
Theorizing and Modeling in Neuroscience

Chapman University, January 16− 17 2025

Geometrical models for the functional architecture
of the visual area V1

Jean Petitot,
CAMS, EHESS, Paris,
jean.petitot@ehess.fr

Jean Petitot, CAMS, EHESS, Paris, jean.petitot@ehess.fr Chapman 2025



Many thanks to Marco Panza and the organizers for their
invitation.

I apologize for not being able to be with you, and I also apologize
for my pitiful English.

I would also like to express my deepest sympathy at this time of
dramatic fires in Los Angeles.
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2. Introduction

I’m going to talk about neuromathematics, but in a rather special
sense.
My purpose concerns the internal geometry of the connectome of
some primary visual areas. It is an immanent internal neural
geometry of connections.

I’m going to summarize the work I’ve done on the very specific
internal geometry of these functional architectures. What I called
in 1990s Neurogeometry.

Neurogeometry is more than a certain type of neural model. It
seeks to answer a theoretical problem.
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3. Introduction

The basic theoretical problem I would like to address concerning
low-level vision (essentially V1) is the following.

Il we look at the intuitive phenomenal geometry (not at the
internal geometry of underlying neural connections but at the
phenomenal geometry) of natural visual percepts, it is an empirical
evidence that the visual brain is able to perform a lot of differential
routines: local orientations tangent to boundaries, curvatures,
cusps, crossings, etc.

For example, a closed regular contour that is the boundary of a
shape is the envelope of its tangents. It is the integral of its
tangent directions. So, it is an object of intuitive differential
geometry.
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4. Introduction

How can such routines be neurally implemented? Indeed at their
resolution scale (defined by the size of their receptive field),
cortical visual neurons are “point-like” processors .

They code numerical values, for example by their firing rate (rate
coding) or by their rank coding (Simon Thorpe).

But it seems impossible to compute differential routines with
“point-like” processors.
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5. Introduction

More precisely :
Cortical visual neurons detect very local geometric cues at retinal
positions. One of the main theoretical problem of low level vision is
to understand how these local infinitesimal cues can be detected
and integrated so as to generate the global phenomenal geometry
of the images perceived, with all the well-known global spectacular
phenomena studied since Gestalt theory (for example long range
illusory contours of Kanizsa type). How neurons can do that !
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6. Introduction

So, just as we wonder how language, cognition, mind,
consciousness can emerge from interactions between neurons linked
by connections, we’re going to ask how the intuitive differential
geometry of visual phenomenal percepts can emerge from neural
networks.

In a word, what are the neural correlates of differential and integral
calculus? What can be the structure of neural functional
architectures enabling such an emergence.

It’s a “hard problem”, an empirical, mathematical and
philosophical foundational problem.
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7. Introduction

At the beginning, that I’m to talk about now has benefited greatly
from my contacts with vision neuroscientists in Paris, such as
Michel Imbert, Alain Berthoz and Yves Frégnac. And also with
vision geometers as Jan Koenderink and David Mumford.
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8. Introduction

Specific research programs are now studying the problems raised by
the neural correlates of differential geometry. For example, that of
Alessandro Sarti and Giovanna Citti, or that of Matilde Marcolli
and Doris Tsao.
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9. Experiments

At the experimental level, since the 1990s, revolutionary methods
of “in vivo optical imaging” enabled to visualize the extremely
special connectivity of the primary visual areas, that is their
“functional architectures”.

What we called at that time “Neurogeometry” is based on the
discovery that these hardwired and modular functional
architectures implement sophisticated mathematical structures
such as the contact structure and the sub-Riemannian geometry of
the jet spaces of plane curves. I will explain these terms.

Such structures provide a geometrical reformulation of differential
calculus which explains how the visual brain, despite the fact that
cortical neurons are point-like processors, can implement
differential routines.
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10. Images of H&W

Experimentally, the story begins with the breakthrough recordings
of V1 neurons in the early 60s by David Hubel and Torsten Wiesel
(Nobel prizes in 1981).

