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1. Introduction

Cortical visual neurons detect very local geometric cues at retinal
positions (local contrasts, local orientations of boundaries,
curvatures, crossings, cusps, etc.). One of the main theoretical
problem of low level vision is to understand how these local cues
can be integrated so as to generate the global geometry of the
images perceived, with all the well-known phenomena studied since
Gestalt theory.

It is an empirical evidence that the visual brain is able to perform a
lot of differential routines. But how such routines can be neurally
implemented? At their resolution scale, neurons are “point-like”
processors and it seems impossible to compute differential routines
with them.
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2. Introduction

Since the 1990s, revolutionary methods of “in vivo optical
imaging” enabled to visualize the extremely special connectivity of
the primary visual areas, that is their “functional architectures”.

What we called “Neurogeometry” is based on the discovery that
these hardwired and modular functional architectures implement
structures such as the contact structure and the sub-Riemannian
geometry of jet spaces of plane curves.

For principled reasons, it is the geometrical reformulation of
differential calculus from Pfaff to Lie, Darboux, Frobenius, Cartan
and Goursat which turns out to be suitable for neurogeometry.
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3. Images of H&W

The story begins with the breakthrough recordings of V1 neurons
in the early 60s by David Hubel and Torsten Wiesel (Nobel prizes
in 1981).

These neurons detect a preferred orientation p crossing their
receptive field centered on a retinal position a. When they are
activated they fire and emit spikes and the spikes can be recorded
using electrodes.

This is one of the breakthrough images of the history of science,
analogous to the first observation and identification of the rings of
Saturn by Galileo (1610) then Huygens (1655) using an
astronomical telescope, or the first observation of biological cells
by Hooke (1665) using a microscope.
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4. H&W breakthrough

Here are two images of a 40s recording.
Left: a bar aligned along the preferred orientation (noisy firing).
Right: a bar orthogonal to the preferred orientation (quiet, no
firing)

Jean Petitot, CAMS, EHESS, Paris, jean.petitot@ehess.fr GSI 2021



5. H&W discovery

Moreover, Hubel and Wiesel discovered that

Neurons detecting all the orientations p at the same retinal
position a ∈ R2 constitute an anatomically well delimited small
neural module called an “orientation hypercolumn”.

and that preferred orientations p vary smoothly with the retinal
point a. So the (a, p) constitute an orientation field.
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6. Braitenberg abduction

The first global reconstruction of an orientation field from the
sparse local data provided by electrodes was infered abductively in
1979 by Valentino and Carla Braitenberg.

This was long before the introduction of modern in vivo optical
imaging techniques.

They claimed:

“We believe that the most natural explanation of the
facts observed would be in terms of orientations arranged
with circular symmetry around centers, either radially or
along concentric circles.”
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7. Swindale’s abduction

After Braitenberg, in an astonishing 1987 paper (still before the
advent of optical imaging techniques), Nicholas Swindale
reconstructed (for the cat’s area 18), the “spatial layout” of the
orientation map.

He thus confirmed Braitenberg’s abduction.

His data came from electrodes separated by about 150− 300µm at
a cortical depth of about 400− 700µm.

He succeeded in interpolating between the prefered orientations
measured at the different sites and reconstructed the “fine
grained” map shown in the following figure.

It was a great achievement.
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8. Swindale’s image 1
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9. Swindale’s image 2

Using a color code for directions, he got an orientation map.

This is a theoretical reconstruction and not an empirical
observation.
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10. Swindale’s image 3

He even reconstructed the possible singularities of the orientation
field: they can be end points or triple points.

What are now called pinwheels.
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11. In vivo optical imaging

Braitenberg’s and Swindale’s abductions have been strikingly
confirmed in the 1990s by brain imagery and techniques of “in vivo
optical imaging based on activity-dependent intrinsic
signals”(Amiram Grinvald and Tobias Bonhöffer).

They used the fact that the metabolic activity of cortical layers
change their optical properties (differential absorption of
oxyhemoglobin or deoxyhemoglobin whose fluorescence is an index
of the local depolarisation of neurons).

This enables to acquire in vivo images of the activity of the
superficial cortical layers.
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12. In vivo optical imaging II

As Kenichi Ohki and Clay Reid have pointed out,

“optical imaging revolutionized the study of functional
architecture by showing the overall geometry of
functional maps.”

The scale of observation is a “meso”-scale.

For a true “micro”-scale observation at the level of single neurons,
you need more recent techniques such as “two-photon confocal
microscopy” (Kenichi Ohki 2006).
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13. Orientation maps

Here is the functional architecture of the area V 1 of a tree-shrew
(tupaya) obtained by in vivo optical imaging (William Bosking
with David Fitzpatrick’s team at Duke University).

They used “grattings”, that is large grids of parallel dark stripes
translated in the visual field.

For every orientation (coded by the bottom-right color) they got a
global map of activity (dark = active).

This is now an empirical observation and not a theoretical
reconstruction.
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14. Orientation maps. Image
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15. Pinwheels

Orientation maps with pinwheels are now well known. Here is the
V 1 area of the macaque by Blasdel and Salama,
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16. End points and triple points

In the following picture due to Shmuel (cat’s area 17), orientations
are coded by colors but are also represented by small white
segments.

We observe very well the two types of generic singularities of 1D
foliations in the plane anticipated by Braitenberg and Swindale.
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17. Shmuel’s orientation map
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18. Pinwheels’ structure

The plane is V 1,

A colored point represents the mean of a small group of real
neurons (meso-scale).

Colors code for the preferred orientation at each point.

The field of isochromatic lines (i.e. iso-orientation lines) is
organized by a lattice of singular points (pinwheels) where all
orientations meet (distant about 1200µm in cats and about
600µm in primates).

There exists a “mesh” of the lattice of pinwheels (a sort of
characteristic length).

Pinwheels have a chirality.

Adjacent pinwheels have opposed chirality.
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19. Pinwheels (bis repetita)

Left: local triviality. Right: two pinwheels of opposed chiralities.
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20. Interspecific functional architecture

A pinwheel organisation can be found in many species: cat,
primate (marmoset), tupaya (tree shrew), prosimian Bush Baby,
tawny owl, etc.

It is a widely interspecific functional architecture.

