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1. Introduction

Neurogeometry concerns integrative and functional neurosciences.

It works at the mesoscopic level and does not directly concern the
ODEs of neurons and PDEs of neural networks.

Its purpose is rather to understand the cortical implementation of
the global geometry of visual percepts as resulting from an
integration process of retinal very local (“differential”) sense data.
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2. Point-like processors

This purpose comes up against a “hard problem”.

The geometry of visual perception involves many differential
computations. But neurons are point-like processors. They can
only code a single numerical value by means of their “firing rate”.

Of course they are connected and they can transmit their activity
along their more or less inhibitory or excitatory connections.

But this is insufficient to directly implement differential routines.
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3. The antinomy of perceptual geometry. I

There is therefore an antinomy at the root of a neurally
implemented perceptual geometry.

How differential routines can be neurally implemented in networks
of “point-like processors”since derivatives are not point-like
entities?
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4. The hard problem

Now, it is a key empirical fact that biological evolution has
introduced new post-retinal neural modules and neural layers
(lateral geniculate nucleus, cortical layers, orientation
hypercolumns, etc.) that implement new variables beyond variables
of retinal position .

We can therefore try to understand how a connectivity extended to
these new modules and layers can perform differential
computations.
(i) It must certainly have a very special functional architecture.
(ii) But we must also know under what conditions a point-like
functional architecture is able to implement a differential calculus.
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5. The antinomy of perceptual geometry. II

The hypothesis is therefore

Maybe point-like processors can implement an alternative
formulation of differential calculus using “hidden derivatives”
(Richard Montgomery) as new supplementary independent
variables which can be implemented in point-like processors.

But these new “hidden” derivatives must satisfy strong constraints
in order to be interpretable as “true” derivatives.

For that, the connectivity of the network must be extremely
specific.
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6. The antinomy of perceptual geometry. III

Now, alternative versions of differential calculus do exist in
“modern” differential geometry since Pfaff, Jacobi, Frobenius, Lie,
Darboux, Cartan, Weyl, Goursat, etc.

They can solve the “hard problem”.

To understand why, we have to dive deep into the history of
differential geometry.
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7. Geometrizing integrability I

The geometrization of the integrability conditions of differential
equations has been a revolution (similar to that accomplished by
Galois for the resolution of algebraic equations).

For a long time, the problem of the integration of differential
equations ω =

∑i=n
i=1 Aidxi = 0 was considered as “impossible”,

“absurd”, “meaningless” if there was no integrating factor.

Gaspard Monge (1746-1818) was one of the first to explain (1784)
that (in dimension 3) the conditions of integrability mean that the
solutions of ω = 0 are surfaces F (xi ) = a in R3 but that, when the
conditions are not satisfied, there still exist solutions but which are
1D skew curves and no longer 2D surfaces.

Jean Petitot ICMNS 2021



8. Geometrizing integrability II

From Pfaff to Frobenius differential geometers had gradually
understood the condition of integrability ω ∧ dω = 0.

Monge raised what became 30 years later the Pfaff problem and he
prophesied its importance.

“It was not noticed that this was the beginning of an
immense chain, to which lay the great difficulties of
differential calculus.”

From that moment, geometrizing the integrability of differential
equations became the problem of analyzing tangent hyperplane
fields (kernels of differential 1-forms).
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9. Lie I

So, the basic notion became that of a contact element (Lie’s
“Flächen-element”) , that is a pair of a point x of a manifold M
and a hyperplane Kx of TxM.

Sophus Lie developed it in great detail with a strong sense of the
inversion of point of view it brought.

In a beautiful text of 1894 “The Geometric Work of Sophus Lie”,
Felix Klein emphasized the importance of the change of perspective
brought about with this “new, clear and penetrating view”.
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10. Lie II

He explained that Lie introduced “new elements of space” much
more general than points and, instead of applying the methods of
differential analysis to geometry, was interested in “the reciprocal”
and developed “the application of geometrical intuition to
Analysis”.

