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Abstract

My purpose is to comment some claims of André Weil (1906-1998) in
his letter of March 26, 1940 to his sister Simone, in particular the fol-
lowing quotation:“it is essential, if mathematics is to stay as a whole, to
provide a unification, which absorbs in some simple and general theories
all the common substrata of the diverse branches of the science, suppress-
ing what is not so useful and necessary, and leaving intact what is truly
the specific detail of each big problem. This is the good one can achieve
with axiomatics.” For Weil (and Bourbaki) the main problem was to find
“strategies” for finding complex proofs of “big problems”. For that, the
dialectic balance between general structures and specific details is crucial.
I will focus on the fact that, for these creative mathematicians, the con-
cept of structure is a functional concept, which has a “strategic” creative
function.

The “big problem” here is Riemann Hypothesis (RH). Artin, Schmidt,
Hasse and Weil introduced an intermediary third world between, on the
one hand, Riemann original hypothesis on the non trivial zeroes of the
zeta function in analytic theory of numbers, and, on the other hand, the
algebraic theory of compact Riemman surfaces. The intermediary world is
that of projective curves over finite fields of characteristic p ≥ 2. RH can
be translated in this context and can be proved using sophisticated tools of
algebraic geometry (divisors, Riemann-Roch theorem, intersection theory,
Severi-Castelnuovo inequality) coupled with the action of Frobenius maps
in characteristic p ≥ 2. Recently, Alain Connes proposed a new strategy
and constructed a new topos theoretic framework à la Grothendieck were
Weil’s proof could be transferred by analogy back to the original RH.
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1 Axiomatics, analogies, conceptual structures

My purpose is to comment some claims of André Weil (1906-1998) in his cele-
brated letter [22] written in prison to his sister Simone (March 26, 1940).

Let us begin with the following quotation:

“It is hard for you to appreciate that modern mathematics has be-
come so extensive and so complex that it is essential, if mathematics
is to stay as a whole and not become a pile of little bits of research,
to provide a unification, which absorbs in some simple and general
theories all the common substrata of the diverse branches of the sci-
ence, suppressing what is not so useful and necessary, and leaving
intact what is truly the specific detail of each big problem. This
is the good one can achieve with axiomatics (and this is no small
achievement). This is what Bourbaki is up to.” (p. 341)

I want to emphasize four points:

1. the unity of mathematics (“to stay as a whole”);

2. the axiomatization of general abstract structures; but also

3. the requirement of “leaving intact what is truly the specific detail of each
big problem”;

4. the emphasis on “big problems”.

For Weil (and Bourbaki) the dialectic balance between general structures
and specific details was crucial. A “big problem” needs a conceptually complex
proof which is a very uneven, rough, rugged multi -theoretical route in a sort
of “Himalayan chain” whose peaks seem inaccessible. It cannot be understood
without the key thesis of the unity of mathematics since its deductive parts are
widely scattered in the global unity of the mathematical universe. It is holistic
and it is this holistic nature I am interested in.

As was emphasized by Israel Kleiner for Wiles’ proof of the Shimura-Taniyama-
Weil conjecture (leading to Fermat theorem)1:

“What area does the proof come from? It is unlikely one could give
a satisfactory answer, for the proof brings together many important
areas – a characteristic of recent mathematics.”

As was also emphasized by Barry Mazur:

“The conjecture of Shimura-Taniyama-Weil is a profoundly unifying
conjecture – its very statement hints that we may have to look to
diverse mathematical fields for insights or tools that might lead to
its resolution.”.

1For a summary of the proof, see Petitot [15].
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In his letter to Simone, Weil described in natural language his moves towards
Riemann Hypothesis and he used a lot of military metaphors to emphasize the
fact that finding a proof of a so highly complex conjecture is a problem of
strategy :

“find an opening for an attack (please excuse the metaphor)”, “open
a breach which would permit one to enter this fort (please excuse the
straining of the metaphor)”,“it is necessary to inspect the available
artillery and the means of tunneling under the fort (please excuse,
etc.)”. (...) “It will not have escaped you (to take up the military
metaphor again) that there is within all of this great problems of
strategy”.

My purpose is not here to discuss philosophically Bourbaki’s concept of
structure as mere “simple and general” abstraction. It has been done by many
authors (see e.g. Leo Corry’s [8] “Nicolas Bourbaki: Theory of Structures”).
And many authors have also criticized the very limited Bourbaki’s conception
of logic.

My purpose is rather to focus on the fact that, for these outstanding creative
mathematicians, the concept of “structure” is a functional concept, which has
in general a “strategic” creative function. Once again, the priority is “leaving
intact what is truly the specific detail of each big problem”. As Dieudonné
always emphasized it, the “bourbakist choice” cannot be understood without
references to “big problems”. It concerns the context of discovery rather than
the context of justification.

There is a fundamental relation between the holistic and “organic” concep-
tion of the unity of mathematics and the thesis that some analogies can be cre-
ative and lead to essential discoveries. It is a leitmotive since the 1948 Bourbaki
(alias Dieudonné) Manifesto [2]: “L’architecture des mathématiques”. The con-
stant insistence on the “immensity” of mathematics and on its “organic” unity,
the claim that “to integrate the whole of mathematics into a coherent whole”
(p. 222) is not a philosophical question as for Plato, Descartes, Leibniz or “lo-
gistics”, the constant critique against the reduction of mathematics to a tower
of Babel juxtaposing separed “corners”, all these declarations are not vanities of
elitist mathematicians. They have a very precise, strictly technical function: to
construct complex proofs in navigating into this holistic conceptually coherent
world.

“The “structures” are tools for the mathematician.” ([2], p. 227)

“Each structure carries with it its own language” and to discover a structure in
a concrete problem

“illuminates with a new light the mathematical landscape” (Ibid.
p. 227)

In [8] Leo Corry has well formulated the key point:
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“In the “Architecture” manifesto, Dieudonné also echoed Hilbert’s
belief in the unity of mathematics, based both on its unified method-
ology and in the discovery of striking analogies between apparently
far-removed mathematical disciplines.” ([8], p. 304)

And indeed, Dieudonné claimed that

“Where the superficial observer sees only two, or several, quite dis-
tinct theories, lending one another “unexpected support” through
the intervention of mathematical genius, the axiomatic method teaches
us to look for the deep-lying reasons for such a discovery”.

It is important to understand that structures are guides for intuition and to
overcome

“the natural difficulty of the mind to admit, in dealing with a con-
crete problem, that a form of intuition, which is not suggested di-
rectly by the given elements, [...] can turn out to be equally fruitful.”
([2], p. 230)

So

“more than ever does intuition dominate in the genesis of discovery”
(Ibid. p. 228)

and intuition is guided by structures.

2 Progressing through a mathematical Hymalayan
chain

Any proof of Riemann Hypothesis (RH) would be highly complex and unfold in
the labyrinth of many different theories. As Alain Connes explains in “An essay
on Riemann Hypothesis” ([4] p. 2) we would have (note the strategy metaphor
as in Weil)

“to navigate between the many forms of the explicit formulas [see
below] and possible strategies to attack the problem, stressing the
value of the elaboration of new concepts rather than ‘problem solv-
ing’ .”