The following figure shows pinwheels in the V 1 and V 2 areas of
the cat, (A) and (B), the marmoset (C) and (D), and the tawny
owl (E) and (F).
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21. Pinwheels in different species
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22. Periodicity of pinwheels

Orientation maps (image A: left) are as phase fields in optics.
They manifest a periodicity. The power spectrum (the Fourier
transform of the autocorrelation function of the map) is
concentrated on a ring of average radius k0 = 2π

Λ0
(image B: right)
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23. Superposition of plane waves

This means that, ideally, such phase fields with a characteristic
length are superpositions of plane waves with random phases but
sharing the same wave number k

The following figure shows pinwheels in a superposition of 10 plane
waves with the same wave number k = 1 and random phases ϕ.
(The white cuts represent ϕ = 0 = 2π).
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24. Pinwheels in superpositions of plane waves
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25. Statistics of pinwheels and Gaussian fields

The statistics of singularities of phase fields is a beautiful subject.
Under some simplifying hypotheses, they can be modeled by
Gaussian random fields (see works of Fred Wolf and Theo Geisel,
Michael Berry and Mark Dennis, Robert Adler and Jonathan
Taylor, and also Daniel Bennequin and Alexandre Afgoustidis,
Giovanna Citti, Alessandro Sarti and Davide Barbieri).

In that case, you can prove that the density of singularities is
d = k2

4π = π
Λ2 with Λ = 2π

k .

It is remarkable that this density π
Λ2 was also found empirically in

pinwheels map.
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26. Pinwheels as blowing-up

Pinwheels can be interpreted geometrically as blowing-up of points
ai and the orientation field is the closure of a section σ of the fiber
bundle π : VJ = R2 × P1 → R2 (J for “jets”) defined over the
open subset R2 − {ai}.

Over the ai the closure of σ is the “exceptionnal” fiber P1
ai
.

These exceptional fibers P1
ai

are “contracted”and “folded” onto
small wheels around the base points ai .
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27. V1 as fiber bundle

There is therefore a 3D → 2D dimensional collapse : an orientation
map is, in a way, a geometric object of “intermediate” dimension
between 2 and 3, with a lattice of base points blown-up in parallel,

At the limit, when all the points of the base plane R2 are blown-up
in parallel, we get the fiber bundle π : VJ = R2 × P1 → R2.

So VJ can be considered as an idealized continuous model of the
concrete neural V 1 produced by biological evolution with its lattice
of pinwheels and orientation field.
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28. Receptive fields and receptive profiles

Let me add some further remarks on low level cortical visual
neurons.

A first remark is that, at a very rough linear approximation, they
act as filters on the optical signal transduced by the photoreceptors.

They are connected to a small domain D of the photoreceptor
layer, called their receptive field and their transfer function as filter
is called their receptive profile.

The shape of the receptive profile determines the geometric cue
preferrentially detected by the neuron.
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29. Receptive profiles as Gaussian derivatives

The receptive profiles are well modeled either by derivatives of
Gaussian G or by Gabor patches.

The width σ of G defines a scale and the neuron is a point-like
processor at this scale.
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30. Example of receptive profile

Level sets of receptive profiles can be recorded. It is an
experimental “tour de force”.

Here is an example from a cortical neuron in V 1 (Gregory
DeAngelis). The elongation of the profile explains the preferred
orientation.
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31. Example of receptive profile

Left: Level sets of ON (excitatory, red)/OFF (inhibitory, green)

zones. Right: model using a third derivative ϕ(x , y) = ∂3G
∂x3 ).
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32. Wavelet analysis

The filtering of the signal is like a wavelet analysis.

Wavelets are related to the notion of a coherent state.

You analyse signals in L2
(
R2
)

by considering a unitary irreducible
square-integrable representation of the Euclidean group SE (2) and
taking the orbit of an “admissible” basic receptive profile ϕ0.

The harmonic analysis of the signals using such coherent states
enables to represent signals as superpositions of elementary
functions and to measure them neurophysiologically.
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33. Fields of detector cues

The second remark is that there are a lot of different types of
receptive profiles adapted to the detection of different types of
geometric cues: not only orientations, but also curvatures,
inflexions, direction of motion, end-points, the orthogonal direction
at an end-point, ocular dominance, phases, frequencies, crossings,
etc.)

So we have many fields of specific receptive profiles “engrafted”
(as said Hubel) over the retinal plane.
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34. The “hard problem”

But now we run into a “hard problem”.

The geometry of visual perception involves many differential
computations. But neurons are (scaled) point-like processors.
When they are actived, they emit spikes defining their “rate
coding”. And so, they can only code a single numerical value by
means of their “firing rate”.

Of course (i) they are able to detect complex point-like cues and
(ii) they are connected and they can transmit their activity along
their more or less inhibitory or excitatory connections.

But this is insufficient to directly implement differential routines.
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35. The antinomy of perceptual geometry.

There is therefore an antinomy at the root of a neurally
implemented perceptual geometry.

How differential routines can be neurally implemented in networks
of “point-like processors”since derivatives are not point-like
entities?

The classical conceptions of “differentiation” and “integration” do
not work.
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36. Functional connectivity

Now, we have seen that biological evolution has introduced new
post-retinal modules and layers that implement new “engrafted”
variables beyond the two variables of retinal position.

We can therefore try to understand how a connectivity extended to
these new modules and layers can perform differential
computations.

(i) It must certainly have a very special functional architecture.

(ii) But we must also know under what conditions a point-like
functional architecture is able to implement a differential calculus.
It is a mathematical problem.
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37. The hypothesis

The hypothesis is therefore

Maybe point-like processors can implement an alternative
formulation of differential calculus using “hidden derivatives”
(Richard Montgomery) as new supplementary independent
variables which can be implemented in point-like processors.

But these new “hidden” derivatives must satisfy strong constraints
in order to be interpretable as “true” derivatives (as in
Hamiltonian mechanics where you introduce the momenta as new
independent variables and force them to be dual to velocities using
the symplectic 2-form).

For that, the hardwired connectivity of the network must be
extremely specific.
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38. Alternative differential calculus

Now, alternative versions of differential calculus do exist in
“modern” differential geometry since Pfaff, Jacobi, Frobenius, Lie,
Darboux, Cartan, Goursat, etc.