This is the key foundational issue: the essence of differential
calculus moves from Analysis to Geometry.

So, we see why and how “point-like processors” can be good
differential geometers if they are able to detect contact elements.
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11. The first example: V 1

In the 90s I developped the following relations between
neurophysiology and geometry:

1 a class of cortical neurons in V 1 (called “simple”) detect
contact elements (a, p) where a are positions on the retina
and p a local orientation at a (Hubel and Wiesel);

2 the fibration (a, p)→ a is neurophysiologically implemented
by retinotopy and orientation hypercolumns;

3 the contact structure of the 1-jets of plane curves is
neurophysiologically implemented (horizontal cortico-cortical
connections);

4 the sub-Riemannian geometry of this contact structure is
neurophysiologically implemented (illusory contours as
geodesics).
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12. Illusory contours

By the way, long range illusory contours are one of the most
striking phenomenon of low level vision. We can reconstruct the
shape of a dalmatian dog in this very incomplete image:

Jean Petitot ICMNS 2021



13. Illusory contours as geodesics

We will see that they can be interpreted as geodesics of a contact
structure for an appropriate metric.

Such sub-Riemannian models generalize a previous model due to
David Mumford and based on the theory of elastica.

They have many applications, in particular for inpainting, since to
complete a corrupted image, we must construct the illusory level
sets that can complete the missing parts.
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14. An example of sub-Riemannian inpainting

The following picture shows how a highly corrupted image (left)
can be very well restored using sub-Riemannian diffusion
(Gauthier-Prandi inpainting).

The face of our friend Jean-Paul appears out of the blue.
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15. The functional architecture

Simple neurons of V 1 are parametrized by triples (a, p) where
a = (x , y) is a position on the retina (identified with R2) and p is
an orientation (modulo π) at a.

So, simple cells of V 1 constitute a field of orientations.

This field is the basis of the “functional architecture” of V 1.

What could be its structure?
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16. Braitenberg abduction

The first global reconstruction of an orientation field from the
sparse local data provided by electrodes (Hubel and Wiesel) was
infered abductively in 1979 by Valentino and Carla Braitenberg.

This was long before the introduction of modern in vivo optical
imaging techniques.
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17. Swindale’s abduction

After Braitenberg, in an astonishing 1987 paper (still before the
advent of optical imaging techniques), Nicholas Swindale
reconstructed the “spatial layout” of the orientation map.

What are now called pinwheels.

He thus confirmed Braitenberg’s abduction.
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18. Swindale’s image I
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19. Swindale’s image II

Using a color code for directions, he got an orientation map.

This is a theoretical reconstruction and not an empirical
observation.
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20. In vivo optical imaging

Braitenberg’s and Swindale’s abductions have been strikingly
confirmed in the 1990s by brain imagery (Amiram Grinvald and
Tobias Bonhöffer). You all know orientations maps with pinwheels
(here V 1 area of the macaque, Blasdel and Salama).
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21. Pinwheels as blowing-up

Pinwheels can be interpreted geometrically as blowing-up of points
ai and the orientation field is the closure of a section σ of the fiber
bundle π : VJ = R2 × P1 → R2 (J for “jets”) defined over the
open subset R2 − {ai}.

Over the ai the closure of σ is the “exceptionnal” fiber P1
ai
.

These exceptional fibers P1
ai

are “contracted”and “folded” onto
small neighborhoods of the base points ai .
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22. V1 as fiber bundle

There is therefore a 3D → 2D dimensional collapse : an
orientation map is, in a way, a geometric object of “intermediate”
dimension between 2 and 3.

At the limit, when all the points of the base plane R2 are blown-up
in parallel, we get the fiber bundle π : VJ = R2 × P1 → R2.

So VJ can be considered as an idealized continuous model of the
concrete neural V 1 produced by biological evolution with it
pinwheels and orientation field.
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23. “Hidden derivatives”

But the fibration V = R2 × P1 −→ R2, (a, p) 7→ a is not sufficient
for interpreting p as an “hidden derivative” (Richard
Montgomery), that is as a tangent to a curve.