These neurons detect a preferred orientation p crossing their
receptive field centered on a retinal position a. When they are
activated they fire and emit spikes and the spikes can be recorded
using electrodes.

Orientation is what Hubel called an “engrafted” variable over a
position a = (x , y) of the retinal plane.
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11. H&W breakthrough

It is really a crucial experiment.

Here are two images of a 40s recording.
Left. A bar aligned along the preferred orientation : noisy firing.
Right. A bar orthogonal to the preferred orientation : quiet, no
firing.
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12. H&W discovery

Moreover, Hubel and Wiesel discovered that

Neurons detecting all the orientations p at the same retinal
position a ∈ R2 constitute an anatomically well delimited small
neural module called an “orientation hypercolumn”.

and that preferred orientations p vary smoothly with the retinal
point a. So the (a, p) constitute an orientation field over the
retinal plane.

Moreover, the retinotopy of the retino-geniculo-cortical way means
that the fiber bundle π : V = R2 × P1 → R2 is neurally
implemented.
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13. Braitenberg abduction

The first global reconstruction of an orientation field from the
sparse local data provided by electrodes was infered abductively in
1979 by Valentino and Carla Braitenberg.

This was long before the introduction of modern in vivo optical
imaging techniques.

They claimed:

“We believe that the most natural explanation of the
facts observed would be in terms of orientations arranged
with circular symmetry around centers, either radially or
along concentric circles.”
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14. Swindale’s abduction

After Braitenberg, in an astonishing 1987 paper (still before the
advent of optical imaging techniques), Nicholas Swindale
reconstructed (for the cat’s area 18), the “spatial layout” of the
orientation map.

He thus confirmed Braitenberg’s abduction.

His data came from electrodes separated by about 150− 300µm at
a cortical depth of about 400− 700µm.

He succeeded in interpolating between the prefered orientations
measured at the different sites and reconstructed the “fine
grained” map shown in the following figure.

It was a great achievement.
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15. Swindale’s image 1

Jean Petitot, CAMS, EHESS, Paris, jean.petitot@ehess.fr Chapman 2025



16. Swindale’s image 2

Using a color code for directions, he got an orientation map.

This is a theoretical reconstruction from incomplete sparse data
and not an empirical observation.
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17. Swindale’s image 3

He even reconstructed the possible singularities of the orientation
field: they can be end points or triple points.

What are now called pinwheels.
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18. In vivo optical imaging

Braitenberg’s and Swindale’s abductions have been strikingly
confirmed in the 1990s by brain imagery and techniques of “in vivo
optical imaging based on activity-dependent intrinsic
signals”(Amiram Grinvald and Tobias Bonhöffer).

They used the fact that the metabolic activity of cortical layers
change their optical properties (differential absorption of
oxyhemoglobin or deoxyhemoglobin whose fluorescence is an index
of the local depolarisation of neurons).

This enables to acquire in vivo images of the activity of the
superficial cortical layers.
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19. In vivo optical imaging II

As Kenichi Ohki and Clay Reid have pointed out,

“optical imaging revolutionized the study of functional
architecture by showing the overall geometry of
functional maps.”

The scale of observation is a “meso”-scale.

It is the “overall geometry of functional maps” we want to model
using appropriate mathematical geometrical tools.
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20. Orientation maps

Here is the functional architecture of the area V 1 of a tree-shrew
(tupaya) obtained by in vivo optical imaging (William Bosking
with David Fitzpatrick’s team at Duke University).

They used “grattings”, that is large grids of parallel dark stripes
translated in the visual field.

For every orientation (coded by the bottom-right color) they got a
global map of activity (dark = active).

This is now an empirical observation and not a theoretical
reconstruction.
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21. Orientation maps. Image
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22. Pinwheels

Orientation maps with pinwheels are now well known. Here is the
V 1 area of the macaque by Blasdel and Salama,
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23. Bosking’s image

Here is another image due to Bosking.
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24. End points and triple points

In the following picture due to Shmuel (cat’s area 17), orientations
are coded by colors but are also represented by small white
segments.