They can solve the “hard problem” and it is why structures as
jet-spaces, differential forms, contact structures, etc. are so basic
in Neurogeometry,

To understand why, we must come back to this deep history of
differential geometry.

Jean Petitot, CAMS, EHESS, Paris, jean.petitot@ehess.fr GSI 2021



39. Geometrizing integrability

The geometrization of the integrability conditions of differential
equations has been a revolution (similar to that accomplished by
Galois for the resolution of algebraic equations).

For a long time, the problem of the integration of differential
equations ω =

∑i=n
i=1 Aidxi = 0 was considered as “impossible”,

“absurd”, “meaningless” if there was no integrating factor.

Gaspard Monge (1746-1818) was one of the first to explain (1784)
that (in dimension 3) the conditions of integrability mean that the
solutions of ω = 0 are surfaces F (xi ) = a in R3 but that, even if
the conditions are not satisfied, there still exist “solutions” but
which are 1D skew curves and no longer 2D surfaces.
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40. Geometrizing integrability

From Pfaff to Frobenius differential geometers had gradually
understood the condition of integrability ω ∧ dω = 0.

Monge raised what became 30 years later the Pfaff problem and he
prophesied its importance.

“It was not noticed that this was the beginning of an
immense chain, to which lay the great difficulties of
differential calculus.”

From that moment, geometrizing the integrability of differential
equations became a hard problem.
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41. Pfaff

Johann Friedrich Pfaff (1765-1825, the thesis advisor of Gauss)
noted the difficulty of the problem.

He started from the work of the “sagacissimus” Lagrange and
followed Monge’s “egregia observatio” and explained that in order
to move forward, he had to abandon (“deserere”) the existing
methods, and appeal to an “other principle” which “derives from
the sources of the computation itself”.
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42. Pfaff

Pfaff emphasized that in a differential expression like
dz = pdx + qdy the partial derivatives p and q of z(x , y) must be
first considered as new independent variables, variables which can
be interpreted as partial derivatives only in a second stage.
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43. Lie

So, a basic notion became that of a contact element (Lie’s
“Flächen-element”), that is a pair of a point x of a manifold M
and a hyperplane Kx of TxM.

Sophus Lie developed this notion in great detail with a strong
sense of the inversion of point of view it brought.

In a beautiful text of 1894 “The Geometric Work of Sophus Lie”,
Felix Klein emphasized the importance of the change of perspective
brought about with this “new, clear and penetrating view”.
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44. Lie II

He explained that, inspired by Monge and Plücker, Lie introduced
“new elements of space” much more general than points and,
instead of applying the methods of differential analysis to
geometry, was interested in “the reciprocal” and developed “the
application of geometrical intuition to Analysis”.

This is the key foundational issue: the foundations of differential
calculus moved from Analysis to Geometry.
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45. Lie

And Klein insists:

“From these new points of view (...) the true meaning of
the words “general”, “complete”, “singular” “solution”
introduced by Lagrange and Monge, becomes extremely
clear”.
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46. The Pfaff problem. Frobenius

An essential conceptual step was made by Frobenius in his 1877
memoir ”Über das Pfaff’sche Problem”.

In particular, Frobenius introduced the “bilinear covariant” of a
1-form ω, which will be interpreted later by Cartan as the 2-form
dω.
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47. The Pfaff problem. Lie

In the years 1874-1878, Sophus Lie approached the problem from a
different perspective, even more geometric and even less analytic.

In his 1877 memoir “Theorie des Pfaff’schen Problems”, published
the same year as that of Frobenius, he used the elements of
contact and introduced his famous “tangential transformations”
also called “contact transformations”
(“Berührungstransformationen”). A contact transformation is a
change of variables which leaves a PDE ω = 0 invariant.
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48. The Pfaff problem. Darboux

Like Lie and Frobenius, Gaston Darboux also explored Pfaff’s
theory, in particular in his 1882 memoir “Sur le problème de Pfaff”.
He was targeting the intrinsic geometric structure (invariant by
changes of coordinates) of integrability.

“In this work I set out to explain the solution of Pfaff’s
problem without borrowing anything from the theory of
partial differential equations and I mainly tried to
highlight the invariance properties which play a
fundamental role in this solution.”

The geometric turn from an analytic computation of integrals to
geometric structure invariants became spectacular. The analogy
with Galois is striking.
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49. The geometric turn

We can thus see how a mixture of differential manifolds and
multilinear antisymmetric algebra in tangent and cotangent spaces
was set up. It allowed the geometrization of the integration of
ODE and PDE.

As Chern and Chevalley pointed out in their 1952 obituary “Élie
Cartan and his mathematical work” (Cartan died in 1951)

“The difficulty of conceiving the proper concepts at the
early stage of development can hardly be overestimated.”
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50. The Pfaff problem. Cartan

After this heroic period, Élie Cartan synthesized the major works
on Pfaff’s problem and created the theory of differential forms in
two celebrated articles of 1899 and 1901 in the Annales
Scientifiques de l’École Normale Supérieure :

“Sur certaines expressions différentielles et le problème de Pfaff”,
“L’intégration des systèmes d’équations aux différentielles totales”.
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51. The Pfaff problem

Édouard Goursat completed the theory in his 1922 treatise “Leçons
sur le problème de Pfaff”.

Abstract geometrization became omnipresent. As was emphasized
by Chern and Chevalley,

“the idea of studying the abstract structure of
mathematical objects which hides itself beneath the
analytical clothing under which they appear at first was
also the mainspring of Cartan’s theory of differential
equations. [He] was able to see the geometrical content
of very complicated calculations.”

Jean Petitot, CAMS, EHESS, Paris, jean.petitot@ehess.fr GSI 2021



52. Three geometric traditions

In his 1936 lecture at the ICM (Oslo), Cartan commented on the

“three main points of view which have dominated the
evolution of geometry.“

1 Klein: invariance w.r.t. a given group.

2 Riemann: metric tensor.

3 “Parallelism” and “parallel transport”: connections on fiber
bundles (his own conception).

