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Axiomatics, analogies, conceptual structures

My purpose is to comment some claims of André Weil (1906-1998)
in his celebrated letter written in prison to his sister Simone
(March 26, 1940, Collected Papers, vol.1, 244-255, translated by
Martin Krieger, Notices of the AMS, 52/3 (2005) 334-341).

Let us begin with the following quotation:
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“It is hard for you to appreciate that modern
mathematics has become so extensive and so complex
that it is essential, if mathematics is to stay as a whole
and not become a pile of little bits of research, to provide
a unification, which absorbs in some simple and general
theories all the common substrata of the diverse branches
of the science, suppressing what is not so useful and
necessary, and leaving intact what is truly the specific
detail of each big problem. This is the good one can
achieve with axiomatics (and this is no small
achievement). This is what Bourbaki is up to.” (p. 341)
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I want to emphasize four points:

1 The unity of mathematics (“to stay as a whole”).

2 The axiomatization of general structures, AND

3 The requirement of “leaving intact what is truly the specific
detail of each big problem.”

4 The insistance on “big problems”.

For Weil (and Bourbaki) the dialectic balance between general
structures and specific details is crucial.
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A “big problem” needs a conceptually complex proof which is a
very uneven, rough, rugged multi-theoretical route in a sort of
“Himalayan chain” whose peaks seem inaccessible.

It cannot be understood without the key thesis of the unity of
mathematics since its deductive parts are widely scattered in the
global unity of the mathematical universe.

It is holistic and it is this holistic nature I am interested in.

J. Petitot Axiomatics as strategy



As was emphasized by Israel Kleiner for the
Shimura-Taniyama-Weil (STW) conjecture (Fermat theorem):

“What area does the proof come from? It is unlikely one
could give a satisfactory answer, for the proof brings
together many important areas – a characteristic of
recent mathematics.”
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As was also emphasized by Barry Mazur:

“The conjecture of Shimura-Taniyama-Weil is a
profoundly unifying conjecture — its very statement hints
that we may have to look to diverse mathematical fields
for insights or tools that might leads to its resolution.”.
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In his letter to Simone, Weil described in natural language his
moves towards Riemann Hypothesis and he used a lot of military
metaphors to emphasize the fact that finding a proof of a so highly
complex conjecture is a problem of strategy:

“find an opening for an attack (please excuse the
metaphor)”, “open a breach which would permit one to
enter this fort (please excuse the straining of the
metaphor)”,“it is necessary to inspect the available
artillery and the means of tunneling under the fort
(please excuse, etc.)”.

“It will not have escaped you (to take up the military
metaphor again) that there is within all of this great
problems of strategy”.
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My purpose is not here to discuss philosophically Bourbaki’s
concept of structure as mere “simple and general” abstraction.

It has been done by many authors. See e.g. Leo Corry’s “Nicolas
Bourbaki: Theory of Structures” (Chapter 7 of Modern Algebra
and the Rise of Mathematical Structures, 1996).

And many authors have criticized the very limited Bourbaki’s
conception of logic.
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My purpose is rather to focus on the fact that, for these creative
mathematicians, the concept of “structure” is a functional
concept, which has always a “strategic” creative function.

One again, “leaving intact what is truly the specific detail of each
big problem”.

As Dieudonné always emphasized it, the “bourbakist choice ”
cannot be understood without references to “big problems”.

It concerns the context of discovery rather than the context of
justification.
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There is a fundamental relation between the holistic and “organic”
conception of the unity of mathematics and the thesis that some
analogies can be creative and lead to essential discoveries.

It is a leitmotive since the 1948 Bourbaki (alias Dieudonné)
Manifesto: “L’architecture des mathématiques” (Les grands
courant de la pensée mathématique, F. Le Lionnais ed., Cahiers du
Sud).
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The constant insistance on the “immensity” of mathematics and
on its “organic” unity, the claim that “to integrate the whole of
mathematics into a coherent whole” (p. 222) is not a philosophical
question as for Plato, Descartes, Leibniz or “logistics”, the
constant critique against the reduction of mathematics to a tower
of Babel juxtaposing separed “corners”, are not vanities of elitist
mathematicians.

They have a very precise, strictly technical function: construct
complex proofs in navigating into this holistic conceptually
coherent world.

“The “structures” are tools for the mathematician.”
(p. 227)
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“Each structure carries with it its own language” and to discover a
structure in a concrete problem

“illuminates with a new light the mathematical
landscape” (p. 227)

Leo Corry has well formulated the key point:

“In the “Architecture” manifesto, Dieudonné also echoed
Hilbert’s belief in the unity of mathematics, based both
on its unified methodology and in the discovery of
striking analogies between apparently far-removed
mathematical disciplines.” (p.304)
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And indeed, Dieudonné claimed that

“Where the superficial observer sees only two, or several,
quite distinct theories, lending one another “unexpected
support” through the intervention of mathematical
genius, the axiomatic method teaches us to look for the
deep-lying reasons for such a discovery”.
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It is important to understand that structures are guides for
intuition and to overcome

“the natural difficulty of the mind to admit, in dealing
with a concrete problem, that a form of intuition, which
is not suggested directly by the given elements, [...] can
turn out to be equally fruitful.” (p. 230)

So

“more than ever does intuition dominate in the genesis of
discovery” (p. 228)

and intuition is guided by structures.
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Navigating within the mathematical Hymalayan chain

A proof of RH would be highly complex and unfold in the labyrinth
of many different theories.