And here “concepts” mean “structures”.
In the history of RH we meet an incredible amount of deep and heterogeneous

mathematics.

1. Riemann’s use of complex analysis in arithmetics: ζ-function, the duality
between the distribution of primes and the localization of the non trivial
zeroes of ζ (s), RH.
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2. The “algebraization” of Riemann’s theory of complex algebraic (projec-
tive) curves (compact Riemann surfaces) by Dedekind and Weber.

3. The transfer of this algebraic framework to the arithmetics of algebraic
number fields and the interpretation of integers n as “functions” on primes
p. It is the archeology of the concept of spectrum (the scheme Spec(Z)).

4. The move of André Weil introducing an intermediary third world (his
“Rosetta stone”) between arithmetics and the algebraic theory of compact
Riemann surfaces, namely the world of projective curves over finite fields
(characteristic p ≥ 2). The translation of RH in this context and its far
reaching proof using tools of algebraic geometry (divisors, Riemann-Roch
theorem, intersection theory, Severi-Castelnuovo inequality) coupled with
the action of Frobenius maps in characteristic p ≥ 2.

5. The generalization of RH to higher dimensions in characteristic p ≥ 2. The
Weil’s conjectures and the formal reconstruction of algebraic geometry
achieved by Grothendieck: schemes, sites, toposes, etale cohomology, etc.
Deligne’s proof of Weil’s conjectures. Alain Connes [4] emphasized the
fact that, through Weil’s vision, Grothendieck’s culminating discoveries
proceed from RH:

“It is a quite remarkable testimony to the unity of mathematics that the
origin of this discovery [topos theory] lies in the greatest problem of anal-
ysis and arithmetic.” (p. 3)

6. Connes’ return to the original RH in pure arithmetics by translating al-
gebraic geometry à la Grothendieck (toposes, etc.) and Weil’s proof in
characteristic p ≥ 2 to the world of characteristic 1, that is, the world of
tropical geometry and idempotent analysis.

3 Riemann’s ζ-function

3.1 The distribution of primes

The story of RH begins with the enigma of the distribution of primes. The
multiplicative structure of integers (divisibility) is awful.

For x ≥ 2, let π(x) be the number of primes p ≤ x. It is a step func-
tion increasing of 1 at every prime p (one takes π(p) = 1

2 (π(p−) + π(p+)) the
mean value at the jump). From Legendre (1788) and the young Gauss (1792)
to Hadamard (1896) and de la Vallée Poussin (1896) it has been proved the
asymptotic formula called the prime number theorem:

π(x) ∼ x

log(x)
for x→∞ .
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3.2 Definitions of ζ(s)

The zeta function ζ(s) encodes arithmetic properties of π(x) in analytic struc-
tures. Its initial definition is extremely simple and led to a lot of computations
at Euler time:

ζ(s) =
∑
n≥1

1
ns

which is a series – now called a Dirichlet series – absolutely convergent for
integral exponents s > 1. Euler already proved ζ(2) = π2/6 (Mengoli or Basel
problem, 1735) and ζ(4) = π4/90.

A trivial expansion and the existence of a unique decomposition of any in-
teger in a product of primes show that, in the convergence domain, the sum
is equal to an infinite Euler product (Euler 1748) containing a factor for each
prime p (we note P the set of primes):

ζ(s) =
∏
p∈P

(
1 +

1
ps

+ . . .
1
pks

+ . . .

)
=
∏
p∈P

1
1− 1

ps

.

The local ζ-functions ζp(s) =
∑
k≥0

1
pks

= 1
1− 1

ps
are the ζ-functions of the local

rings Zp of p-adic integers (see below section 5.4).
The ζ-function is a symbolic expression associated to the distribution of

primes, which is well known to have a very mysterious structure. Its fantas-
tic strength as a tool comes from the fact that it can be extended by analytic
continuation to a meromorphic function on the entire complex plane. It has a
simple pole at s = 1 with residue 1.

The prime number theorem is a consequence of the fact that ζ(s) has no
zeroes on the line 1 + it. It as been improved with better approximations by
many great arithmeticians.

Instead of π(x) one can use the Tchebychev-Mangoldt function ψ(x) which
counts not the number of primes p ≤ x but the number of powers pk ≤ x of p
each counted with the weight log (p):

ψ(x) =
∑

p,k: pk≤x

log(p) (where ψ(x) is mean-valued at the steps).

Reformulated with respect to the ψ function, the prime number theorem says
that ψ(x) ∼ x.

3.3 Mellin transform, theta function and functional equa-
tion

It was discovered by Riemann in his celebrated 1859 paper [16] “Über die Anzahl
der Primzahlen unter einer gegeben Grösse” (“On the number of prime numbers
less than a given quantity”), that ζ(s) has also beautiful properties of symmetry.
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This can be made explicit noting that ζ(s) is related by a Mellin transform (a
sort of Fourier transform) to the theta function which has beautiful properties
of automorphy. Automorphy means invariance of a function f(τ) defined on
the Poincaré hyperbolic half complex plane H (complex numbers τ of positive
imaginary part =(τ) > 0) w.r.t. to a countable subgroup of the group acting on
H by homographies (Möbius transformations) γ(τ) = aτ+b

cτ+d .
The theta function Θ(τ) is defined on the half plane H as the series

Θ(τ) =
∑
n∈Z

ein
2πτ = 1 + 2

∑
n≥1

ein
2πτ

=(τ) > 0 is necessary to warrant the convergence of
∑
e−n

2π=(τ). Θ(τ) is what
is called a modular form of level 2 and weight 1

2 . Its automorphic symmetries
are:

1. symmetry under translation: Θ(τ +2) = Θ(τ) (level 2, trivial since e2iπ =
1 implies ein

2π(τ+2) = ein
2πτ );

2. symmetry under inversion: Θ(−1
τ ) =

(
τ
i

) 1
2 Θ(τ) (weight 1

2 , proof from
Poisson formula).

If f : R+ → C is a complex valued function defined on the positive reals, its
Mellin transform g(s) is defined by the formula:

g(s) =
∫

R+
f(t)ts

dt

t
.

Let us compute the following Mellin transform:

ζ∗(s) =
1
2
g
(s

2

)
=

1
2

∫ ∞
0

(Θ(it)− 1) t
s
2
dt

t
=
∑
n≥1

∫ ∞
0

e−n
2πtt

s
2
dt

t
.

In each integral, we make the change of variable x = n2πt. The integral becomes:∫ ∞
0

e−xx
s
2−1

(
n2π

)− s2 +1 (
n2π

)−1
dx = n−sπ−

s
2

∫ ∞
0

e−xx
s
2−1dx .