The problem is to connect between them the neighboring fibers
when one moves in the base M. As noted again by Chern and
Chevalley, it is

“to tie up the fibers with the differentiable structure of
the base space.”
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53. “Point-like processors” can be good geometers

But, it is exactly the case of the hypercolumns of V 1 tied up as
fibers with the retinal base plane.

So, we see that “point-like processors” can be good differential
geometers if they are able to detect contact elements.
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54. The main hypothesis

Hence the main hypothesis:

while the retinal cells detect positions, cortical neurons of V 1 can
detect contact elements and their cortico-cortical connectivity can
implement a “geometry of integrability” for these contact elements.

To understand at the neurophysiological level how the visual
system can implement an integro-differential calculus, we must
therefore understand at the mathematical level how an
integro-differential calculus can be equivalent to a geometry of
connectivity between contact elements.

In that sense, the visual brain is a Cartan engine.
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55. The first example: V 1

In the 1990s I developed the following relations between
neurophysiology and geometry:

1 a class of cortical neurons in V 1 (called “simple”) detect
contact elements (a, p) where a are positions on the retina
and p a local orientation at a (Hubel and Wiesel);

2 the fibration (a, p)→ a is neurophysiologically implemented
by retinotopy and orientation hypercolumns;

3 the contact structure of the 1-jets of plane curves is
neurophysiologically implemented (horizontal cortico-cortical
connections);

4 the sub-Riemannian geometry of this contact structure is
neurophysiologically implemented (illusory contours as
geodesics).
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56. Landmarks

For elaborating this first model I had the privilege to collaborate
with eminent specialists of neurosciences, physiology and
psychophysics as Michel Imbert, Alain Berthoz, Yves Frégnac, and
Jean Lorenceau.

With them and colleagues as Bernard Teissier, David Mumford,
Daniel Bennequin, Jean-Michel Morel, Stéphane Mallat, Olivier
Faugeras, Giuseppe Longo, we organized in the 1990s a lot of
seminars and conferences e.g. at the “Fondation des Treilles”, at
the Institut Henri Poincaré, at Oberwolfach, at the École Normale
Supérieure, and at the Collège de France.

In the 2000s these works continued to be worked out. I edited with
Jean Lorenceau a double special issue of the Journal of
Physiology-Paris (Yves Frégnac was the Editor-in-Chief).
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57. Geometry and neurophysiology

Each of the propositions of the model refers to crucial
neurophysiological discoveries which are all experimental “tours de
force”.

That biological evolution has been able to lead, from simple
peripheral photosensitive sensors, to such genetically controlled
cortical structures implementing sophisticated geometrical
structures is a real miracle.

A striking example is retinotopy, which is geometrically trivial (a
fibration) but neurophysiologically incredibly complex.
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58. Axon guidance and chemotaxis

The genetic control of retinotopy is a fascinating morphogenetic
process.

It requires extremely accurate targeting and axon guidance.

A key mechanism is axon chemotaxis, which occurs through
gradients of chemo-attractive and chemo-repulsive molecules like
the “ephrins”.

Eph receptors (receptor tyrosine kinases) and their ephrin ligands
are essential mediators of cell-cell communication. They regulate
cell attachment, shape, and mobility.

There is an “address system” of molecular tags which determines
the specificity of the axon connections in topographical maps.

Jean Petitot, CAMS, EHESS, Paris, jean.petitot@ehess.fr GSI 2021



59. Eph / ephrin gradients

The following figure due to Benjamin Reese schematizes the
gradient-controlled dynamics for the retina → tectum projection in
the non mammalian brain of the chicken (the optic tectum is the
analogous of the superior colliculus in mammals).

It is much simpler than the projection LGN → V 1 but is already a
fine example.

It shows how the increasing naso↗temporal (N ↗ T ) EphA and
dorso↗ventral (D ↗ V ) EphB gradients of the ganglion cell layer
allows the axon growth cone of these cells to reach a precise
position in the tectum defined by the increasing complementary
gradients of rostro-caudal (R ↗ C ) ephrin-A and lateromedial
(L↗ M) ephrin-B with opposite EphA and EphB gradients.
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60. Reese’s image

The retinotopic map N → C , T → R, D → L, V → M.
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61. From local cues to global geometry

So, we have to understand how this very complex neurophysiology
of visual neurons detecting local cues can generate the global
geometry of the perceived images, with all the well-known
phenomena studied since Gestalt theory, e.g. long range illusory
contours.

Long range illusory contours are one of the most striking
phenomenon of low level vision.

We can reconstruct the shape of a dalmatian dog in this very
incomplete image:
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62. Illusory contours
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63. Illusory contours as geodesics

We will see that they can be interpreted as geodesics of a contact
structure for an appropriate metric.

Such sub-Riemannian models have many applications, in particular
for inpainting, since to complete a corrupted image, we must
construct the illusory level sets that can complete the missing parts.
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64. An example of sub-Riemannian inpainting

The following picture shows how a highly corrupted image (left)
can be very well restored using sub-Riemannian diffusion
(Gauthier-Prandi inpainting based on our model).

The face of our friend Jean-Paul Gauthier appears out of the blue.
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65. The functional architecture

Let us explain now the way to sub-Riemannian models.

As we have seen, simple neurons of V 1 are parametrized by triples
(a, p) where a = (x , y) is a position on the retina (identified with
R2) and p is an orientation (modulo π) at a.
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66. “Hidden derivatives”

But the fibration V = R2 × P1 −→ R2, (a, p) 7→ a is not sufficient
for interpreting p as an “hidden derivative” (Richard
Montgomery), that is as a tangent to a curve.

For that, p must satisfy the fundamental Pfaff equation
ω = dy − pdx = 0 defining the contact structure of 1-jets of plane
curves.
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67. The contact structure of 1-jets

Indeed, a skew curve

Γ = v(s) = (a(s), p(s)) = (x (s) , y(s), p(s))

in VJ is the Legendrian lift of its projection γ = a(s) onto the base
plane R2

iff the “hidden” derivative p(s) is the “real” derivative
p = dy/dx giving the tangent to the base curve γ at the
point a(s),

iff it is an integral curve of the contact structure C = ker(ω)
of VJ , where ω is the 1-form

ω = dy − pdx
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68. The distribution of contact planes

The distribution C of contact tangent planes is maximally non
integrable since the 3-form

ω ∧ dω = (−pdx + dy) ∧ dx ∧ dp = −dx ∧ dy ∧ dp .

is a volume form, which is the opposite of the Frobenius
integrability condition ω ∧ dω = 0.