As Connes explains in “An essay on Riemann Hypothesis” (p. 2)
we would have (note the strategy metaphor as in Weil)

“to navigate between the many forms of the explicit
formulas [see below] and possible strategies to attack the
problem, stressing the value of the elaboration of new
concepts rather than “problem solving”.”

For Connes “concepts” mean “structures”.
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In the history of RH we meet an incredible amount of deep and
heterogeneous mathematics.

1 Riemann’s use of complex analysis in arithmetics: ζ-function,
the duality between the distribution of primes and the
localization of the non trivial zeroes of ζ (s), RH.

2 The “algebraization” of Riemann’s theory of complex
algebraic (projective) curves (compact Riemann surfaces) by
Dedekind and Weber.

3 The transfer of this algebraic framework to the arithmetics of
algebraic number fields and the interpretation of integers n as
“functions” on primes p. It is the archeology of the concept of
spectrum (the scheme Spec(Z)).
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4 The move of André Weil introducing an intermediary third
world (his “Rosetta stone”) between arithmetics and the
algebraic theory of compact Riemman surfaces: the world of
projective curves over finite fields (characteristic p ≥ 2). The
translation of RH in this context and its far reaching proof
using tools of algebraic geometry (divisors, Riemann-Roch
theorem, intersection theory, Severi-Castelnuovo inequality)
coupled with the action of Frobenius maps in characteristic
p ≥ 2.

5 The generalization of RH to higher dimensions in
characteristic p ≥ 2. The Weil’s conjectures and the formal
reconstruction of algebraic geometry achieved by
Grothendieck: schemes, sites, topöı, etale cohomology, etc.
Deligne’s proof of Weil’s conjectures. Alain Connes
emphasized the fact that, through Weil’s vision,
Grothendieck’s culminating discoveries proceeds from RH:
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“It is a quite remarkable testimony to the unity of
mathematics that the origin of this discovery [topos
theory] lies in the greatest problem of analysis and
arithmetic.” (p. 3)

6 Connes’ return to pure arithmetics and the original RH by
translating algebraic geometry à la Grothendieck (topöı, etc.)
and Weil’s proof in characteristic p ≥ 2 to the world of
characteristic 1, that is the world of tropical geometry and
idempotent analysis.
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Riemann’s ζ-function

The distribution of primes

The story of RH begins with the enigma of the distribution of
primes. The multiplicative structure of integers (divisibility) is
awful.

For x ≥ 2, let π(x) be the number of primes p ≤ x .

It is a step function increasing of 1 at every prime p (one takes
π(p) = 1

2 (π(p−) + π(p+)) the mean value at the jump).

From Legendre (1788) and the young Gauss (1792) to Hadamard
(1896) and de la Vallée Poussin (1896) it has been proved the
asymptotic formula called the prime number theorem:

π(x) ∼ x

log(x)
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Definitions of ζ(s)

The zeta function ζ(s) encodes arithmetic properties of π(x) in
analytic structures. Its initial definition is extremely simple and led
to a lot of computations at Euler time:

ζ(s) =
∑
n≥1

1

ns

which is a series – now called a Dirichlet series – absolutely
convergent for integral exponents s > 1.

Euler already proved ζ(2) = π2/6 and ζ(4) = π4/90.
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A trivial expansion and the existence of a unique decomposition of
any integer in a product of primes show that, in the convergence
domain, the sum is equal to an infinite Euler product (Euler 1748)
containing a factor for each prime p (we note P the set of primes):

ζ(s) =
∏
p∈P

(
1 +

1

ps
+ . . .

1

pms
+ . . .

)
=
∏
p∈P

1

1− 1
ps

The local ζ-functions ζp(s) =
∑

k≥0
1

pks = 1
1− 1

ps
are the

ζ-functions of the local rings Zp of p-adic integers.
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The ζ-function is a symbolic expression associated to the
distribution of primes, which is well known to have a very
mysterious structure.

Its fantastic strength as a tool comes from the fact that it can be
extended by analytic continuation to the complex plane.

It has a simple pole at s = 1 with residue 1.
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Mellin transform, theta function and functional equation

It was discovered by Riemann in his celebrated 1859 paper “Über
die Anzahl der Primzahlen unter einer gegeben Grösse” (“On the
number of prime numbers less than a given quantity”), that ζ(s)
has also beautiful properties of symmetry.

This can be made explicit noting that ζ(s) is related by a Mellin
transform (a sort of Fourier transform), to the theta function
which possesses beautiful properties of automorphy.
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Let Γ (s) =
∫∞

0 e−xx s−1dx be the gamma function, which is the
analytic meromorphic continuation of the factorial function
(Γ (n + 1) = n!) to the entire complex plane C.