We observe very well the two types of generic singularities of 1D
foliations in the plane (end points and triple points) anticipated by
Braitenberg and Swindale.
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25. Shmuel’s orientation map
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26. End points
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27. Triple points
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28. Pinwheels’ structure

The plane is V 1,

A colored point represents the mean of a small group of real
neurons (meso-scale).

Colors code for the preferred orientation at each point.

The field of isochromatic lines (i.e. iso-orientation lines) is
organized by a lattice of singular points (pinwheels) where all
orientations meet (distant about 1200µm in cats and about
600µm in primates).

There exists a “mesh” of the lattice of pinwheels (a sort of
characteristic length).

Pinwheels have a chirality.

Adjacent pinwheels have opposed chirality.
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29. Pinwheels

Left: local triviality. Right: two pinwheels of opposed chiralities.
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30. Micro-scale pinwheels

For a true “micro”-scale observation at the level of single neurons,
you need more recent techniques such as “two-photon confocal
microscopy” (Kenichi Ohki 2006).
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31. Micro-scale pinwheels
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32. Interspecific functional architecture

A pinwheel organisation can be found in many species: cat,
primate (marmoset), tupaya (tree shrew), prosimian Bush Baby,
tawny owl, etc.

It is a widely interspecific functional architecture.

The following figure shows pinwheels in the V 1 and V 2 areas of
the cat, (A) and (B), the marmoset (C) and (D), and the tawny
owl (E) and (F).
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33. Pinwheels in different species
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34. Pinwheels as blowing-up

Pinwheels can be interpreted geometrically as blowing-up of points
ai and the orientation field is the closure of a section σ of the fiber
bundle π : V = R2 × P1 → R2 defined over the open subset
R2 − {ai}.

Over the ai the closure of σ is the “exceptionnal” fiber P1
ai
.

These exceptional fibers P1
ai

are “contracted”and “folded” onto
small wheels around the base points ai .
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35. V1 as fiber bundle

There is therefore a 3D → 2D dimensional collapse : an orientation
map is, in a way, a geometric object of “intermediate” dimension
between 2 and 3, with a lattice of base points blown-up in parallel,

At the limit, when all the points of the base plane R2 are blown-up
in parallel, we get the fiber bundle π : V = R2 × P1 → R2.

So V can be considered as an idealized continuous model of the
concrete neural V 1 produced by biological evolution with its
orientation field and lattice of pinwheels.
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36. ENG cover

A lot of other experimental details can be found in my book
Elements of Neurogeometry (Springer, 2017)
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37. The “hard problem”

But now we run into the “hard problem” evoked in our
Introduction.

The geometry of visual perception involves many differential
computations. But neurons are (scaled) point-like processors.
When they are actived, they emit spikes defining their “rate
coding”. And so, they can only code a single numerical value by
means of their “firing rate”.
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38. The “hard problem”

Of course
(i) they are able to detect complex point-like cues and
(ii) they are connected and they can transmit their activity along
their more or less inhibitory or excitatory connections.

But this is insufficient to directly implement differential routines.
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39. The antinomy of perceptual geometry.

There is therefore an antinomy at the root of a neurally
implemented perceptual geometry.

How differential routines can be neurally implemented in networks
of “point-like processors”since derivatives are not point-like
entities?

The classical conceptions of “differentiation” and “integration” do
not work.
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40. Functional connectivity

Now, we have seen that biological evolution has introduced new
post-retinal modules and layers that implement new “engrafted”
variables beyond the two variables of retinal position.

We can therefore try to understand how a special connectivity
extended to these new modules and layers can perform differential
computations.

(i) It must certainly have a very special functional architecture.