So, even if there exists a lot of integral curves of C (Legendrian
lifts), there exists no integral surface.

What Monge had prophesied!
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69. The (polarized) Heisenberg group

Let’s remember that the contact structure C is left-invariant for a
group law making VJ isomorphic to the (polarized) Heisenberg
group Hpol .

(x , y , p).(x ′, y ′, p′) = (x + x ′, y + y ′ + px ′, p + p′) .

Its Lie algebra is generated by the basis of left-invariant fields
X1 = ∂

∂x + p ∂
∂y = (1, p, 0) and X2 = ∂

∂p = (0, 0, 1) with

[X1,X2] = (0,−1, 0) = − ∂
∂y = −X3 (the other brackets = 0).

The basis {X1,X2} of the distribution C is bracket generating (i.e.
Lie-generates the whole tangent bundle TVJ) (Hörmander
condition).

VJ = Hpol is a nilpotent group of step 2 (a Carnot group).
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70. The contact structure of SE (2)

This can be generalized to the Euclidean group SE (2).

The contact form of SE (2) is

ωS = cos (θ) dy − sin (θ) dx

The contact planes are spanned by the tangent vectors
X1 = cos (θ) ∂

∂x + sin (θ) ∂
∂y and X2 = ∂

∂θ with Lie bracket

[X1,X2] = sin (θ) ∂
∂x − cos (θ) ∂

∂y = −X3 (Reeb vector field).
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71. The two models

The distribution C of contact planes is still bracket generating
(Hörmander condition). But SE (2) is no longer nilpotent. The
Carnot group VJ = Hpol is its “tangent cone”, its
“nilpotentisation”.
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72. Neural contact structure

The very key point, which is another striking experimental
discovery, is that the contact structure of V is implemented in a
specific class of neural connections.

Orientation hypercolumns correspond to the “vertical”
retino-geniculo-cortical connectivity.

But cortical neurons of V 1 are also connected by “horizontal”
cortico-cortical connections inside the cortical layer itself.

They are long-ranged (up to 6-8 mm), excitatory, slow (about
0.2 m / s) and distributed in a very anisotropic and “patchy” way.
It is the key point.
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73. Necessity of a parallel transport

Such a second system of long-range “horizontal” cortico-cortical
connections is necessary to implement a parallel transport enabling
the visual system to compare two retinotopically neighboring
orientation hypercolumns Pa and Pb over two different base points
a and b.

These long-range “horizontal” cortico-cortical connections
implement a “Cartan hardware”.

As claimed William Hoffman in a pioneering paper of 1989, “the
visual cortex is a contact bundle”.
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74. The key result

The key experimental discovery is that

“the system of long-range horizontal connections can be
summarized as preferentially linking neurons with co-oriented,
co-axially aligned receptive fields.”(W. Bosking)

This means that a chain of simple neurons (ai , pi ) is a chain of
“horizontally” connected simple neurons iff it is a discretization of
the Legendrian lift of a not too curved base curve interpolating
between the (ai ).

So, this means that,

up to some bound on curvature, the contact structure C is neurally
implemented in V 1.

Jean Petitot, CAMS, EHESS, Paris, jean.petitot@ehess.fr GSI 2021



75. Joint position–orientation constraints

Deep experiments of psychophysics (Field, Hayes and Hess)
concluded also that the specific connectivity of V 1 is characterized
by “joint conditions on positions and orientations”, which
implement one of the fundamental laws of Gestalt theory, that of
“good continuation” (“Gesetz der guten Fortsetzung”)

1 two elements (a1, p1) and (a2, p2) are connected if one can
interpolate between them a curve γ (which is tangent to p1

and p2 at a1 and a2, respectively) that is not too curved;
between positions a1 and a2, and which is tangent to p1 and
p2 at a1 and a2, respectively;

2 otherwise the two elements are not connected.

These “joint constraints on positions and orientations” correspond
to neural horizontal cortico-cortical connections.
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76. 2-jets and Engel structure

This type of approach can be extended to higher order jets. For
example for 2-jets, we introduce a 4th independent variable κ for
the curvature and, on R4, in addition to the contact form
ωJ = dy − pdx , we introduce the additional Pfaff form
τJ = dp − κdx expressing its interpretation as curvature. We get
the Engel group with the following law :

(x , y , p, κ)
(
x ′, y ′, p′, κ′

)
=

(
x + x ′, y + y ′ + px ′, p + p′, κ+ κ′ + yx ′ +

1

2
px ′2

)
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77. Two vocabularies

So, we get a correspondance between two vocabularies, a
neurophysiological one and a mathematical one.

simple neurons (scaled) contact elements (a, p)

R-G-C retinotopy base space R2 of positions a

basic / “engrafted” variables fiber bundle R2 × P → R2

orientation hypercolumns
and pinwheels

1-jet space J1  R2 × P → R2

� long-range horizontal
connections,

Contact structure

� “co-oriented,
co-axially aligned RFs”,
� “joint constraints on

positions and orientations”
� “good continuation”
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78. Variational models for illusory contours

Now, let us come back to curved illusory contours. Variational
models have been introduced since the late 70s.

1. Shimon Ullman (1976) explained that

“A network with the local property of trying to keep the
contours ‘as straight as possible’ can produce curves
possessing the global property of minimizing total
curvature.”

2. Berthold Horn introduced in 1983 “the curves of least energy”.

These models minimize an energy along curves in the base plane.
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79. Mumford’s elastica model. I

The best known is the elastica model proposed in 1992 by David
Mumford.

The energy to minimize is:

E =
∫
γ(ακ2 + β)ds

where γ is a smooth curve in R2.

The problem was first raised by Jacques Bernouilli and then his
nephew Daniel Bernouilli who proposed it to Euler in a letter
(1742). Euler solved it in his fantastic Addendum: De Curvis
elastica to his Methodus of 1744, the founding text of the Calculus
of Variations.
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80. Mumford’s elastica model. II

Mumford argued that an illusory contour is a chain of pairs (ai , pi )
along which the loss of activity is as weak as possible.