Γ satisfies the functional equation:

Γ (s + 1) = sΓ (s)

Γ has poles at s ∈ −N. The figure 1 shows it on the real axis.
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Figure: The Γ function on the real axis.
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Let

ζ∗(s) = ζ(s)Γ
( s

2

)
π−

s
2

ζ∗(s) is the total ζ-function. Due to the automorphic symmetries
of the theta function it satisfies a functional equation (symmetry
w.r.t. the critical line < (s) = 1

2 )

ζ∗(s) = ζ∗(1− s)
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As an Euler product

ζ∗(s) = π−
s
2 Γ
( s

2

) ∏
p∈P

1

1− 1
ps

The factor π−
s
2 Γ
(

s
2

)
corresponds to the place at infinity ∞ of Q

(see below) and ζ∗(s) is a product of factors associated to all the
places of Q:

ζ∗(s) =
∏

p∈P∪{∞}

ζ∗p(s)

with ζp(s) = 1
1− 1

ps
for p ∈ P and ζ∞(s) = π−

s
2 Γ
(

s
2

)
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Zeroes of ζ(s)

As ζ(s) is well defined for <(s) > 1, it is also well defined, via the
functional equation of ζ∗, for <(s) < 0, and the difference between
the two domains comes from the difference of behavior of the
gamma function Γ.

As ζ∗ is without poles on ]1,∞[ (since ζ and Γ are without poles),
ζ∗ is also, by symmetry, without poles on ]−∞, 0[. So, as the
s = −2k are poles of Γ

(
s
2

)
, they must be zeroes of ζ.

See figure 2
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Figure: The graph of the zeta function along the real axis showing the
pole at 1 (left). A zoom shows the trivial zeroes at even negative integers
(right).
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But ζ(s) has non trivial zeroes outside the domain < (s) > 1
where it is explicitely defined by the Euler product.

Due to the functional equation they are symmetric w.r.t. the
critical line < (s) = 1

2 .

Their distribution reflects the distribution of primes and the
localization of these zeroes is one of the main tools for
understanding the mysterious distribution of primes.

A pedagogical way for seeing the (non trivial) zeroes (J.
Arias-de-Reyna) is to plot in the s plane the curves < (ζ(s)) = 0
and = (ζ(s)) = 0 and to look at their crossings (see figure 3).
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Figure: The null-lines of the real part (red) and the imaginary part (blue)
of the zeta function.
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It is traditional to write the non trivial zeroes ρ = 1
2 + it with

t ∈ C. As they code for the irregularity of the distribution of
primes, they must be irregularly distributed. But the irregularity
can concern < (t) and/or = (t). When = (t) 6= 0 we get pairs of
symmetric zeroes whose horizontal distance can fluctuate.
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An enormous amount of computations from Riemann time to
actual supercomputers (ZetaGrid: more than 1012 zeroes in 2005)
via Gram, Backlund, Titchmarsh, Turing, Lehmer, Lehman, Brent,
van de Lune, Wedeniwski, Odlyzko, Gourdon, and others, shows
that all computed zeroes lie on the critical line <(s) = 1

2 .
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Riemann hypothesis

The Riemann hypothesis (part of 8th Hilbert problem) conjectures
that all the non trivial zeroes of ζ(s) are exactly on the critical
line, that is are of the form ρ = 1

2 + it with t ∈ R (i.e. = (t) = 0).

It is an incredibly strong still open conjecture and an enormous
part of modern mathematics has been created to solve it.
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Speiser proved that RH is equivalent to the fact that all folded blue
lines cross the critical line. One point of intersection (crossing with
a red line) is a non trivial zero and the other is called a Gram point.

Gram points seem to separate the non trivial zeroes (Gram’s law),
but it is not always the case.

We meet a lot of strange configurations.
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Figure: Configuration where a zero (crossing of folded red and blue lines)
is nested. Alternating Gram→zero→Gram→zero.
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Figure: Lehmer’s example of two extremely close consecutive zeroes
between two Gram points. (We are at the height of the 26 830-th line)
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So RH is really not evident.

As noted Pierre Cartier, the risk would be to see a pair of very
close “good” zeroes bifurcate into a pair of very close symmetric
“bad” zeroes.
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The problem of localizing zeroes

The problem is, given the explicit definition of ζ (s), to find some
informations on the localization of its zeroes.

As was emphasized by Alain Connes, it is a great generalization of
the problem solved by Galois for polynomials (of one variable).
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Explicit formulas

Riemann’s explicit formula

One of the most “magical” results of Riemann is the explicit and
exact formula linking explicitely and exactly the distribution of
primes and the (non trivial) zeroes of ζ (s).

We have seen that, for x ≥ 2, π(x), the number of primes p ≤ x
satisfies the asymptotic formula (prime number theorem)
π(x) ∼ x

log(x) .

A better approximation, due to Gauss (1849), is π(x) ∼ Li(x)
where the logarithmic integral is Li(x) =

∫ x
2

dt
log(t) (for small n,

π(x) < Li(x), but Littelwood proved in 1914 that the inequality
reverses an infinite number of times).
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A still better approximation was given by a Riemann formula R(x).