But
∫∞

0
e−xx

s
2−1dx = Γ

(
s
2

)
where Γ (s) =

∫∞
0
e−xxs−1dx is the gamma func-

tion, which is the analytic meromorphic continuation of the factorial function
Γ (n+ 1) = n! to the entire complex plane C. Γ satisfies the functional equation:

Γ (s+ 1) = sΓ (s)

and has poles at s ∈ −N. The figure 1 shows its graph along the real axis.
So, we have

ζ∗(s) = ζ(s)Γ
(s

2

)
π−

s
2 .
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Figure 1: The Γ function on the real axis.

ζ∗(s) (often noted ξ(s)) is called the total (or “completed”) ζ-function. Due
to the automorphic symmetries of the theta function it satisfies a functional
equation (symmetry w.r.t. the critical line < (s) = 1

2 )

ζ∗(s) = ζ∗(1− s)

As an Euler product

ζ∗(s) = π−
s
2 Γ
(s

2

) ∏
p∈P

1
1− 1

ps

The factor π−
s
2 Γ
(
s
2

)
corresponds to what is called the “place at infinity” ∞ of

Q (see below section 5.7) and ζ∗(s) is a product of factors associated to all the
places of Q:

ζ∗(s) =
∏

p∈P∪{∞}

ζ∗p(s)

with ζp(s) = 1
1− 1

ps
for p ∈ P and ζ∞(s) = π−

s
2 Γ
(
s
2

)
3.4 Zeroes of ζ(s)

As ζ(s) is well defined for <(s) > 1, it is also well defined, via the functional
equation of ζ∗, for <(s) < 0, and the difference between the two domains comes
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Figure 2: The graph of the zeta function along the real axis showing the pole
at 1 (left). A zoom shows the trivial zeroes at even negative integers (right).

from the difference of behavior of the gamma function Γ. As ζ∗ is without poles
on ]1,∞[ (since ζ and Γ are without poles), ζ∗ is also, by symmetry, without
poles on ]−∞, 0[. So, as the s = −2k are poles of Γ

(
s
2

)
, they must be zeroes of

ζ (see figure 2). These zeroes are called “trivial zeroes”.
But ζ(s) has also non trivial zeroes ρ, which are necessarily complex and

contained in the strip 0 < < (s) < 1. Due to the functional equation they are
symmetric w.r.t. the critical line < (s) = 1

2 . Their distribution reflects the
distribution of primes and the localization of these zeroes is one of the main
tools for understanding the mysterious distribution of primes.

A pedagogical way for seeing the (non trivial) zeroes (J. Arias-de-Reyna) is
to plot in the s plane the curves < (ζ(s)) = 0 and = (ζ(s)) = 0 and to look at
their crossings (see figure 3).

It is traditional to write the non trivial zeroes ρ = 1
2 + it with t ∈ C. As they

code for the irregularity of the distribution of primes, they must be irregularly
distributed. But the irregularity can concern < (t) and/or = (t). When = (t) 6= 0
we get pairs of symmetric zeroes whose horizontal distance can fluctuate.

An enormous amount of computations from Riemann time to actual su-
percomputers (ZetaGrid: more than 1012 zeroes in 2005) via Gram, Back-
lund, Titchmarsh, Turing, Lehmer, Lehman, Brent, van de Lune, Wedeniwski,
Odlyzko, Gourdon, and others shows that all computed zeroes lie on the critical
line <(s) = 1

2 .

3.5 Riemann Hypothesis

The Riemann Hypothesis (part of 8th Hilbert problem) conjectures that all the
non trivial zeroes of ζ(s) are exactly on the critical line, that is, are of the form
ρ = 1

2 + it with t ∈ R (i.e. = (t) = 0). It is an incredibly strong – still open –
conjecture and an enormous part of modern mathematics has been created to
solve it.

Speiser proved that RH is equivalent to the fact that all folded blue lines
= (ζ(s)) = 0 cross the critical line. One point of intersection (crossing with a
red line < (ζ(s)) = 0) is a non trivial zero and the other is called a Gram point.
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Figure 3: The null-lines of the real part (red) and the imaginary part (blue) of
the zeta function.

Gram points seem to separate the non trivial zeroes (Gram’s law), but it is not
always the case. We meet actually a lot of strange configurations (see figures 4,
5).

So RH is really not evident. As noted by Pierre Cartier, the risk would be
to see a pair of very close “good” zeroes bifurcate into a pair of very close
symmetric “bad” zeroes.

3.6 The problem of localizing zeroes

The problem is, given the explicit definition of ζ (s), to find some informations
on the localization of its zeroes. As was emphasized by Alain Connes, this is
a wide generalization of the problem solved by Galois for polynomials (of one
variable).

4 Riemann’s explicit formula

One of the most “magical” results of Riemann is the explicit and exact formula
linking explicitly and exactly the distribution of primes and the (non trivial)
zeroes of ζ (s).

The idea was to factorize ζ (s) in terms of its trivial (−2n) and non trivial (ρ)
zeroes (all included in the left half-plane < (s) < 1) and to compare this product
with the Euler product defining ζ (s) in the half-plane < (s) > 1. Riemann
anticipated this possibility, which was later technically validated by Weierstrass
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Figure 4: Configuration where a zero (crossing of folded red and blue lines) is
nested. Alternating Gram→zero→Gram→zero.
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Figure 5: Lehmer’s example of two extremely close consecutive zeroes between
two Gram points. (We are at the height of the 26 830-th line)
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Figure 6: Two classical approximations of the distribution of primes: x
log(x) (in

gray) and Riemann’s R(x) (in blue).

and Hadamard for entire functions with appropriate growth conditions. It can
be shown that the entire function (s− 1) ζ (s) satisfies these conditions and this
leads to the product formula (see Paul Garrett [10]):

ζ (s) = ea+bss
∏
ρ

((
1− s

ρ

)
e
s
ρ

)∏
n≥1

((
1 +

s

2n

)
e−

s
2n

)
.

Computations lead then to Riemann’s exact explicit formula for π (x). We
have seen that, for x ≥ 2, π(x), the number of primes p ≤ x, satisfies the
asymptotic formula (prime number theorem) π(x) ∼ x

log(x) for x→∞ . A better
approximation, due to Gauss (1849), is π(x) ∼ Li(x) where the logarithmic
integral is Li(x) =

∫ x
2

dt
log(t) (for small n, π(x) < Li(x), but Littlewood proved

in 1914 that the inequality reverses an infinite number of times). A still better
approximation was given by a Riemann formula R(x). Figure 6 shows the step
function π(x) and its two approximations x

log(x) (in gray) and R(x) (in blue).
Let

f(x) =
k=∞∑
k=1

1
k
π
(
x

1
k

)
.

π(x) can be retrieved from f(x) by the inverse transformation (where µ is the
number of prime factors of m):
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π(x) =
m=∞∑

m=1, m square free

(−1)µ
1
m
f
(
x

1
m

)
.