(ii) But we must also know under what conditions a point-like
functional architecture is able to implement a differential calculus
if we add new engrafted variables satisfying appropriate structural
constraints. It is a mathematical problem.
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41. The hypothesis

The hypothesis is therefore

Maybe point-like processors can implement an alternative
formulation of differential calculus using “hidden derivatives”
(Richard Montgomery) as new supplementary independent
variables which can be implemented in point-like processors.
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42. The hypothesis

But these new “hidden” derivatives must satisfy very strong
constraints in order to be interpretable as “true” derivatives (as in
Hamiltonian mechanics where you introduce the momenta as new
independent variables and force them to be dual to velocities using
the symplectic 2-form).

For that, the hardwired connectivity of the network must be
extremely specific.
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43. Horizontal cortico-cortical connections

Let us come back to experiments and look at what are called
horizontal cortico-cortical connections connecting neurons of
different hypercolums.

The following image (also due to Bosking et al.) shows how a
marker (biocytin) locally injected in a zone of about 100µm of the
layer 2/3 of V 1 of a tupaya (tree shrew) diffuses along horizontal
connections (black marks) in a selective, “patchy”, anisotropic way.

Short-ranged diffusion is isotropic and corresponds to
intra-hypercolumnar inhibitory connections.

On the contrary, long-ranged diffusion is highly anisotropic, and
corresponds to excitatory inter-hypercolumnar connections
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44. Biocytin diffusion

The injection site is upper-left in a green domain.
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45. Parallelism and co-axiality

There are two main results:

1 The marked axons and synaptic buttons cluster in domains of
the same color (same orientation) as the injection site, which
means that horizontal connections connect neurons detecting
approximatively parallel orientation and therefore implement
neurally a parallel transport.

2 Furthermore, the striking global clustering along the
top-left −→ bottom-right diagonal means that horizontal
connections connect neurons detecting not only almost
parallel but also almost aligned “co-axial” orientations.
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46. Biocytin diffusion, bis repetita
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47. The key result

“The system of long-range horizontal connections can be
summarized as preferentially linking neurons with co-oriented,
co-axially aligned receptive fields.”(W. Bosking)

We will see that this means that

the contact structure C of the fibration
V = R2 × P1 −→ R2, (a, p) 7→ a is neurally implemented in V 1.
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48. William Hoffman

Let me underline that the hypothesis that the notion of contact
structure must be involved in a natural way in visual perception
was already explicitly formulated in 1989 by William Hoffman in
his pioneering paper “The visual cortex is a contact bundle”.

It was before “in vivo” optical imaging.
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49. Association field

Neurophysiological results are corroborated by psychophysical
experiments on curve integration.

In a breakthrough paper of 1993, David Field, Anthony Hayes and
Robert Hess considered approximately aligned segments
vi = (ai , pi ) embedded in a background of randomly distributed
segments lacking any global structure

However, subjects perceive very well a global alignment.

This striking phenomenon of pop-out (perceptual saliency) is due
to a low-level integration processing.
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50. Joint position–orientation constraints

After a lot of experimental measures, Field, Hayes and Hess
concluded that the pop-out comes from a specific connectivity,
which they called association field.

This connectivity is defined by what they called “joint conditions
on positions and orientations”:

1 two elements (a1, p1) and (a2, p2) are connected if one can
interpolate between them a curve γ that is not too curved;

2 otherwise the two elements are not connected.

It has been shown later that the “joint constraints on positions and
orientations” correspond to neural “horizontal” cortico-cortical
connections.
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51. Alternative differential calculus

Let us come now to the mathematical models.

Alternative versions of differential calculus do exist in “modern”
differential geometry with Pfaff, Jacobi, Frobenius, Lie, Darboux,
Cartan, Goursat, etc. They represent a great achievement of the
“geometrization” of analysis during the XIXth century and the
beginning of the XXth century.

They can solve the “hard problem” and it is why some structures
they developed, such as jet-spaces, differential forms, contact
structures, etc., are so basic in Neurogeometry,
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52. Geometrizing integrability

The geometrization of the integrability conditions of differential
equations has been a revolution similar to that accomplished by
Galois for the resolution of algebraic equations.