Figure 6 shows the step function π(x) and its two approximations
x

log(x) (in gray) and R(x) (in blue).
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Figure: Two classical approximations of the distribution of primes: x
log(x)

(in gray) and Riemann’s R(x) (in blue).
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Let

f (x) =
k=∞∑
k=1

1

k
π
(

x
1
k

)

(π(x) can be retrieved from f (x) by an inverse transformation).
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In his 1859 paper, Riemann proved the following (fantastic)
explicit formula:

f (x) = Li(x)−
∑
ρ

Li (xρ) +

∫ ∞
x

1

t2 − 1

dt

t log t
− log 2

The approximation of π(x) using Riemann’s explicit formula up to
the twentieth zero of ζ(s) is shown in figure 7.

We see that the red curve departs from the approximation R(x)
and that its oscillations draw near π(x).
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Figure: The approximation (red curve) of π (x) by Riemann’s explicit
formula up to the twentieth zero of ζ (s).
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Riemann’s EF concerns only ζ(s) and therefore only the p-adic
places of Q (with completions Qp).

But we know that the structural formulas concern ζ∗(s) with its
Γ-factor and must take into account the Archimedean real place ∞
(with completion R).

This step was accomplished by Weil.
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Local/global in arithmetics

Let us go now to the deep analogies discovered between
arithmetics and geometry.

One of the main idea, introduced by Dedekind and Weber in their
celebrated 1882 paper “Theorie der algebraischen Funktionen einer
Veränderlichen” (J. Reine Angew. Math, 92 (1882) 181-290.
Theory of algebraic functions of one complex variable), was to
consider integers n as kinds of “functions” over the sets P of
primes p, “functions” having a value and an order at every “point”
p ∈ P.

These values and orders being local concepts, Dedekind and Weber
had to define the concept of localization in a purely algebraic
manner.
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If p is prime, the ideal (p) = pZ of p in Z is a prime (and even
maximal) ideal. To localize the ring Z at p means to delete all the
ideals a that are not included into (p) and to reduce the arithmetic
of Z to the ideals a ⊆ (p).

For that, we add the inverses of the elements of the
complementary multiplicative subset S of (p), S = Z− (p).
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We get a local ring Z(p) (that is with a unique maximal ideal)
intermediary between Z and Q.

Z(p) is arithmetically much simpler than the global ring Z but more
complex than the global fraction field Q since it preserves all the
arithmetic inside (p).

The maximal ideal of Z(p) is m(p) = pZ(p) and the residue field is
Z(p)/pZ(p) = Z/pZ = Fp.
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In the local ring Z(p) every ideal a is equal to some power (p)k of
(p).

As (p)k ⊃ (p)k+1 we get a decreasing sequence – what is called a
filtration – of ideals which exhausts the arithmetic of Z(p).

The successive quotients Z(p)/pk+1Z(p) correspond to the
expansion of natural integers n in base p. Indeed, to make
pk+1 = 0 is to approximate n by a sum

∑i=k
i=0 nip

i with all ni ∈ Fp.

They constitute a projective system and their projective limit yields
the ring Zp of p-adic integers:

Zp = lim←−
Z

pkZ
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If n ∈ Z, to look at n “locally” at p is to look at n in Z(p).

The “value” of n at p is its class in Fp, i.e. n mod p and the local
structure of n at p can be read in Z(p).
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It is the origin of the modern concept of spectrum in algebraic
geometry.

Then Q becomes the “global” field of “rational functions” on this
“space”.
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Weil’s description of Dedekind’s analogy

In his letter to Simone, Weil describes very well Dedekind’s
analogy:

“[Dedekind] discovered that an analogous principle
permitted one to establish, by purely algebraic means,
the principal results, called “elementary”, of the theory of
algebraic functions of one variable, which were obtained
by Riemann by transcendental [analytic] means.”
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Since Dedekind’s analogy is algebraic it can be applied to other
fields than C.

integers ←→ polynomials
divisibility of integers ←→ divisibility of polynomials

rationals ←→ rational functions
algebraic numbers ←→ algebraic functions

Dedekind’s “different” ideal ←→
Hilbert

Riemann-Roch theorem

Abelian extensions ←→ Abelian functions
classes of ideals ←→ divisors
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And Weil adds

“At first glance, the analogy seems superficial. [... But]
Hilbert went further in figuring out these matters.”
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Valuations and ultrametricity

Dedekind and Weber defined the order of n ∈ N at p using the
decomposition of n into primes.

Let n =
∏i=r

i=1 pvi
i . vi is the valuation of n at pi : vpi (n). It is trivial

to generalize the definition to Z and Q. So the valuation vp(x) of
x ∈ Q is the power of p in the decomposition of x in prime factors.
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It satisfies “good properties” in the sense that |x |p = p−vp(x) is a
norm on Q defining a non-Archimedean metric dp (x , y) = |x − y |p
which satisfies the ultrametric property

|x + y |p ≤ Max
(
|x |p , |y |p

)
This inequality is much stronger than the triangular inequality of
classical metrics.