For that, p must satisfy the fundamental Pfaff equation
ω = dy − pdx = 0 defining the contact structure of 1-jets of plane
curves.
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24. The contact structure of 1-jets

A skew curve

Γ = v(s) = (a(s), p(s)) = (x (s) , y(s), p(s))

in VJ is the Legendrian lift of its projection γ = a(s) onto the base
plane R2

iff it is an integral curve of the contact structure C = ker(ω)
of VJ , where ω is the 1-form

ω = dy − pdx
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25. The (polarized) Heisenberg group

Let’s remember that the contact structure C is left-invariant for a
group law making VJ isomorphic to the (polarized) Heisenberg
group Hpol .

(x , y , p).(x ′, y ′, p′) = (x + x ′, y + y ′ + px ′, p + p′) .

Its Lie algebra is generated by the basis of left-invariant fields
X1 = ∂

∂x + p ∂
∂y = (1, p, 0) and X2 = ∂

∂p = (0, 0, 1) with

[X1,X2] = (0,−1, 0) = − ∂
∂y = −X3 (the other brackets = 0).

The basis {X1,X2} of the distribution C is bracket generating (i.e.
Lie-generates the whole tangent bundle TVJ) (Hörmander
condition).

VJ = Hpol is a nilpotent group of step 2 (a Carnot group).
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26. The contact structure of SE (2)

This can be generalized to the Euclidean group SE (2).

The contact form of SE (2) is

ωS = cos (θ) dy − sin (θ) dx

The contact planes are spanned by the tangent vectors
X1 = cos (θ) ∂

∂x + sin (θ) ∂
∂y and X2 = ∂

∂θ with Lie bracket

[X1,X2] = sin (θ) ∂
∂x − cos (θ) ∂

∂y = −X3.
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27. The two models

The Xj constitute an Euclidean orthonormal basis.

The distribution C of contact planes is still bracket generating
(Hörmander condition). But SE (2) is no longer nilpotent. The
Carnot group VJ = Hpol is its “tangent cone”, its
“nilpotentisation”.
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28. Neural contact structure

The very key point, which is another striking experimental
discovery, is that the contact structure of V is implemented in a
specific class of neural connections.

Orientation hypercolumns correspond to the “vertical”
retino-geniculo-cortical connectivity.

But cortical neurons of V 1 are also connected by “horizontal”
cortico-cortical connections inside the cortical layer itself.
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29. Necessity of a parallel transport

Such a second system of long-range “horizontal” cortico-cortical
connections is necessary to implement a parallel transport enabling
the visual system to compare two retinotopically neighboring
orientation hypercolumns Pa and Pb over two different base points
a and b.
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30. The key result

“The system of long-range horizontal connections can be
summarized as preferentially linking neurons with co-oriented,
co-axially aligned receptive fields.”(W. Bosking)

This means that a chain of simple neurons (ai , pi ) is a chain of
“horizontally” connected simple neurons iff it is a discretization of
the Legendrian lift of a not too curved base curve interpolating
between the (ai ).

So, this means that,

up to some bound on curvature, the contact structure C is neurally
implemented in V 1.
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31. Variational models for illusory contours

Let us come back now to curved illusory contours. Variational
models have been introduced since the late 70s.

They minimize an energy along curves in the base plane.

The best known is the elastica model proposed in 1992 by David
Mumford.
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32. Geodesic models

But for neural models (and not only 2D image processing) it is
natural to work in V 1, that is with the contact structure and the
Legendrian lifts.

It is here that sub-Riemannian geometry fully comes on stage.

The natural idea is to introduce sub-Riemannian metrics on V and
look at geodesic models for curve completion and illusory modal
contours.
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33. The sub-Riemannian Hpol

The sub-Riemannian geometry of the Heisenberg group H has
been explained in the 1980s by Richard Beals, Bernard Gaveau and
Peter Greiner.

It can easily be adapted to the polarized Hpol .