A basic notion became that of a contact element (Lie’s
“Flächen-element”), that is a pair of a point x of a manifold M
and a hyperplane Kx of the tangent space TxM of the manifold M
at the point x .

If M is of dimension 2, Kx is an orientation p at x .

Sophus Lie developed this notion in great detail with a strong
sense of novelty of this point of view.
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53. Lie and Klein

In a beautiful text of 1894 “The Geometric Work of Sophus Lie”,
Felix Klein emphasized the importance of the change of perspective
brought about with this “new, clear and penetrating view”.

He explained that, inspired by Monge and Plücker, Lie introduced
“new elements of space” much more general than points and,
instead of applying the methods of differential analysis to
geometry, was interested in “the reciprocal” and developed “the
application of geometrical intuition to Analysis”.

This is the key foundational issue: the foundations of differential
calculus moved from Analysis to Geometry.
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54. Contact elements

Now, a pair (a, p) of a retinal position a and an orientation p is a
contact element. So, if it is possible to reformulate the differential
calculus using contact elements, we can begin to understand how
the visual brain can implement differential routines.
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55. The main hypothesis

Hence the main hypothesis:

while the retinal cells detect positions, cortical neurons of V 1 can
detect contact elements and their cortico-cortical connectivity can
implement a “geometry of integrability” for these contact elements.

To understand at the neurophysiological level how the visual
system can implement an integro-differential calculus, we must
therefore use the fact that, at the mathematical level, a differential
calculus can be equivalent to a geometry of connectivity between
contact elements.
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56. The geometric meso-structure of V 1

It is why in the 1990s I began to develop the following relations
between neurophysiology and geometry:

1 the “simple” cortical neurons of V 1 detect contact elements
(a, p);

2 the fibration (a, p)→ a is neurophysiologically implemented
by retinotopy and orientation hypercolumns;

3 the contact structure of the 1-jets of plane curves is
neurophysiologically implemented (horizontal cortico-cortical
connections);

4 the sub-Riemannian geometry of this contact structure is
neurophysiologically implemented (illusory contours as
geodesics).

Let us explain these concepts.
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57. “Hidden derivatives”

The fibration V = R2 × P1 −→ R2, (a, p) 7→ a is not sufficient for
interpreting p as an “hidden derivative” (Richard Montgomery),
that is as a tangent to a curve.

For that, p must satisfy the fundamental Pfaff equation
ω = dy − pdx = 0 defining the contact structure of 1-jets of plane
curves.
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58. The contact structure of 1-jets

If we have a (regular) curve γ = a(s) in the base plane R2 we can
lift it in V as the skew curve

Γ = v(s) = (a(s), p(s)) = (x(s), y(s), p(s) = dy/dx)

The point (x(s), y(s), p(s) = dy/dx) in V is called the 1-jet of the
curve at a and Γ is called the Legendrian lift of γ.
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59. The contact structure of 1-jets

The notion of jet is very important because it is a point coding a
derivative in a higher dimensional space if a certain condition is
satisfied.

Adding a new dimension we can transform derivatives in
“point-like” entities computable by point-like processors.
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60. The contact structure of 1-jets

Conversely, a skew curve

Γ = v(s) = (a(s), p(s)) = (x (s) , y(s), p(s))

in the 3D V is the Legendrian lift of its projection γ = a(s) onto
the base plane R2

iff the “hidden” derivative p(s) is the “real” derivative
p = dy/dx giving the tangent to the base curve γ at the
point a(s),
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61. The contact structure of 1-jets

iff it is an integral curve of the contact structure C = ker(ω)
of V, where ω is the 1-differential form

ω = dy − pdx

Indeed, in the 3-space V of coordinates (x , y , p),
ω = dy − pdx = 0 means p = dy/dx in the base plane (x , y).