J. Petitot Axiomatics as strategy



p-adic numbers

The idea of expanding natural integers along the base p with a
metric such that

∣∣pk
∣∣
p
−→ 0
k→∞

leads naturally to add a “point at

infinity” to the localization Z(p).

This operation is a completion procedure for the metric |•|p
associated to the valuation vp and yields the ring Zp of p-adic
integers (Hensel).
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Hensel’s geometric analogy

In Bourbaki’s Manifesto, Dieudonné emphasizes Hensel’s unifying
analogy:

“where, in a still more astounding way, topology invades
a region which had been until then the domain par
excellence of the discrete, of the discontinuous, viz. the
set of whole numbers.” (p. 228)
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As we have already noted, the geometrical lexicon of Hensel’s
analogy can be rigourously justified using the concept of scheme:

1 primes p are the points of the spectrum of Z,

2 the finite prime fields Fp are the fibers of the structural sheaf
O of Z,

3 integers n are global sections of O,

4 and Q is the field of global sections of the sheaf of fractions of
O.

In this context, Zp and Qp correspond to the localization of global
sections, analog to what are called germs of sections in classical
geometry.
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Places

On Q there exist not only the p-adic valuations of the “finite”
primes p but also the real absolute value |x |, which can be
interpreted as an “infinite” prime and is conventionally written
|x |∞.

To emphasize the geometrical intuition of a “point”, the “finite”
and “infinite” primes are also called places.

To work in arithmetics with all places is a necessity if we want to
continue the analogy with projective (birational) algebraic
geometry (Riemann surfaces) and transfer some of its results (as
those of the Italian school of Severi, Castelnuovo, etc.) to
arithmetics.
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Indeed, in projective geometry the point ∞ is on a par with the
other points.

Weil emphasized strongly this point from the start.

Already in his 1938 paper “Zur algebraischen Theorie des
algebraischen Funktionen” (Journal de Crelle, 179 (1938) 129-138)
he explains that he wants to reformulate Dedekind-Weber in a
birationally invariant way.
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In his letter to Simone, he says

“In order to reestablish the analogy [lost by the singular
role of ∞ in Dedekind-Weber], it is necessary to
introduce, into the theory of algebraic numbers,
something that corresponds to the point at infinity in the
theory of functions.”

It is achieved by valuations, places and Hensel’s p-adic numbers
(plus Hasse, Artin, etc.).
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So, Weil strongly stressed the use of analogies as a discovery
method:

“If one follows it in all of its consequences, the theory
alone permits us to reestablish the analogy at many
points where it once seemed defective: it even permits us
to discover in the number field simple and elementary
facts which however were not yet seen.”
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Local and global fields

All the knowledge gathered during the extraordinay period initiated
by Kummer in arithmetics and Riemann in geometry, led to the
recognition of two great classes of fields, local fields and global
fields.

In characteristic 0, local fields are R, C and finite extensions of Qp.

In characteristic p, local fields are the fields of Laurent series over
a finite field Fpn and their ring of integers are those of the
corresponding power series.

Local fields possess a discrete valuation v and are complete for the
associated metric. Their ring of integers is local. Finite extensions
of local fields are themselves local.
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In characteristic 0, global fields are finite extensions K of Q, i.e.
algebraic number fields.

In characteristic p, global fields are the fields of rational functions
of algebraic curves over a finite field Fpn . The completions of
global fields at their different places are local fields.
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The RH for elliptic curves over Fq (Hasse)

One of the greatest achievements of Weil has been the proof of
RH for the global fields other than Q, namely the global fields
K/Fq (T ) of rational functions on an algebraic curve defined over
a finite field Fq of characteristic p (q = pn), that is finite algebraic
extensions of Fq (T ).
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The “Rosetta stone”

The main difficulty was that in Dedekind-Weber’s analogy between
arithmetics and the theory of Riemann surfaces, the latter is “too
rich” and “too far from the theory of numbers”. So

“One would be totally obstructed if there were not a
bridge between the two.” (p. 340)
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Hence the celebrated metaphor of the “Rosetta stone”:

“my work consists in deciphering a trilingual text; of each
of the three columns I have only disparate fragments; I
have some ideas about each of the three languages: but I
know as well there are great differences in meaning from
one column to another, for which nothing has prepared
me in advance. In the several years I have worked at it, I
have found little pieces of the dictionary.” (p. 340)
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From the algebraic number theory side, one can transfer the
Riemann-Dirichlet-Dedekind ζ and L-functions (Artin, Schmidt,
Hasse) to the algebraic curves over Fq.

In this third world they become polynomials, which simplifies
tremendously the situation.
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The Hasse-Weil function

For the history of the ζ-function of curves over Fq, see Cartier’s
1993 paper “Des nombres premiers à la géométrie algébrique (une
brève histoire de la fonction zeta)” (Cahiers du Séminaire
d’Histoire des mathématiques (2ème série), tome 3 (1993) 51-77).

