
elementary by thermodynamic averaging) manifest themselves as differentiations of
qualities in the substrate, in other words as processes of morphogenesis.

The second idea, more speculative, is that it is possible to interpret the topology
of attractors defining local regimes in terms of their functional significance within the
global regulation of the organism.
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(Gallimard), in French. Commented english edition: Stop Chance! Silence Noise!
SubStance 40 (1983).

[5] Thom R. (1990) Apologie du Logos, Hachette (Paris).
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