But ω = dy − pdx = 0 defines a distribution of planes in V.
So the differential calculus of curves in the base plane R2 is
translated into the geometry of a distibution of planes in the
3D-space V.
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62. The distribution of contact planes

The distribution C of contact tangent planes is maximally non
integrable since the 3-form

ω ∧ dω = (−pdx + dy) ∧ dx ∧ dp = −dx ∧ dy ∧ dp .

is a volume form, which is the opposite of the Frobenius
integrability condition ω ∧ dω = 0.

So, even if there exists a lot of integral curves of C (Legendrian
lifts), there exists no integral surface.
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63. The (polarized) Heisenberg group

It is interesting to note that the contact structure C is left-invariant
for a group law making V isomorphic to the (polarized) Heisenberg
group Hpol . The product of 2 contact elements is given by :

(x , y , p).(x ′, y ′, p′) = (x + x ′, y + y ′ + px ′, p + p′) .

Its Lie algebra is generated by the basis of left-invariant fields
X1 = ∂

∂x + p ∂
∂y = (1, p, 0) and X2 = ∂

∂p = (0, 0, 1) with

[X1,X2] = (0,−1, 0) = − ∂
∂y = −X3 (the other brackets = 0).

The basis {X1,X2} of the distribution C is bracket generating (i.e.
Lie-generates the whole tangent bundle TV) (Hörmander
condition).

V = Hpol is a nilpotent group of step 2 (a Carnot group).
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64. Neural contact structure

We can explain now how the contact structure of V is
implemented in the specific class of cortico-cortical long-range
horizontal connections.
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65. The key result

Remember the key experimental discovery :

“the system of long-range horizontal connections can be
summarized as preferentially linking neurons with co-oriented,
co-axially aligned receptive fields.”(W. Bosking)

This means that a chain of simple neurons (ai , pi ) is a chain of
“horizontally” connected simple neurons iff it is a discretization of
the Legendrian lift of a not too curved base curve interpolating
between the (ai ).

So, this means that,

up to some bound on curvature, the contact structure C is neurally
implemented in V 1.
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66. Two vocabularies

So, we get a correspondance between two vocabularies, a
neurophysiological one and a mathematical one.

simple neurons (scaled) contact elements (a, p)

R-G-C retinotopy base space R2 of positions a

basic / “engrafted” variables fiber bundle R2 × P→ R2

orientation hypercolumns
and pinwheels

1-jet space J1  R2 × P→ R2

� long-range horizontal
connections,

Contact structure

� “co-oriented,
co-axially aligned RFs”,
� “joint constraints on

positions and orientations”
� “good continuation”
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67. From local cues to global geometry

With the tools of neurogeometry we can begin to understand how
the very complex neurophysiology of visual neurons detecting local
cues can generate the global geometry of the perceived images,
with all the well-known phenomena studied since Gestalt theory,
e.g. long range illusory contours.

Long range illusory contours are one of the most striking
phenomenon of low level vision.
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68. Illusory contours

Consider for example the well-known Kanizsa triangle. Local cues
as pacmen and end-points induce very long-range global illusory
contours (what is called “modal completion”).
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69. Kanizsa triangle
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70. Curved Kanizsa square

Illusory contours are particularly interesting when they are curved.
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71. Watercolor effect

Furthermore, these contours act as boundaries for a diffusion of
color inside the square (what is called the “neon” or “watercolor
effect”).

It is not easily seen on a screen but can be measured with
adequate psychophysical methods.
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72. Watercolor effect: figure
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73. Illusory contours as geodesics

We will see that illusory modal can be interpreted as geodesics of a
contact structure for an appropriate sub-Riemannian metric.

Such sub-Riemannian models have many spectacular applications,
in particular for inpainting, since to complete a corrupted image,
we must construct the illusory level sets that can complete the
missing parts.
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74. An example of sub-Riemannian inpainting

The following picture shows how a highly corrupted image (left)
can be very well restored using sub-Riemannian diffusion
(Gauthier-Prandi inpainting based on our model).