In his 1859 paper [16], Riemann proved the following (fantastic) explicit formula:

f(x) = Li(x)−
∑
ρ

Li (xρ) +
∫ ∞
x

1
t2 − 1

dt

t log t
− log 2

A variant of the explicit formula can be found using instead of π(x) the
Tchebychev-Mangoldt function ψ(x) (see above). In this context, the formula
becomes

ψ(x) =
∑

p,k: pk≤x

log(p) =
1

2πi

∫ c+i∞

c−i∞

(
−ζ
′(s)
ζ(s)

)
xs
ds

s
, c > 1

= x−
∑
ρ

xρ

ρ
− log(2π)− 1

2
log
(

1− 1
x2

)
The approximation of π(x) using Riemann’s explicit formula up to the twen-

tieth zero of ζ(s) is shown in figure 7. We see that the red curve departs from
the approximation R(x) and that its oscillations draw near the step function
π(x).

5 Local/global in arithmetics

Riemann’s explicit formula concerns only ζ(s) and therefore only the p-adic
places of Q (with completions Qp). But we know that the structural formulas
concern ζ∗(s) with its Γ-factor and must take into account the Archimedean
real place ∞ (with completion R).

This step was accomplished by André Weil. To explain this breakthrough,
let us go to the deep analogies discovered at the end of the XIXth century
between arithmetics and geometry.

5.1 Dedekind-Weber analogy

One of the main idea, introduced by Dedekind and Weber in their celebrated
1882 paper [9] “Theorie der algebraischen Funktionen einer Veränderlichen”,
was to consider integers n as kinds of “polynomial functions” over the sets P of
primes p, “functions” having a value and an order at every “point” p ∈ P.

These values and orders being local concepts, Dedekind and Weber had to
define the concept of localization in a purely algebraic manner. Dedekind used
his concept of ideal he worked out to understand the “ideal numbers” introduced
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Figure 7: The approximation (red curve) of π (x) by Riemann’s explicit formula
up to the twentieth zero of ζ (s).

by Kummer. If p is prime, the principal ideal (p) = pZ of p in Z is a prime (and
even maximal) ideal. To localize the ring Z at p means to delete all the ideals
a that are not included into (p) and to reduce the arithmetic of Z to the ideals
a ⊆ (p).

For that, we note that if an ideal a contains an invertible element then it
contains 1 and is therefore trivial (improper): a = Z. So, if we add the inverses
of the elements of the complementary multiplicative subset S of (p), S = Z−(p),
we “kill” all the ideals a such that a ∩ S 6= ∅, that is, precisely, the a * (p).
This partial quotient Z(p) is a local ring (“local” means: with a unique maximal
ideal) intermediary between Z and Q (Q being the localization of the prime
ideal {0}).

Z(p) is arithmetically much simpler than the global ring Z but more compli-
cated than the global fraction field Q since it preserves the arithmetic structure
inside (p). The maximal ideal of Z(p) is m(p) = pZ(p) and the residue field is
Z(p)/pZ(p) = Z/pZ = Fp. In the local ring Z(p) every ideal a is equal to some
power (p)k of (p). As (p)k ⊃ (p)k+1 we get a decreasing sequence – what is
called a filtration – of ideals which exhausts the arithmetic of Z(p). The succes-
sive quotients Z(p)/p

k+1Z(p) correspond to the expansion of natural integers n
in base p. Indeed, to make pk+1 = 0 is to approximate n by a sum

∑i=k
i=0 nip

i

with all ni ∈ Fp. These quotients constitute a “projective system” and their
projective limit yields the ring Zp of p-adic integers:

Zp = lim←−
Z
pkZ

.

If n ∈ Z, n is like a polynomial function on the “space” of primes p and to
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look at n “locally” at p is to look at n in the local ring Z(p), while the “value”
of n at p is its class in Fp, i.e. n modulo p. This is the origin of the modern
concept of spectrum in algebraic geometry, and in this perspective Q becomes
the “global” field of “rational functions” on this “space”.

5.2 Weil’s description of Dedekind-Weber’s analogy

In his letter to Simone, Weil describes very well Dedekind’s analogy:

“[Dedekind] discovered that an analogous principle permitted one to
establish, by purely algebraic means, the principal results, called “el-
ementary”, of the theory of algebraic functions of one variable, which
were obtained by Riemann by transcendental [analytic] means.”

Since Dedekind’s analogy is algebraic it can be applied to other fields than C
according to the analogy:

Integers ←→ Polynomials
Divisibility of integers ←→ Divisibility of polynomials

Rational numbers ←→ Rational functions
Algebraic numbers ←→ Algebraic functions

Dedekind’s “different” ideal ←→
Hilbert

Riemann-Roch theorem

Abelian extensions ←→ Abelian functions
Classes of ideals ←→ Divisors

And Weil adds

“At first glance, the analogy seems superficial. [...] But Hilbert went
further in figuring out these matters.”

5.3 Valuations and ultrametrics

Dedekind and Weber defined the order of n ∈ N at p using the decomposition
of n into primes. If n =

∏i=r
i=1 p

vi
i , vi is called the valuation of n at pi: vpi(n).

It is trivial to generalize the definition to Z and Q. So the valuation vp(x) of
x ∈ Q is the power of p in the decomposition of x in prime factors. It satisfies
“good properties”:



vp(0) =∞ by convention
vp(n) = 0 if n is prime to p
vp(n/m) = vp(n)− vp(m)
vp(xy) = vp(x)vp(y)
vp(x+ y) ≥ Inf (vp(x), vp(y))
Z = {x ∈ Q : vp (x) ≥ 0}
(p) = pZ = {x ∈ Q : vp (x) ≥ 1}
(p)k = {x ∈ Q : vp (x) ≥ k}

17



The fundamental point is that |x|p = p−vp(x) is a norm on Q (|0|p = 0
because by definition vp(0) =∞) defining a non-Archimedean metric dp (x, y) =
|x− y|p which satisfies the ultrametric property

|x+ y|p ≤ Max
(
|x|p , |y|p

)
.

This inequality is much stronger than the triangular inequality of classical met-
rics.

It must be emphasized that the ultrametricity property is non intuitive since
the size of pk become smaller and smaller as k increases and vanishes for k =∞.

It must also be emphasized that the relative positions induced by the p-adic
metric between the rationals change radically with p. As a set, Q remains the
same, but as metric spaces the different p-adic Q are incommensurable.

5.4 p-adic numbers

The idea of expanding natural integers along the base p with a metric such that∣∣pk∣∣
p
−→ 0
k→∞

leads naturally to add a “point at infinity” to the localization Z(p).

This operation is a completion procedure for the metric |•|p associated to the
valuation vp and is formalized by the concept of p-adic number introduced by
Hensel.