1 On the arithmetic side (spec(Z), Qp, etc.), we have RH.

2 On the geometric side, we have the theory of compact
Riemann surfaces (projective algebraic curves on C).
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On the intermediary level, at the beginning of the XX-th century
Emil Artin (thesis, 1921 published in 1924) and Friedrich Karl
Schmidt (1931) formulated the RH no longer for global number
fields K/Q but for global fields of functions K/Fq (T ). As Cartier
says,

“La théorie d’Artin-Schmidt se développe donc en
parallèle avec celle de Dirichlet-Dedekind, et elle s’efforce
de calquer les résultats acquis : définition par série de
Dirichlet et produit eulérien, équation fonctionnelle,
prolongement analytique.” (p. 61)
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The main challenge was to interpret geometrically the
zeta-function ζC (s) for algebraic curves C defined over Fq.

It took a long time to understand that ζC was a counting function,
counting the (finite) number N (qr ) of points of C rational over
the successive extensions Fqr of Fq :

C being defined over Fq, all its points are with coordinates in Fq,
and we can look at its points with coordinates in intermediary
extensions Fq ⊂ Fqr ⊂ Fq.
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The generating function of the N (qr ) is by definition

ZC (T ) := exp

∑
r≥1

N (qr )
T r

r



The Hasse-Weil function ζC (s) of C is defined as

ζC (s) := ZC

(
q−s
)
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It corresponds to the two expressions of the classical Riemann’s
ζ-function (Dirichlet series and Euler product) if one introduces
the concept of a divisor D on C as a finite Z-linear combination of
points of C : D =

∑
j ajxj .

The degree of D is deg(D) =
∑

j aj .

D is said to be positive (D ≥ 0) if all aj ≥ 0.
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Then

ζC (s) =
∑
D>0

1

N (D)−s =
∏
P>0

(
1− N (D)−s)−1

where D are positive divisors on Fq-points, P prime positive
divisors (i.e. P is not the sum of two smaller positive divisors) and
N (D) = qdeg(D).
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The key problem is, as before, the localization of the zeroes of
ζC (s).

If ρ is a zero, q−ρ is a zero of ZC .

Conversely, if q−ρ is a zero and if ρ′ = ρ+ k 2πi
log(q) , then

q−ρ
′

= q−ρ is also a zero.

So the zeroes of the Hasse-Weil function ζC (s) come in arithmetic
progressions. It is a fundamental new phenomenon.
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Divisors and classical Riemann-Roch (curves)

On the other direction, one try to transfer to curves over Fq the
results of the theory of Riemann compact surfaces, and in
particular the Riemann-Roch theorem.

If C is a compact Riemann surface of genus g , to deal with the
distribution and the orders of zeroes and poles of meromorphic
functions on C , one introduces the concept of a divisor D on C as
a Z-linear combination of points of C :

D =
∑

x∈C ordx(D)x with ordx(D) ∈ Z the order of D at x .

All the terms vanish except a finite number of them.
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The degree of D is then defined as deg(D) =
∑

x∈C ordx(D). It is
additive.

D is said to be positive (D ≥ 0) if ordx(D) ≥ 0 at every point x .

If f is a meromorphic function on C , poles of order k can be
considered as zeroes of order −k and the divisor
(f ) =

∑
x∈C ordx(f )x is called principal and its degree vanishes:

deg(f ) =
∑

x∈C ordx(f ) = 0.
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By construction, divisors form an additive group Div(C ) and, as
the meromorphic functions contitute a field K (C ) having the
property that the order of a product is the sum of the orders,
principal divisors constitute a subgroup Div0(C ).

The quotient group Pic(C ) = Div(C )/Div0(C ), that is the group
of classes of divisors modulo principal divisors, is called the Picard
group of C .
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If ω and ω′ are two meromorphic differential 1-forms on C ,
ω′ = f ω for some f ∈ K (C )∗ (the set of invertible elements of
K (C )), div(ω′) = div(ω) + (f ) and therefore the class of div(ω)
mod (Div0(C )) is unique: it is called the canonical class of C and
one can show that its degree is deg(ω) = 2g − 2.
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For instance, if g = 0, C is the Riemann sphere Ĉ and the
standard 1-form is ω = dz on the open subset C.

Since to have a local chart at infinity we must use the change of
coordinate ξ = 1

z and since dξ = −dz
z2 , we see that, on Ĉ, ω

possesses no zero and a single double pole at infinity.

Hence deg(ω) = −2 = 2g − 2.

For g = 1 (elliptic case) deg(ω) = 0 and there exists holomorphic
nowhere vanishing 1-forms. As C ' C/Λ (Λ a lattice), one can
take ω = dz .
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To any divisor D one can associate what is called a linear system,
that is the set of meromorphic functions on C whose divisor (f ) is
greater than −D :

L(D) = {f ∈ K (C )∗ : (f ) + D ≥ 0} ∪ {0}

Since a holomorphic function on C is necessarilly constant
(Liouville theorem), we have L(0) = C. One of the most
fundamental theorem of Riemann’s theory is the theorem due to
himself and his disciple Gustav Roch:
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Riemann-Roch theorem.
dim L(D) = deg(D) + dim L(ω − D)− g + 1.