The face of our colleague Jean-Paul Gauthier appears out of the
blue.
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75. Variational models for illusory contours

The idea is that of variational models for illusory contours. It has
been introduced since the late 70s for 2D image processing.

1. Shimon Ullman (1976) explained that

“A network with the local property of trying to keep the
contours ‘as straight as possible’ can produce curves
possessing the global property of minimizing total
curvature.”

2. Berthold Horn introduced in 1983 “the curves of least energy”.

These models minimize an energy along curves in the base plane.
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76. Mumford’s elastica model. I

The best known is the elastica model proposed in 1992 by David
Mumford.

The energy to minimize is:

E =
∫
γ(ακ2 + β)ds

where γ is a smooth curve in R2.
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77. Geodesic models

But for neural models (and not only 2D image processing) it is
natural to work in V 1, that is with the contact structure and the
Legendrian lifts.

It is here that sub-Riemannian geometry fully comes on stage.

The natural idea is to introduce sub-Riemannian metrics on the
contact planes of V and look at geodesic models for curve
completion and illusory modal contours.
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78. Sub-Riemannian metrics

We take the natural basis {X1,X2} of the contact plane at the
origin as an orthonormal basis and we translate it using left
translations of the group structure (the polarized Heisenberg group
Hpol).

As the contact structure is left-invariant, we get that way a
left-invariant metric on the contact planes.

As this metric is defined only on the contact planes and not on the
complete tangent spaces of V it is called sub-Riemannian. But it
enables to compute the length of the integral curves of the contact
structure, that is of Legendrian lifts in the base plane.
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79. Historical landmarks

In the 2000s these problems have been further explored with
Alessandro Sarti and Giovanna Citti, and also Andrei Agrachev,
Jean-Paul Gauthier, Ugo Boscain and Yuri Sachkov.
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80. The sub-Riemannian Hpol

The sub-Riemannian geometry (geodesics, conjugate points, cut
locus) of groups such as Hpol or SE (2) is rather complex, even if
the groups are elementary.

The sub-Riemannian geometry of the Heisenberg group H has
been explained in the 1980s by Richard Beals, Bernard Gaveau and
Peter Greiner.

It can easily be adapted to the polarized Hpol .
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81. The sub-Riemannian Hamiltonian

The sub-Riemannian sphere S and the wave front W are rather
strange. One can compute them explicitly .
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82. Image of the SR sphere of H
They are displayed in the following figure. The external surface is
the sub-Riemannian sphere S . It has a saddle form with
singularities at the intersections with the y -axis.
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83. Image of the wave-front of H

The internal part is W − S . It presents smaller and smaller circles
of cusp singularities which converge to 0. Such a complex behavior
is impossible in Riemannian geometry.
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84. The cusps of W

The following figure displays the quarter of the wave front W for
θ = 0. Its equations are x1 = |sin(ϕ)|

ϕ , p1 = 0, y1 = ϕ−cos(ϕ) sin(ϕ)
4ϕ2 .

The cusps are on the curve of equation x = cos (ϕ),
y = 1

4 cos (ϕ) sin (ϕ) .
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85. ENG II couv

If you read French you will find a lot of mathematical details on all
these structures in the second volume of my “Éléments de
Neurogéométrie” :
hal.science/hal-04722501
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86. ENG II couv

Jean Petitot 

:

ÉLÉMENTS 
DE 

NEUROGÉOMÉTRIE

Volume 2

:
2024
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87. Conclusion

Everything remains to be done in the field of neurogeometry.
Firstly, to “go down” to the microphysical level of neurons and
their spikes governed by Hodgkin-Huxley-type equations.
Neurogeometry operates in fact at the meso neuronal level.

Then to go beyond V 1 to higher retinotopic visual areas, from V 2
to MT . We have indeed focused on V 1.

But despite the very partial nature of the already worked out
results, we hope to have shown how we can begin to understand
the constitution of perceptual geometry from internal, “immanent”
neurogeometric algorithms.
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