We have seen that the successive rings Z
pkZ with the canonical projections

Z
pkZ →

Z
p`Z for ` > k constitute a projective system

· · · → Z
pk+1Z

→ Z
pkZ

→ · · · → Z
pZ

= Fp

where the arrows are the natural projections. Zp is the projective limit

Zp = lim←−
Z
pkZ

The “profinite” object Zp is a local ring with maximal ideal pZp, residue field
Zp
pZp = Z

pZ = Fp and fraction field Qp = Q⊗Z Zp = Zp
(

1
p

)
. We have:

Zp =
{
x ∈ Qp : |x|p ≤ 1

}
Mp = pZp =

{
x ∈ Qp : |x|p < 1

}
Zp/Mp = Fp

Zp is the closure of Z(p) in Qp. It is compact (due to Tychonoff theorem,
in fact the maximal compact subring of Qp), totally discontinuous as limit of
discrete structures, and is the completion of Z for the p-adic absolute value
|x|p = p−vp(x).

For a polynomial P (x) ∈ Z [x], to have a root in Zp is to have a root mod pn

for every n ≥ 1.
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5.5 Hensel’s geometric analogy

In Bourbaki’s Manifesto [2], Dieudonné emphasizes Hensel’s unifying analogy

“where, in a still more astounding way, topology invades a region
which had been until then the domain par excellence of the discrete,
of the discontinuous, viz. the set of whole numbers.” (p. 228)

As we have already noted, the geometrical lexicon of Hensel’s analogy can
be rigorously justified using the concept of scheme:

1. primes p are the (closed) points of the spectrum Spec(Z) of Z,

2. the local rings Z(p) are the fibers of the structural sheaf O of Z,

3. the finite prime fields Fp, are the residue fields at the points p,

4. integers n are global sections of O, and

5. Q is the field of global sections of the sheaf of fractions of O.

In this context, Zp and Qp correspond to the localization of global sections,
analogous to what are called germs of sections in classical differential, analytic
or algebraic geometry.

5.6 The local p-adic field

So, the local field Qp is the completion of the global field Q for the valuation
vp(x). Z is a subring of Zp and Q is a dense subfield of Qp. A way of trying to
understand the non-intuitive topology of Zp is to consider that the ideal pnZp
is the closed ball of radius 1

pn .
We must note that the local p-adic field Qp is of characteristic 0 while the

residue field Z
pZ = Zp

pZp = Fp is of characteristic p. The lifting of arithmetic
properties from Fp to Qp is a crucial problem.

We must note also that the algebraic closure Qp of Qp is not complete. Its
completion is C endowed with a non classical metric.

The ring of p-adic integers contains all the (p− 1) th roots of unity but in a
sophisticated way. For instance, in Z2 we have

−1 =
k=∞∑
k=0

2k

In general, the classical series 1
1−p = 1 + p+ · · ·+ pn + · · · is always convergent

in Zp and we can write −1 = p−1
1−p =

n=∞∑
n=0

(p− 1) pn.
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5.7 Places

On Q there exist not only the p-adic valuations of the “finite” primes p but
also the real absolute value |x|, which can be interpreted as associated to an
“infinite point” of Spec(Z) and is conventionally written |x|∞. To emphasize the
geometrical point-like intuition, the finite primes and the infinite “point” are all
called places. To work in arithmetics with all places is a necessity if we want to
specify the analogy with projective (birational) algebraic geometry (Riemann
surfaces) and transfer some of its results (as those of the Italian school of Severi,
Castelnuovo, etc.) to arithmetics. Indeed, in projective geometry the point ∞
is on a par with the other points.

Weil emphasized strongly this point from the start. Already in his 1938 paper
[21] “Zur algebraischen Theorie des algebraischen Funktionen”, he explained
that he wanted to reformulate Dedekind-Weber in a birationally invariant way.
In his letter to Simone, he says

“In order to reestablish the analogy [lost by the singular role of ∞
in Dedekind-Weber], it is necessary to introduce, into the theory
of algebraic numbers, something that corresponds to the point at
infinity in the theory of functions.”

This is achieved by valuations, places and Hensel’s p-adic numbers (plus
Hasse, Artin, etc.). So, Weil strongly stressed the use of analogies as a discovery
method :

“If one follows it in all of its consequences, the theory alone permits
us to reestablish the analogy at many points where it once seemed
defective: it even permits us to discover in the number field simple
and elementary facts which however were not yet seen.”

5.8 Local and global fields

All the knowledge gathered during the extraordinary period initiated by Kum-
mer in arithmetics and Riemann in geometry, led to the recognition of two great
classes of fields, local fields and global fields.

In characteristic 0, local fields are R, C and finite extensions of Qp. In char-
acteristic p, local fields are the fields of Laurent series over a finite field Fpn and
their ring of integers are those of the corresponding power series. Local fields
possess a discrete valuation v and are complete for the associated metric. Their
ring of integers is local. Finite extensions of local fields are themselves local.

In characteristic 0, global fields are finite extensions K of Q, i.e. algebraic
number fields. In characteristic p, global fields are the fields of rational functions
of algebraic curves over a finite field Fpn . The completions of global fields at their
different places are local fields. They satisfy the product formula, where V is the
set of places ν:

20



∏
ν∈V
|x|ν = 1 for every element x.

We note a fundamental difference between the cases of characteristic 0 and p.
In the later case, all structures are defined over a common base field, namely the
prime field Fp. It is not the case in characteristic 0 and this lack of a common
base is one of the main reason of the difficulty of the arithmetic case. It has been
overcome only very recently with the introduction of the paradoxical “field” F1

of characteristic 1 ! We will return to this breakthrough in the last part of this
study.

6 The adelic context

André Weil was the first to understand that the natural context for the ex-
plicit formula and the RH was the adelic context, that is the embedding of the
global field Q into the restricted product of its p-adic and real completions Qp

and R. This method makes it possible to process all characteristics 0 and p
simultaneously and in parallel.

6.1 Definition of adeles

If K is a global field, that is an algebraic number field or the field of rational
functions of an algebraic curve over a finite field Fpn , it is embedded as a discrete
subfield in its ring of adeles AK, which is the restricted product of its completions
Kν for its different places.

Note that, even when K is a dense subfield of its completions Kν , it is nev-
ertheless a discrete subfield of its ring of adeles AK because the topologies of
the different Kν are incompatible. AK is topologically a locally compact ring
(neither discrete nor compact, it is locally compact because it is a restricted
product). It is also semi-simple (with trivial Jacobson radical) and K is cocom-
pact in it.

According to a theorem of Iwasawa, this situation characterizes conceptually
global fields and means that the arithmetics of K is correlated to the analysis
of AK. As says Alain Connes ([4], p.5),

“it is the opening door to a whole world which is that of automorphic
forms and representations, starting in the case of GL1 with Tate’s
thesis (Fourier analysis in number fields and Hecke’s zeta-function,
1950) and Weil’s book (Basic Number Theory).”

The multiplicative group A×K of invertible elements of AK is the group (locally
compact) of ideles of K, and its quotient CK = A×K/K∗ by the multiplicative
group K∗ of K acting by multiplication is the group of classes of ideles of K.
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6.2 Adeles and subgroups of Q
Let us emphasize the fact that the adeles of Q parametrize the subgroups of
(Q,+).