As you know, geodesics are the projections on Hpol of the
trajectories of a Hamiltonian field defined on the cotangent space.
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34. The sub-Riemannian wavefront of H

Using a variable ϕ, associated to the length of the geodesic, the
sphere S(0,R) and the wave front W (0,R) of H are given by the
following equations (where θ is the angle of the tangent)

x1 = |sin(ϕ)|
ϕ cos (θ)

p1 = |sin(ϕ)|
ϕ sin (θ)

y1 = 1
2x1p1 + ϕ−sin(ϕ) cos(ϕ)

4ϕ2

= 1
2

sin2(ϕ)
ϕ2 cos (θ) sin (θ) + ϕ−cos(ϕ) sin(ϕ)

4ϕ2

= ϕ+2 sin2(ϕ) cos(θ) sin(θ)−cos(ϕ) sin(ϕ)
4ϕ2

They are displayed in the following figure.

Such a complex behavior is impossible in Riemannian geometry.
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35. Image of the SR sphere of H
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36. Image of the SR sphere and wave-front of H

The external surface is the sub-Riemannian sphere S . It has a
saddle form with singularities at the intersections with the y -axis.
The internal part is W − S . It presents smaller and smaller circles
of cusp singularities which converge to 0.
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37. The cusps of W

The following figure displays the quarter of the wave front W for
θ = 0. Its equations are x1 = |sin(ϕ)|

ϕ , p1 = 0, y1 = ϕ−cos(ϕ) sin(ϕ)
4ϕ2 .

The cusps are on the curve of equation x = cos (ϕ),
y = 1

4 cos (ϕ) sin (ϕ) .
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38. The example of SE (2)

With Giovanna Citti and Alessandro Sarti we studied the passage
from the VJ bundle, with its natural action of the Euclidean group
R2 o S1 = SE (2), to its associated principal bundle.

We thus go to the model SE (2) = VS endowed with its natural
contact structure and its associated L-invariant sub-Riemannian
metric.

The geometry of the sub-Riemannian spheres and wavefronts is
much more complicated. It was computed in the 2000s by Andrei
Agrachev and his team (Yuri Sachkov, Ugo Boscain, Igor Moiseev,
Jean-Paul Gauthier).
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39. The Hamiltonian of SE (2)

If λ1, λ2, λ3 are the components of the covector λ in the bass
(ω1, ω2, ω3) dual to (X1,X2,X3) (i.e. λi = 〈λ,Xi 〉), the
Hamiltonian giving the geodesics is

H(λ, q) =
1

2

(
λ2

1 + λ2
2

)
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40. Hamilton equations of SE (2)

If H is constant H = 1
2 and if we take λ1 = sin

(γ
2

)
,

λ2 = − cos
(γ

2

)
, then γ satisfies the pendulum equation

γ̈ = − sin (γ)

and Hamilton equations are
ẋ = sin

(γ
2

)
cos (θ) = λ1 cos (θ)

ẏ = sin
(γ

2

)
sin (θ) = λ1 sin (θ)

θ̇ = − cos
(γ

2

)
= λ2

θ̈ = 1
2 sin

(γ
2

)
γ̇ = λ̇2
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41. The control pendulum

The phase portrait C of the pendulum is stratified and its
stratification governs the classification of geodesics.
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42. The pendulum phase portrait

In magenta: open stratum C1 (2 connected components,
oscillations). In yellow: open stratum C2 (2 connected
components, rotation). In thick lines: the 1-dimensional stratum
C3 (4 connected components). Point strata C4 (2 points, stable
equilibrium) and C5 (2 points, unstable equilibrium).
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43. Jacobi coordinates

Sachkov then computes all the sub-Riemannian geometry of
VS = SE (2) using Jacobi coordinates (ϕ, k) which “rectify” the
dynamics of the pendulum γ̈ = − sin (γ).