But leaks can have a double origin:

1 leaks proportional to the number of elements of the chain lead
to the term

∫
γ βds with a constant factor β;

2 leaks due to curvature and equal to the sum of the deflections
of orientation between consecutive elements lead to the term∫
γ ακ

2ds

Jean Petitot, CAMS, EHESS, Paris, jean.petitot@ehess.fr GSI 2021



81. Geodesic models

But for neural models (and not only 2D image processing) it is
natural to work in V 1, that is with the contact structure and the
Legendrian lifts.

It is here that sub-Riemannian geometry fully comes on stage.

The natural idea is to introduce sub-Riemannian metrics on V and
look at geodesic models for curve completion and illusory modal
contours.
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82. Sub-Riemannian metrics

We take the natural basis {X1,X2} of the contact plane at the
origin as an orthonormal basis and we translate it using left
translations. As the contact structure is left-invariant, we get that
way a left-invariant metric on the contact planes.

As this metric is defined only on the contact planes and not on the
complete tangent spaces it is sub-Riemannian. But it enables to
compute the length of the integral curves of the contact structure,
that is of Legendrian lifts.
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83. Historical landmarks

In the 2000s these problems have been further explored.

(i) Alessandro Sarti and Giovanna Citti began to be interested in
Neurogeometry. They organized many important international
symposia in Bologna (2004, 2009) and Pisa (Scuola Normale
Superiore, 2006). We edited together in 2009 another double
special issue of the Journal of Physiology-Paris and developed a
very fruitful collaboration.

(ii) I had the privilege to meet Andrei Agrachev of the SISSA and
other very fruitful cooperation on sub-Riemannian geometry
quickly started with members of his group, in particular Jean-Paul
Gauthier, Ugo Boscain and Yuri Sachkov.
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84. The sub-Riemannian Hpol

The sub-Riemannian geometry (geodesics, conjugate points, cut
locus) of groups such as Hpol or SE (2) is rather complex, even if
the groups are elementary.

The sub-Riemannian geometry of the Heisenberg group H has
been explained in the 1980s by Richard Beals, Bernard Gaveau and
Peter Greiner.

It can easily be adapted to the polarized Hpol .
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85. The sub-Riemannian Hamiltonian

The sub-Riemannian sphere S and the wave front W are rather
strange. One can compute them explicitly .

Due to the Pontryagin maximum principle, geodesics are the
projections on Hpol of the trajectories of a Hamiltonian field
defined on the cotangent space.

H (x , y , p, ξ∗, η∗, π∗) =
1

2

[
(ξ∗ + pη∗)2 + π∗2

]
.

where (x , y , p) = q are coordinates in Hpol and (ξ∗, η∗, π∗)
coordinates in the cotangent space T ∗qHpol .
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86. The sub-Riemannian wavefront of Hpol

Using the variable ϕ =
η∗0 τ

2 associated to the length τ of the
geodesic and the constant moment η0, the sphere S(0,R) and the
wave front W (0,R) of Hpol are given by the following equations
(where θ is the angle of the tangent).

(x , p) are expressed in polar coordinates with module |sin(ϕ)|
ϕ ,

ϕ > 0. 

x1 = |sin(ϕ)|
ϕ cos (θ)

p1 = |sin(ϕ)|
ϕ sin (θ)

y1 = 1
2 x1p1 + ϕ−sin(ϕ) cos(ϕ)

4ϕ2

= 1
2

sin2(ϕ)
ϕ2 cos (θ) sin (θ) + ϕ−cos(ϕ) sin(ϕ)

4ϕ2

= ϕ+2 sin2(ϕ) cos(θ) sin(θ)−cos(ϕ) sin(ϕ)
4ϕ2

Jean Petitot, CAMS, EHESS, Paris, jean.petitot@ehess.fr GSI 2021



87. Image of the SR sphere of H
They are displayed in the following figure. The external surface is
the sub-Riemannian sphere S . It has a saddle form with
singularities at the intersections with the y -axis.
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88. Image of the wave-front of H

The internal part is W − S . It presents smaller and smaller circles
of cusp singularities which converge to 0. Such a complex behavior
is impossible in Riemannian geometry.
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89. The cusps of W

The following figure displays the quarter of the wave front W for
θ = 0. Its equations are x1 = |sin(ϕ)|

ϕ , p1 = 0, y1 = ϕ−cos(ϕ) sin(ϕ)
4ϕ2 .

The cusps are on the curve of equation x = cos (ϕ),
y = 1

4 cos (ϕ) sin (ϕ) .
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90. The example of SE (2)

With Giovanna Citti and Alessandro Sarti we studied the passage
from the VJ bundle, with its natural action of the Euclidean group
R2 o S1 = SE (2), to SE (2) itself.

We thus go to the model SE (2) = VS endowed with its natural
contact structure and its associated L-invariant sub-Riemannian
metric.

The geometry of the sub-Riemannian spheres and wavefronts is
much more complicated. It was computed in the 2000s by Andrei
Agrachev, Yuri Sachkov, Igor Moiseev, Ugo Boscain, Jean-Paul
Gauthier.

Jean Petitot, CAMS, EHESS, Paris, jean.petitot@ehess.fr GSI 2021



91. The Hamiltonian of SE (2)

We have seen that the contact 1-form is
ωS = ω = − sin (θ) dx + cos (θ) dy and the basis of contact planes
is X1 = cos (θ) ∂x + sin (θ) ∂y and X2 = ∂θ with Lie bracket
[X1,X2] = sin (θ) ∂x − cos (θ) ∂y = X3, and −X3 being the Reeb
field.

If λ1, λ2, λ3 are the components of the covector λ in the basis
(ω1, ω2, ω3) dual to (X1,X2,X3) (i.e. λi = 〈λ,Xi 〉), the
Hamiltonian giving the geodesics is

H(λ, q) =
1

2

(
λ2

1 + λ2
2

)
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92. Hamilton equations of SE (2)

H is constant along trajectories. If H = 1
2 , and if we take

λ1 = sin
(γ

2

)
, λ2 = − cos

(γ
2

)
, then γ satisfies the pendulum

equation
γ̈ = − sin (γ)

and Hamilton equations become
ẋ = sin

(γ
2

)
cos (θ) = λ1 cos (θ)

ẏ = sin
(γ

2

)
sin (θ) = λ1 sin (θ)

θ̇ = − cos
(γ

2

)
= λ2

θ̈ = 1
2 sin

(γ
2

)
γ̇ = λ̇2
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93. The control pendulum

The energy of the pendulum is
E = 1

2 (γ̇)2 − cos (γ) = 1
2 (c)2 − cos (γ). Its minimum is −1.