It is well known that every finitely generated subgroup of (Q,+) is monogenic
(reduce to the case of two generators H =

〈
m1
n1
, m2
n2

〉
, reduce to the commun

denominator n1n2, take the gcd d of the numerators m1n2 and m2n1, and apply
Bezout to find H = d

n1n2
Z).

But there are other subgroups of (Q,+). Let, Ẑ =
∏
p Zp be the Pontryagin

dual (the group of characters2) of the additive group (Q/Z,+) (see below).
Theorem. Subgroups of (Q,+) are all of the formH = Ha :=

{
q ∈ Q | aq ∈ Ẑ

}
for a ∈ AfQ a finite adele (i.e. an adele whose Archimedean component = 0). 3

This means that we take a finite set of pj-adic numbers aj and we take the
rationals q ∈ Q such that ajq ∈ Zpj . But if a and a′ are equivalent modulo Ẑ×
then Ha ' Ha′ .

Theorem. The subgroups of (Q,+) are in bijection with the quotient
AfQ/Ẑ×. 3

6.3 Adeles and the dual of Q : Q̂ ' AQ/Q
Another important property of adeles is the following.

We have already noted that Ẑ is the Pontryagin dual (the group of char-
acters) of the additive group (Q/Z,+). Indeed, Q/Z =lim−→

(
1
nZ
)
/Z while Ẑ =

lim←−Z/nZ. Ẑ =
∏
p Zp since if n =

∏
i p
αi
i then Z/nZ'

∏
i Z/p

αi
i Z and lim←−

∏
=∏

lim←−.
Now, the point is that the adeles (not necessarily finite) parametrize the

characters of the additive group (Q,+) and are needed to define its Pontryagin
dual Q̂ of Q. Indeed, it is well known that all the continuous characters of (R,+)
are of the form

χy : x 7→ e−2πiyx

For (Q,+) we still have these characters χy : r 7→ e−2πiyr. They correspond to
the Archimedean place ∞ of Q (that is to the local field R).

But there exists also other characters corresponding to the finite places p of
Q (that is to the local fields Qp). They are of the form

χap : r 7→ e2πi{apr}p

where ap ∈ Qp is a p-adic number and where {apr}p is the fractional part of apr
(the part with the negative powers 1

pk
of p). One has {apr}p = 0 if apr ∈ Zp.

2Recall that the characters of a group G are the morphisms of G into the group of complex
numbers z ∈ C with |z| = 1.
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Theorem. . All the characters of Q (that is the dual Q̂) are of the form

χa = e−2πia∞r
∏
p

e2πi{apr}p

with a∞ ∈ Q, ap ∈ Qp and ap ∈ Zp for almost every p. 3

This means that the characters of Q are parametrized by the adeles a ∈ AQ.
Now, Q ↪→ AQ, s 7−→ (s, . . . s) (rational adeles). But if s is a rational adele,

then χs = 1.Indeed, χs = e2πi(−sr+P
p{sr}p) and, as sr ∈ Q, −sr +

∑
p {sr}p is

an integer. So:
Theorem. Q̂ ' AQ/Q. 3

6.4 Weil’s adelic explicit formula

Weil translated Riemann’s explicit formula in the adelic context of the global
field Q.

He considered test functions h (u) : CQ → R+ where h (u) = h (|u|) :=
|u|

1
2 F (|u|) for F (t) defined on [1,∞) (i.e. F is defined on R but F ≡ 0 on

(−∞, 1[). We have h (u) = 0 for |u| < 1.
For technical reasons (convergence, etc.), one must assume that F is smooth

except for a finite number of “good” steps where it is mean-valued and decreases
more rapidly than 1√

t
at infinity.

Be careful that the u are classes of ideles and that their module |u| is com-
plicated, while x is a mere positive real.

Let ĥ (s) =
∫
h (u) |u|s duu be the “symbolic” Mellin transform of h, which

corresponds to F̂
(
s− 1

2

)
with F̂ (s) =

∫∞
1
F (t) ts dtt the Mellin transform of F .

Riemann-Weil formula is (with p-adic integrals and
∫ ′

meaning normalized
principal value)

ĥ (0) + ĥ (1)−
∑
ρ

ĥ (ρ) =
∑
ν

∫ ′
Q∗ν

h
(
u−1

)
|1− u|ν

du

u

For the finite places p, one finds∫ ′
Q∗ν

h
(
u−1

)
|1− u|ν

du

u
=

∑
pk,p given

log (p) p−
k
2 F
(
pk
)

Indeed, h (u) = h (|u|) depends only on the module |u| and presupposes |u| > 1.
So, in the in the

∫ ′
Q∗ν

integral, we must have
∣∣u−1

∣∣ > 1 and therefore |u| < 1.

But in Q∗p, |u| < 1 implies |1− u| = 1 and the integral is
∫ ′

Q∗p
1

|u|
1
2
F
(
|u|

1
2

)
du
u .
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For the Archimedean place ∞, one finds∫
R∗

h
(
u−1

)
|1− u|

du

u
=

∫
R∗

h (u)
|1− u−1|

du

u

=
1
2

∫ ∞
1

(
h (t)
|1− t−1|

+
h (t)
|1 + t−1|

)
dt

t

=
∫ ∞

1

t
3
2F (t)

(t2 − 1)
dt

t

If we convert the h formula into a F formula, we find:

F̂

(
−1

2

)
+ F̂

(
1
2

)
−
∑
ρ

F̂

(
ρ− 1

2

)

=
∑
pk

log (p) p−
k
2 F
(
pk
)

+
∫ ∞

1

t
3
2F (t)

(t2 − 1)
dt

t

+F (1)
(

1
2

(log (π) + γ)−
∫ ∞

1

1
(t2 − 1)

dt

t

)

7 The RH for elliptic curves over Fq
One of the greatest achievements of Weil has been the proof of RH for the global
fields in characteristic p, namely the global fields K/Fq (T ) of rational functions
on an algebraic curve defined over a finite field Fq of characteristic p (q = pn),
that is finite algebraic extensions of Fq (T ).

7.1 The “Rosetta stone”

The main difficulty was that in Dedekind-Weber’s analogy between arithmetics
and the theory of Riemann surfaces, the latter is “too rich” and “too far from
the theory of numbers”. So

“One would be totally obstructed if there were not a bridge between
the two.” (p. 340)

Hence the celebrated metaphor of the “Rosetta stone”:

“my work consists in deciphering a trilingual text; of each of the
three columns I have only disparate fragments; I have some ideas
about each of the three languages: but I know as well there are
great differences in meaning from one column to another, for which
nothing has prepared me in advance. In the several years I have
worked at it, I have found little pieces of the dictionary.” (p. 340)

24



From the algebraic number theory side, one can transfer the Riemann-
Dirichlet-Dedekind ζ and L-functions (Artin, Schmidt, Hasse) to the algebraic
curves over Fq. In this third world they become rational functions (quotients of
polynomials), a fact which simplifies tremendously the situation.