In these coordinates, the “vertical” system in the fibers becomes
trivial because k̇ = 0 and ϕ̇ = 1, i.e. ϕt = ϕ+ t with ϕ = ϕ0. k is
the modulus of the elliptic integral associated with the pendulum:
it encodes the energy E ; ϕ is the “pendular” time-length: it
encodes the length of the geodesic.
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44. SE (2) geodesic equations

For the C 0
1 stratum, Moiseev and Sachkov find (with xt = x (t), etc., and

E (ϕ) =
∫ ϕ
0 dn2 (r , k) dr):

c = 2k cn (ϕ, k)
sin
(γ

2

)
= k sn (ϕ, k) and cos

(γ
2

)
= dn (ϕ, k)

cos (θt) = cn (ϕ, k) cn (ϕt , k) + sn (ϕ, k) sn (ϕt , k)
sin (θt) = sn (ϕ, k) cn (ϕt , k)− cn (ϕ, k) sn (ϕt , k)
xt = 1

k (cn (ϕ, k) (dn (ϕ, k)− dn (ϕt , k)) + sn (ϕ, k) (t + E (ϕ)− E (ϕt)))
yt = 1

k (sn (ϕ, k) (dn (ϕ, k)− dn (ϕt , k))− cn (ϕ, k) (t + E (ϕ)− E (ϕt)))
θt = am (ϕ)− am (ϕt) mod (2π)

We have similar formulas for the other strata.

Jean Petitot ICMNS 2021



45. The SR spheres and wavefronts of SE (2)

The sub-Riemannian spheres S (0,R) and wavefronts W (0,R),
S (0,R) ⊂W (0,R), of VS = SE (2) look a bit like those of the
polarized Heisenberg group, but are much more complicated.

The fundamental difference is that the y -axis, which was a
degenerate caustic in the VJ case splits into four branches and the
point singularities on it unfold into small “tetrapaks”.

We illustrate the case R = π
2 . The strata Ci are sent by the

exponential map into strata WCi ,
π
2

of W
(
0, π2

)
. The following

figure displays WC1,
π
2

as well as WC3,
π
2

.
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46. WC1,
π
2

and WC3,
π
2
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47. WC+
2 ,R= π

2

The images of the C±2 strata are much more complicated, with an
infinity of singularities accumulating on the origin.

Let us consider the image WC+
2 ,

π
2

of C+
2 with its level lines Lk for

k = cst. The figure shows some of them from two points of view.
They are twisted circles with highly oscillating mean “radius”.
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48. WC+
2 ,

π
2

WC+
2 ,

π
2

for k ∈ (0.07, 0.8).
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49. Exceptional level lines I

In the formulas for strata C1 and C2, the Jacobi elliptic functions
have a period T1 (k) = 4K (k) for C1 and T2 (k) = 4kK (k) for
C2. As ϕt = ϕ+ t, then if t = T (k) = R, the formulas can be
simplified.

For C1, there exists a solution kR only if t ≥ 2π.

But for C2 (e.g. C+
2 ) there exists always a solution kR of

t = R = 4kK (k) and then, for k = kR , we get exceptional level
lines.

And as sn (ϕ+ 2K , k) = − sn (ϕ, k) while
dn (ϕ+ 2K , k) = dn (ϕ, k), the exceptional level line LkR

is
degenerate since yR being of period only 2K takes twice the same
value.

I made some pictures.
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50. Exceptional level lines II

We have kπ
2
∼ 0.246139. And we note then that, for

kc,π
2
∼ 0.2541 neighbor of kπ

2
∼ 0.246139, there exists another

degenerate level line Lkc, π2
. The geometry of the wave-front

W
(
0, π2

)
between these values is particular because the Lk have an

envelope.
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51. Intermediary “Tetrapaks”

This geometry of transition between LkR
and Lkc,R

has the shape of
a “tetrapak” of which a simple model is represented in the
following figure
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52. A “tetrapak” transition