If dim L(D) is noted `(D), we get

`(D)− `(ω − D) = deg(D)− g + 1

Corollary. `(ω) = 2g − 2 + 1− g + 1 = g (since `(0) = 1).
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A very important conceptual improvement of RR is due to Pierre
Cartier in the 1960s using the new tools of sheaf theory and
cohomology.

Let O = OC be the structural sheaf of rings O (U) of holomorphic
functions on the open subsets U of C , and K = KC the sheaf of
fields K (U) of meromorphic functions.
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To any divisor D, Cartier was able to associate a line bundle on C
with a sheaf of sections O (D).

Then he has shown that the C-vector space of global sections of
O (D) can be identified with L (D), i.e. L (D) = H0 (C ,O (D)).

This cohomological interpretation is fundamental and allows a
deep “conceptual” cohomological interpretation of RR using the
fact that dim L(D) = dim H0 (C ,O (D)).
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Divisors and classical Riemann-Roch (surfaces)

For surfaces S over C, RR is more involved. Divisors are now
Z-linear combinations no longer of points but of curves Ci .

One has to use what is called the intersection number of two
curves C1 • C2 (and of divisors D1 • D2).

For two curves in general position one defines C1 • C2 in an
intuitive way as the sum of the points of intersection.
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One shows that, as the base field C is algebraically closed, this
number is invariant by linear equivalence.

One shows also that for any divisors D1 and D2, even when
D1 = D2, there exist D ′1 ∼ D1 and D ′2 ∼ D2 which are in general
position.

One then defines D1 • D2 = D ′1 • D ′2.
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The RR theorem is then

j=2∑
j=0

(−1)j dim H j(S ,O (D)) =
1

2
D • (D − KS) + χ (S)

with χ (S) = 1 + pa, pa being the “arithmetic genus”.
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What is called Serre duality says that

dim H2(S ,O (D)) = dim H0(S ,O (KS − D))

Now, dim H0 and dim H2 are ≥ 0 while − dim H1 is ≤ 0, so one
gets the RR inequality :

`(D) + `(KS − D) ≥ 1

2
D • (D − KS) + χ (S)
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RR for curves over Fq

From Artin to Weil, the theory of compact Riemann surfaces has
been transfered to the intermediary case of the curves C/Fq.
Schmidt and Hasse transfered the RR theorem.

A fundamental consequence was that ZC (T ) not only satisfies a
functional equation but is a rational function of T .
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For instance, let us consider the simplest case K = Fq (T )
(analogous to the simplest number field Q).

Each unitary polynomial P (T ) = T m + a1T m−1 + . . .+ am of
degree m gives a contribution (qm)−s to the additive (Dirichlet)
formulation of ZK (T ) since the norm of its ideal is qm.

But there are qm such polynomials since the m coefficients aj

belong to Fq. So{
ζK (s) =

∑m=∞
m=0 qm (qm)−s = 1

1−q1−s

ZC (T ) = 1
1−qT
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Hence, as ZC (T ) is a rational function of T , it has a finite
number of zeroes t1, . . . , tM and therefore, the zeroes of ζC (s) are
organized in a finite number of arithmetic progressions ρj + k 2πi

log(q)

with q−ρj = tj .

This is a fundamental difference with the arithmetic case,
which makes the proof of RH easier.
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The Frobenius

But in the Fq case, a completely original phenomenon appears.

A fundamental property of any finite field Fq is that xq = x for
every x . So, one can consider the automorphism ϕq of Fq,
ϕq : x 7→ xq (it is an automorphism) and retrieve Fq as the field of
fixed points of ϕq.

ϕq is called the Frobenius morphism.
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For a curve C/Fq, the Frobenius ϕq acts, for every r , on the set of
points C (Fqr ) with coordinates in Fqr , and the number
Nr = N (qr ) of points of C rational over Fqr is the number of fixed
points of the Frobenius ϕqr .

So the generating counting function ZC (T ) counts fixed points
and has to do with the world of trace formulas counting fixed
points of maps.

In particular, N1 = C (Fq) = #ϕFix
q =

∣∣Ker
(
ϕq − Id

)∣∣. It is like a
“norm”.
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RH for elliptic curves (Schmidt and Hasse)

Schmidt was the first to add the point at infinity (projective
curves) and to understand that, in the case of K/Fq (T ), the
functional equation of ζC was correlated to the duality between
divisors D and D − K in Riemann’s theory. As Cartier says

“on voit se manifester ici l’une des premières apparitions
de la tendance à la géométrisation dans l’étude de la
fonction ζ.” (p. 69)
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Schmidt proved that

ZC (T ) =
L (T )

(1− T ) (1− qT )
with L (T ) a polynomial of degree 2g

He showed also that L (T ) is in fact the characteristic polynomial
of the Frobenius ϕq, i.e. the “norm” (the determinant) of
Id − Tϕq.
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So

ZC (T ) =
det
(
Id − Tϕq

)
(1− T ) (1− qT )

and ZC (T ) satisfies the functional equation

ZC

(
1

qT

)
= q1−g T 2−2g ZC (T )

For ζC the symmetric functional equation is

q(g−1)sζC (s) = q(g−1)(1−s)ζC (1− s)
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Then, in three fundamental papers of 1936, Hasse proved RH for
elliptic curves.