7.2 The Hasse-Weil function

For the history of the ζ-function of curves over Fq, see Peter Roquette’s ex-
tremely detailed historical study [17] “The Riemann hypothesis in characteris-
tic p. Its origin and development” and Pierre Cartier’s 1993 survey [3] “Des
nombres premiers à la géométrie algébrique (une brève histoire de la fonction
zeta)”.

1. On the arithmetic side (spec(Z), Qp, etc.), we have RH.

2. On the geometric side, we have the theory of compact Riemann surfaces
(projective algebraic curves over C).

On the intermediary level, at the beginning of the XX-th century Emil Artin
(thesis, 1921 published in 1924, [1]) and Friedrich Karl Schmidt (1931, [18])
formulated the RH no longer for global number fields K/Q but for global fields
of functions K/Fq (T ). As Cartier says,

“Artin-Schmidt theory is developing in parallel with that of Dirichlet-
Dedekind, and seeks to mimic the already achieved results: defini-
tion by means of a Dirichlet series and Euler product, functional
equation, analytic prolongation.3” (p. 61)

The main challenge was to interpret geometrically the zeta-function ζC (s) for
algebraic curves C defined over Fq. A key point was to understand that ζC
was a counting function, counting the (finite) number N (qr) of points of C
rational over the successive extensions Fqr of Fq : C being defined over Fq, all
its points are with coordinates in Fq, and we can therefore look at its points
with coordinates in intermediary extensions Fq ⊂ Fqr ⊂ Fq.

The generating function of the N (qr) is by definition

ZC (T ) := exp

∑
r≥1

N (qr)
T r

r


and the Hasse-Weil function ζC (s) of C is defined as

ζC (s) := ZC
(
q−s
)
.

3La théorie d’Artin-Schmidt se développe donc en parallèle avec celle de Dirichlet-
Dedekind, et elle s’efforce de calquer les résultats acquis : définition par série de Dirichlet
et produit eulérien, équation fonctionnelle, prolongement analytique.
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Note that

T
Z ′C (T )
ZC (T )

=
∑
r≥1

N (qr)T r .

ζC (s) will correspond to the two expressions of the classical Riemann’s ζ-
function (Dirichlet series and Euler product) if one transfers the classical concept
of a divisor D on C (see below section 7.3) as a finite Z-linear combination of
points of C: D =

∑
j ajxj . The degree of D is defined as deg(D) =

∑
j aj and

D is said to be positive (D ≥ 0) if all aj ≥ 0. Then

ζC (s) =
∑
D>0

1
N (D)s

=
∏
P>0

(
1−N (D)−s

)−1

,

where the D are positive divisors on Fq-points, the P are prime positive divisors
(i.e. P is not the sum of two smaller positive divisors) and the “norm” N (D)
is N (D) = qdeg(D).

The key problem is, as before, the localization of the zeroes of ζC (s). If ρ is
a zero, q−ρ is a zero of ZC . Conversely, if q−ρ is a zero and if ρ′ = ρ+ k 2πi

log(q) ,

then q−ρ
′

= q−ρ is also a zero. So the zeroes of the Hasse-Weil function ζC (s)
come in arithmetic progressions, which is a fundamentally new phenomenon.

7.3 Divisors and RR for curves

In the other direction, one try to transfer to curves over Fq the results of the
theory of Riemann compact surfaces as curves over C, and in particular the
Riemann-Roch theorem.

If C is a compact Riemann surface of genus g, to deal with the distribu-
tion and the orders of zeroes and poles of meromorphic functions on C, one
introduced the concept of a divisor D on C as a Z-linear combination of points
of C: D =

∑
x∈C ordx(D)x with ordx(D) ∈ Z the order of D at x. All the

terms vanish except a finite number of them. The degree of D is then defined
as deg(D) =

∑
x∈C ordx(D). It is additive. D is said to be positive (D ≥ 0) if

ordx(D) ≥ 0 at every point x.
By construction, divisors form an additive group Div(C), but Div(C) conveys

very little information about the specific geometry of C. Yet, if f is a mero-
morphic function on C, poles of order k can be considered as zeroes of order −k
and the divisor (f) =

∑
x∈C ordx(f)x is called principal. Due to a fundamen-

tal property of meromorphic functions on compact Riemann surfaces (a conse-
quence of Liouville theorem), its degree vanishes: deg(f) =

∑
x∈C ordx(f) = 0.

As the meromorphic functions contitute a field K(C) having the property that
the order of a product is the sum of the orders, principal divisors constitute a
subgroup Div0(C). The quotient group Pic(C) = Div(C)/Div0(C), that is the
group of classes of divisors modulo principal divisors, is called the Picard group
of C. It encodes a lot of information about the specific geometry of C
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If ω and ω′ are two meromorphic differential 1-forms on C, ω′ = fω for some
f ∈ K(C)∗ = K(C) − {0} (the set of invertible elements of K(C)), div(ω′) =
div(ω)+(f) and therefore the class of div(ω) mod (Div0(C)) is unique: it is called
the canonical class of C and one can show that its degree is deg(ω) = 2g − 2.

For instance, if g = 0, C is the Riemann sphere Ĉ and the standard 1-
form is ω = dz on the open subset C. Since to have a local chart at infinity
we must use the change of coordinate ξ = 1

z and since dξ = −dzz2 , we see
that, on Ĉ, ω possesses no zero and a single double pole at infinity. Hence
deg(ω) = −2 = 2g − 2.

For g = 1 (elliptic case) deg(ω) = 0 and there exist holomorphic nowhere
vanishing 1-forms. As C ' C/Λ (Λ a lattice), one can take ω = dz.

To any divisor D one can associate what is called a linear system, that is
the set of meromorphic functions on C whose divisor (f) is greater than −D :

L(D) = {f ∈ K(C)∗ : (f) +D ≥ 0} ∪ {0} .

Since a holomorphic function on C is necessarily constant (Liouville theorem),
we have L(0) = C. One of the most fundamental theorem of Riemann’s theory
is the theorem due to himself and his disciple Gustav Roch:

Riemann-Roch theorem. dimL(D) = deg(D) + dimL(ω−D)− g+ 1. 3

If dimL(D) is noted `(D), we get

`(D)− `(ω −D) = deg(D)− g + 1 .

Corollary. `(ω) = 2g − 2 + 1− g + 1 = g (since `(0) = 1). 3

A very important conceptual improvement of RR is due to Pierre Cartier in
the 1960s using the new tools of sheaf theory and cohomology. Let O = OC be
the structural sheaf of rings O (U) of holomorphic functions on the open subsets
U of C, and K = KC the sheaf of fields K (U) of meromorphic functions. To any
divisor D, Cartier was able to associate a line bundle on C with a sheaf of sec-
tions O (D). Then he proved that the C-vector space of global sections of O (D)
can be identified with L (D), i.e. L (D) = H0 (C,O (D)). This cohomological
interpretation is fundamental and allows a deep “conceptual” cohomological
interpretation of RR using the fact that dimL(D) = dimH0 (C,O (D)).