The following figure shows the front W
(
0, π2

)
for k ∈ [0.24, 0.26]

with the “tetrapak” transition between the degenerate level lines
kπ

2
∼ 0.246139 and kc,π

2
∼ 0.254126.
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53. Caustic

When the radius R varies, the ends of the degenerate level lines
LkR

and Lkc,R
run along four branches which split the y -axis of the

Heisenberg case (caustic).
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54. SE (2) wave front

Next figure displays (with two points of view) the sphere S
(
0, π2

)
and the wavefront W

(
0, π2

)
for k ≤ 0.8.
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55. SE (2) wave front
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56. SE (2) complexity

We see that the SR geometry of a Lie group as elementary as
SE (2) is rather complex.
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57. Planets cannot compute

It is perhaps relevant to give here a completely different, but very
well-known, example of a similar problem.

In the Newtonian theory of gravitation, we have the differential
equations giving by integration the trajectories of the planets
(i) within the framework of a globally Euclidean space-time
background structure (classical Galilean relativity), and
(ii) with the crazy hypothesis of long distance instantaneous forces.

But planets cannot “compute” anything: they can only follow
inertial motions.

So, how can simple inertial motions be equivalent to complicated
observed and computed trajectories?
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58. Riemannian geometry can compute

How is it possible to explain gravitation purely locally and
inertially?

It has been General Relativity that provided the solution by
changing the globally Enclidean-Galilean background structure and
using (semi-)Riemannian geometry.

Trajectories become geodesics and, in this new framework, can
now be at the same time inertial and as complicated as needed to
fit the empirical data.
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59. Sub-Riemannian geometry can compute

It is the same thing here.

We observe complicated geometric structures of visual perception
and we compute models using the Euclidean plane R2 as
background structure (2D image processing).

But neurons cannot compute anything. They can only be active
and propagate their activation along their connections.

Their connectivity must therefore be equivalent to differential
computations.

To “achieve this goal”, biological evolution (even if it is Darwinian
and without “goal”) has progressively implemented, in
sophisticated modular connectivities, fiber structures of dimension
2 + n as jets, contact structures, and sub-Riemannian metrics . . .
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60. Inpainting and SR diffusion

I will conclude this presentation with the problem of inpainting,
that is the completion of corrupted images.

It is natural to use diffusion along the horizontal connections, that
is the sub-Riemannian hypoelliptic Laplacian ∆ = X 2

1 + X 2
2 , and

the sub-Riemannian heat kernel.
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61. Lifting level sets and filling-in the gaps

Given an image of intensity function I (x , y), we can consider the
Legendrian lifts in V of its level curves.

We get a surface Σ in V.

Let’s suppose that the image is corrupted and contains a gap Λ.

To restore the image and to fill-in Λ, the idea is to use the highly
anisotropic sub-Riemannian diffusion on V.

The idea is conceptually simple but computationnally difficult.
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62. Gauthier-Prandi inpainting

In their SpringerBrief on our sub-Riemannian neurogeometrical
model (2018), Jean-Paul Gauthier and Dario Prandi deeply
improved the computationnal efficiency of the model.

They used a semi-discrete version which is a left-invariant
sub-Riemannian structure no longer over SE (2) but over SE (2,N)
(SE (2) restricted to a finite number of rotations).

In the following display, they start with an image almost
completely concealed by a grid. The residual information is very
sparse and scattered.

They apply sub-Riemannian diffusion until the grid has vanished.

Despite its dramatic corruption, the geometry of the initial image
can be restored very correctly.
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63. Inpainting image

Top-left: initial image, top-right: highly corrupted image, bottom:
restored image.
(See also the exemple at the beginning of the talk.)
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64. An active field

Today, geometric methods in neuroscience constitute a very active
field.

E.g. recently (Winter 2017) Matilde Marcolli (who worked with
Misha Gromov and Alain Connes) devoted with her colleague Doris
Tsao a very nice course on such topics, in particular the use of
contact geometry in Neurogeometry.

In March 2020, they co-organized a “Focus Program” at the Fields
Institute (Toronto).

Here is the presentation of their course. Look at Gromov’s
quotation.
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65. Geometry of Neuroscience at Caltech
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