The phase portrait C of the pendulum is given by the level lines of
E . It is stratified and and decomposes into strata of respective
dimensions 2, 1, 0 (i.e. of codimension 0, 1, 2).

Its stratification drives the classification of geodesics. (the fact
that γ has period 4π is important).
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94. The pendulum phase portrait

In magenta: open stratum C1 (2 connected components,
oscillations). In yellow: open stratum C2 (2 connected
components, rotation). In thick lines: the 1-dimensional stratum
C3 (4 connected components). Point strata C4 (2 points, stable
equilibrium) and C5 (2 points, unstable equilibrium).
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C3
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C5 C5 C5C4
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C3

C3
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95. Jacobi coordinates

Sachkov then computed the sub-Riemannian geometry of
VS = SE (2) using Jacobi coordinates (ϕ, k) which “rectify” the
dynamics of the pendulum γ̈ = − sin (γ).

In these coordinates, the “vertical” system in the fibers becomes
trivial because k̇ = 0 and ϕ̇ = 1, i.e. ϕt = ϕ+ t with ϕ = ϕ0. k is
the modulus of the elliptic integral associated with the pendulum:
it encodes the energy E ; ϕ is the “pendular” time-length: it
encodes the length of the geodesic.
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96. SE (2) geodesic equations

For the C 0
1 stratum, Sachkov and Moiseev found (with xt = x (t), etc., and

E (ϕ) = E (am (ϕ) , k) =
∫ ϕ

0 dn2 (r , k) dr), E being the elliptic integral of
the second kind):

c = 2k cn (ϕ, k)
sin
(γ

2

)
= k sn (ϕ, k) and cos

(γ
2

)
= dn (ϕ, k)

cos (θt) = cn (ϕ, k) cn (ϕt , k) + sn (ϕ, k) sn (ϕt , k)
sin (θt) = sn (ϕ, k) cn (ϕt , k)− cn (ϕ, k) sn (ϕt , k)
xt = 1

k (cn (ϕ, k) (dn (ϕ, k)− dn (ϕt , k)) + sn (ϕ, k) (t + E (ϕ)− E (ϕt)))
yt = 1

k (sn (ϕ, k) (dn (ϕ, k)− dn (ϕt , k))− cn (ϕ, k) (t + E (ϕ)− E (ϕt)))
θt = am (ϕ)− am (ϕt) mod (2π)

They are composed with Jacobi elliptic functions of ϕ and ϕt = ϕ+ t.

There exist similar formulas for the other strata.
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97. The SR spheres S (0,R) and wavefronts W (0,R) of
SE (2)

The sub-Riemannian spheres S (0,R) and wavefronts W (0,R),
S (0,R) ⊂W (0,R), of VS = SE (2) look a bit like those of the
polarized Heisenberg group, but are much more complicated.

The fundamental difference is that the y -axis, which was a
degenerate caustic in the VJ case, splits into four cusp branches of
an astroidal cone and the point singularities on the y -axis in the
VJ case unfold into small “tetrapaks”.

We illustrate first the case R = π
2 . The strata Ci are sent by the

exponential map into strata WCi ,
π
2

of W
(
0, π2

)
. The following

figure displays two viewpoints on WC1,
π
2

as well as WC3,
π
2

.
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98. WC1&3,
π
2
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99. WC +
2 ,R=π

2

The images of the C±2 strata are much more complicated, with an
infinity of singularities accumulating on the origin.

Let us consider the image WC+
2 ,

π
2

of C +
2 with its level lines Lk for

k = cst. The figure shows some of them from two viewpoints.
They are twisted circles with highly oscillating mean
“radius”converging to 0.
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100. WC +
2 ,R=π

2

-1

0

1

x

-0.5

0.0

y

-1

0

1

Θ

-1

0

1

x

-0.50.0

y

-1
0

1
Θ

Jean Petitot, CAMS, EHESS, Paris, jean.petitot@ehess.fr GSI 2021



101. WC +
2 ,R=π

2

WC+
2 ,

π
2

for k ∈ (0.07, 0.8).
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102. Exceptional level lines

In the formulas for strata C1 and C2, the Jacobi elliptic functions
have a period T1 (k) = 4K (k) for C1 and T2 (k) = 4kK (k) for
C2, where K (k) is the complete integral of the first kind.

As ϕt = ϕ+ t, then if t = T (k) = R, the formulas can be
simplified.

For C1, as K (k) > 1
2π, there exists a solution kR only if t ≥ 2π.
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103. Exceptional level lines

But for C2 (e.g. C +
2 ) there exists always a solution kR of t = R = 4kK (k)

and then, for k = kR , we get exceptional level lines:
θR = 0

xR = kR sn
(
ϕ
kR
, kR

)(
R
kR
− E

(
R
kR

))
yR = − dn

(
ϕ
kR
, kR

)(
R
kR
− E

(
R
kR

))
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104. Exceptional level lines

And as sn (ϕ+ 2K , k) = − sn (ϕ, k) while
dn (ϕ+ 2K , k) = dn (ϕ, k), the exceptional level line LkR

is
degenerate since yR being of period only 2K takes twice the same
value.

I made some pictures.
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105. Transition between LkR
and Lkc,R

We have kπ
2
∼ 0.246139. For kc,π

2
∼ 0.2541 neighbor of

kπ
2
∼ 0.246139 and solution of a more complex equation found by

Sachkov, there exists another degenerate level line Lkc, π2
(“c” for

critical). The geometry of the wave-front W
(
0, π2

)
between these

values is particular.
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106. Intermediary “Tetrapaks”

This geometry of transition between LkR
and Lkc,R

unfolds the
singular points on the y -axis in the Heisenberg case.