As g = 1, L (T ) is a polynomial of degree 2. And as C is elliptic, it
has a group structure (C is isomorphic to its Jacobian J (C )),
which is used as a crucial feature in the proof.

Indeed, one can consider the group endomorphisms ψ : C → C and
their graphs Ψ in C × C , what Hasse called correspondences.
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For g = 1, ZC (T ) satisfies the functional equation

ZC

(
1

qT

)
= ZC (T )

and ζC the symmetric functional equation

ζC (s) = ζC (1− s)

as Riemann’s ζ .
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Then, Hasse proved that, due to the functional equation, L (T ) is
the polynomial L (T ) = 1− c1T + qT 2 with

L (1) = 1− c1 + q = N1 = |C (Fq)|

So
L (T ) = (1− ωT ) (1− ωT )

with ωω = q and ω + ω = c1 the inverses of the zeroes since

L (T ) = ωω

(
T − 1

ω

)(
T − 1

ω

)
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As |ω| = |ω|, we have |ω| =
√

q. But, since ζC (s) = ZC (q−s), the

zeroes of ζC (s) correspond to q−sj = (ωj)
−1. So we must have

∣∣q−sj
∣∣ == |q|−<(sj) = q−<(sj) =

1

|ωj |
=

1
√

q
= q−

1
2

and < (s) = 1
2 .

Hence, the RH for elliptic curves over Fq.
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We can rewrite RH in a way easier to generalize.

One has |C (Fq)| − q − 1 = −c1 with c1 = ω + ω = 2< (ω). But
ω =
√

qe iα and therefore < (ω) =
√

q cos (α). So
c1 = 2

√
q cos (α) and RH is equivalent to

||C (Fq)| − q − 1| ≤ 2q
1
2
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Weil’s “conceptual” proof of RH

To tackle the case g > 1, Weil had to take into account that C is
no longer isomorphic to its Jacobian.

He worked on Fq (to have a good intersection theory) and in the
square S = C × C of the curve C extended to Fq.

For a description of Weil’s proof, see e.g. James Milne’s paper
“The Riemann Hypothesis over finite fields from Weil to the
present day” (2015).
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He used the graph Φq of the Frobenius ϕq on Fq. It is a divisor of

the surface S = C × C .

As the Fq-points of C , i.e. C (Fq), are the fixed points of ϕq, their
number is the intersection number: Φq •∆ where ∆ is the
diagonal of S = C × C .
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Then Weil applied Hurwitz trace formula (1887), which implies
that:

Φq •∆ = Φq • ξ1 − Tr
(
ϕq | H1

(
C
))

+ Φq • ξ2

= 1− Tr
(
ϕq | H1

(
C
))

+ q

with ξ1 = e1 × C and ξ2 = C × e2 (ej points of C )
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The key point is that, in this geometric context, RH for curves
over Fq is equivalent to the negativity condition D • D ≤ 0 for all
D of degree = 0.

This is equivalent to the Castelnuovo-Severi inequality for every
divisor D :

D • D ≤ 2 (D • ξ1) (D • ξ2)
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If we apply this to the Frobenius divisor Φq when C has
genus g we can deduce RH.
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It is to prove Castelnuovo-Severi inequality that RR enters the
stage with the inequality

`(D)− `(KS − D) ≥ 1

2
D • (D − KS) + χ (S)
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Connes’ strategy : “a universal object for the localization
of L functions”

To summarize: Weil introduced an intermediate world, the world of
curves over finite fields Fq. He reformulated the RH in this new
framework and used tools inspired by algebraic geometry and
cohomology over C to prove it.

It is well known that the generalization of this result to higher
dimensions led to his celebrated conjectures and that the strategy
for proving them has been at the origin of the monumental
programme of Grothendieck (schemes, sites, topöı, etale
cohomology).
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But after Deligne’s proof of Weil’s conjectures in 1973 the original
RH remained unbroken.

Some years ago, Alain Connes proposed a new strategy consisting
in constructing a new geometric framework for arithmetics where
Weil’s proof could be transfered by analogy.

The fundamental discovery is that for finding a strategy, one needs
to work in the world of “tropical algebraic geometry in
characteristic 1”, and apply it to the noncommutative space of the
classes of adeles.
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In his 2014 Lectures at the Collège de France he said that he was
looking since 18 years for a geometric interpretation of adeles and
ideles in terms of algebraic geometry à la Grothendieck.

In his essay he explains:

“It is highly desirable to find a geometric framework for
the Riemann zeta function itself, in which the Hasse-Weil
formula, the geometric interpretation of the explicit
formulas, the Frobenius correspondences, the divisors,
principal divisors, Riemann-Roch problem on the curve
and the square of the curve all make sense. (p.8)”

But this is another story.
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