It has the shape of a “tetrapak” of which a simple model is
represented in the following figure
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107. W
(
0, π2
)

for k ∈ [0.24, 0.26]

The following figure shows the front W
(
0, π2

)
for k ∈ [0.24, 0.26]

with the “tetrapak” transition between the degenerate level lines
kπ

2
∼ 0.246139 and kc,π

2
∼ 0.254126.
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108. Maxwell strata and cut locus

The fact that the level line Lk is degenerate for the value kc,R is
subtle. It results from technical formulas: kc,R is the first zero
p1 (k) (i.e. the largest) of the function

f (t, k) = cn
(

t
2k , k

)
(E
(

t
2k

)
− t

2k )− dn
(

t
2k , k

)
sn
(

t
2k , k

)
This means that we are on a Maxwell stratum and that R is the
cut-point tcut = 2kp1 (k).
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109. Caustic

When the radius R varies, the ends of the degenerate level lines
LkR

and Lkc,R
run along four branches which split the y -axis of the

Heisenberg case (caustic).

The figure displays the LkR
(in red) and the Lkc,R

(in orange) for R

varying from 0 to 3π
2 in steps of π

6 .

-2
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1

2

x

-2.0-1.5-1.0-0.50.0
y

-1

0

1

Θ
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110. SE (2) wave front

Next figure displays (with two viewpoints) the sphere S
(
0, π2

)
and

the wavefront W
(
0, π2

)
for k ≤ 0.8.
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111. SE (2) wave front
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112. W (0,R = 3π
2 )

As the radius R of the sphere S (0,R) and of the wavefront
W (0,R) increases, the distortions increase.

Next figure shows four viewpoints on the image
WC0

1 ,R= 3π
2
∪WC2π

1 ,R= 3π
2

of the strata C 0
1 and C 2π

1 at time-length

t = R = 3π
2 for k ∈ [0.1, 0.999] as well as the image WC3,R= 3π

2
of

the four C3 strata which bound them.
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113. WC 0
1 ,R= 3π

2
∪WC 2π

1 ,R= 3π
2
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114. WC +
2 ,R= 3π

2

Even more than in the case R = π
2 , the images WC+

2 ,R= 3π
2

of the

strata C±2 are much more complicated with their infinity of
singularities. The next figure shows some level lines Lk for k = cst
as well as the way in which the half profile P+

0 of WC+
2 ,R= 3π

2
(in

red) intersects these level lines of level Lk when spiraling towards 0.
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115. WC +
2 ,R= 3π

2

Next figure represents the image WC+
2 ,R= 3π

2
of C +

2 for

k ∈ [0.01, 0.999].
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116. WC +
2 ,R= 3π

2
into WC 0

1 ,R= 3π
2
∪WC 2π

1 ,R= 3π
2

Next figure shows how WC+
2 ,R= 3π

2
fits into WC0

1 ,R= 3π
2
∪WC2π

1 ,R= 3π
2

.
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117. Complete wavefront I

Next figures show two perspectives on the complete wavefront
W
(
0, 3π

2

)
= WC0

1 ,R= 3π
2
∪WC2π

1 ,R= 3π
2
∪WC+

2 ,R= 3π
2
∪WC−

2 ,R= 3π
2

.
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118. Complete wavefront II
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119. Wavefront modulo 2π

In the previous figures, the angle θ is not represented modulo 2π.

The following figures display WC0
1 ,R= 3π

2
∪WC2π

1 ,R= 3π
2

, WC3,R= 3π
2

and the complete wavefront W
(
0, 3π

2

)
modulo 2π. The vertical

cylinder represents the jump of θ from −π to π.

The red curve is WC3,R= 3π
2

.
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120. Wavefront modulo 2π
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121. Wavefront modulo 2π
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122. Toric representations for R = 3π
2

To exemplify the toric form of the wavefront W (0,R) for a radius
R > π, the best is to use the toric representation and notice that
W (0,R) does more than one turn.

We consider therefore the torus D̊Λ × S1
2Λ = TΛ where S1

2Λ is the

“deferent” circle of radius 2Λ and D̊Λ the interior of the disk in R2

of center 0 and radius Λ.

The new coordinates inside the torus TΛ are
Xtor = (2Λ + x) cos (θ), Ytor = (2Λ + x) sin (θ), Ztor = y .
For W

(
0, 3π

2

)
, we may take Λ = 5.
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123. Toric representations for R = 3π
2

The two following figures display inside the torus TΛ=5

1 the image WC0
1 ,R= 3π

2
of the stratum C 0

1 (color magenta), and

2 the image WC2π
1 ,R= 3π

2
of the stratum C 2π

1 (color green)

at length-time t = R = 3π
2 for k ∈ [0.01, 0.999].

The “horn” corresponds to lower k and the “fork” to upper k .
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124. Toric WC 0
1 ,R= 3π

2
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125. Toric WC 2π
1 ,R= 3π

2
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126. Intersection of WC 0
1

and WC 2π
1

We see in the following figure that WC0
1 ,R= 3π

2
and WC2π

1 ,R= 3π
2

intersect, which implies the toric form of W
(
0, 3π

2

)
.
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127. Toric WC +
2 ,R= 3π

2
∪WC−2 ,R= 3π

2

For the images of the strata C2, we get the following figure for
WC+

2 ,R= 3π
2
∪WC−

2 ,R= 3π
2

for k ∈ [0.5, 0.999] (i.e. only the first

singular parts of W
(
0, 3π

2

)
− S

(
0, 3π

2

)
are displayed).
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128. Toric wavefront

Finally, the following figure displays the quasi-complete wavefront
W
(
0, 3π

2

)
= WC0

1 ,R= 3π
2
∪WC2π

1 ,R= 3π
2
∪WC+

2 ,R= 3π
2
∪WC−

2 ,R= 3π
2

in

the torus TΛ=5.
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129. Bye-bye

We see that the spectacular results of inpainting by means of an
anisotropic diffusion along sub-Riemannian geodesics are based on
a subtle geometry.

There would be a lot of other things to say about the applications
of Neurogeometry in visual neuroscience. See references e.g. in
some seminars of the SRGI program of Emmanuel Trélat and
Davide Barilari or in the “Focus Program” of Matilde Marcolli and
Doris Tsao at the Fields Institute.

But I must stop here.

Thank you for your attention.
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