7.4 Divisors and RR for surfaces

For surfaces S over C, RR is more involved. Divisors are now Z-linear combi-
nations no longer of points but of curves Ci. One has to use what is called the
intersection number of two curves C1 • C2 (and of divisors D1 •D2). For two
curves in general position, one defines C1 •C2 in an intuitive way as the sum of
the points of intersection, and one shows that, as the base field C is algebraically
closed, this number is invariant by linear equivalence D1 ∼ D2.

One shows also that for any divisors D1 and D2, even when D1 = D2, there
exist D′1 ∼ D1 and D′2 ∼ D2 which are in general position, and one then defines
D1 •D2 by D1 •D2 = D′1 •D′2.
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The RR theorem is then

j=2∑
j=0

(−1)j dimHj(S,O (D)) =
1
2
D • (D −KS) + χ (S)

with χ (S) = 1 + pa, pa being the “arithmetic genus”.
What is called Serre duality says that

dimH2(S,O (D)) = dimH0(S,O (KS −D)) .

Now, dimH0 and dimH2 are ≥ 0 while − dimH1 is ≤ 0, so one gets the RR
inequality :

`(D) + `(KS −D) ≥ 1
2
D • (D −KS) + χ (S) .

7.5 RR for curves over Fq
From Artin to Weil, the theory of compact Riemann surfaces has been trans-
ferred to the intermediary case of the curves C over Fq. In particular, Schmidt
and Hasse transferred the Riemann-Roch theorem. A fundamental consequence
was that ZC (T ) not only satisfies a functional equation but is alsoa rational
function of T.

For instance, let us consider the simplest case K = Fq (T ) (analogous to the
simplest number field Q). Each unitary polynomial P (T ) = Tm + a1T

m−1 +
. . . + am of degree m gives a contribution (qm)−s to the additive (Dirichlet)
formulation of ZK (T ) since the norm qdeg(P ) of its ideal is qm. But there are qm

such polynomials since the m coefficients aj belong to Fq which is of cardinal q.
So {

ζK (s) =
∑m=∞
m=0 qm (qm)−s = 1

1−q1−s
ZC (T ) = 1

1−qT .

Hence, as ZC (T ) is a rational function of T , it has a finite number of zeroes
t1, . . . , tM and therefore, the zeroes of ζC (s) are organized in a finite number
of arithmetic progressions ρj + k 2πi

log(q) with q−ρj = tj . This is a fundamental
difference with the arithmetic case, which makes the proof of RH much easier.

7.6 The Frobenius morphism

In the Fq case, a completely original phenomenon appears. Indeed, a fundamen-
tal property of any finite field Fq is that xq = x for every element x. So, one can
consider the automorphism ϕq of Fq, ϕq : x 7→ xq (it is an automorphism) and
retrieve Fq as the field of fixed points of ϕq. ϕq is called the Frobenius morphism.

For a curve C/Fq, the Frobenius ϕq acts, for every r, on the set of points
C (Fqr ) with coordinates in Fqr , and the number Nr = N (qr) of points of C
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rational over Fqr is the number of fixed points of the Frobenius ϕqr . So, the
generating counting function ZC (T ) counts fixed points and has to do with the
world of trace formulas counting fixed points of maps. In particular, N1 =
C (Fq) = #ϕFix

q =
∣∣Ker (ϕq − Id)∣∣. It is like a “norm”.

7.7 RH for elliptic curves (Schmidt and Hasse)

Schmidt (see [18]) was the first to add the point at infinity (as for projective
curves and compact Riemann surfaces) and to understand that, in the case of
K/Fq (T ), the functional equation of ζC was correlated to the duality between
divisors D and D −K in Riemann’s theory. As Cartier [3] says

“we meet here one of the first manifestation of the trend towards a
geometrization in the study of the ζ function.4” (p. 69)

Schmidt proved that

ZC (T ) =
L (T )

(1− T ) (1− qT )

with L (T ) a polynomial of degree 2g. The fact that ZC is a rational function
corresponds to the fact that Riemann’s ζ function is a meromorphic function.

For instance, if we come back to the simple case of K = Fq (T ) and look at its
projective extension P of genus g = 0 by adding the point ∞, we must add this
point to the qm other points and, using the fact that exp

(∑
m≥1

Tm

m

)
= 1

(1−T ) ,
we get



ZP (T ) = exp
(∑

m≥1 (qm + 1) T
m

m

)
=
(

exp
(∑

m≥1 q
mTm

m

))(
exp

(∑
m≥1

Tm

m

))
= 1

(1−T ))(1−qT )

ζP (s) = 1
(1−q−s)(1−q1−s)

with L (T ) = 1 a polynomial of degree 0.
Schmidt showed moreover that L (T ) is, in fact, the characteristic polynomial

of the Frobenius ϕq, i.e. the “norm” (the determinant) of Id− Tϕq. So

ZC (T ) =
det
(
Id− Tϕq

)
(1− T ) (1− qT )

and ZC (T ) satisfies the functional equation

4“On voit se manifester ici l’une des premières apparitions de la tendance à la
géométrisation dans l’étude de la fonction ζ.”
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ZC

(
1
qT

)
= q1−gT 2−2gZC (T )

while for ζC the symmetric functional equation is

q(g−1)sζC (s) = q(g−1)(1−s)ζC (1− s)

T → 1
qT corresponding to the symmetry s→ 1− s.

Then, in three fundamental papers of 1936 “Zur Theorie der abstrakten
elliptischen Funktionenkörper. I, II, III ” [11], Hasse proved RH for elliptic
curves. As g = 1, L (T ) is a polynomial of degree 2. And as C is elliptic, it has
a group structure (C is isomorphic to its Jacobian J (C)), which is used as a
crucial feature in the proof. Indeed, one can consider the group endomorphisms
ψ : C → C and their graphs Ψ in C × C, what Hasse called correspondences.

For g = 1, ZC (T ) satisfies the functional equation

ZC

(
1
qT

)
= ZC (T )

and ζC the symmetric functional equation

ζC (s) = ζC (1− s)

as Riemann’s arithmetic ζ.
Then, Hasse proved that, due to the functional equation, L (T ) is the poly-

nomial L (T ) = 1− c1T + qT 2 with

L (1) = 1− c1 + q = N1 = |C (Fq)| .

So

L (T ) = (1− ωT ) (1− ωT )

with ωω = q and ω + ω = c1 the inverses of the zeroes since

L (T ) = ωω

(
T − 1

ω

)(
T − 1

ω

)
.

As |ω| = |ω|, we have |ω| =
√
q. But, since ζC (s) = ZC (q−s), the zeroes of

ζC (s) correspond to q−sj = (ωj)
−1. So we must have

∣∣q−sj ∣∣ = |q|−<(sj) = q−<(sj) =
1
|ωj |

=
1
√
q

= q−
1
2
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and < (s) = 1
2 . Hence, the RH for elliptic curves over Fq.

We can rewrite RH in a way easier to generalize. One has |C (Fq)| − q− 1 =
−c1 with c1 = ω+ω = 2< (ω). But ω =

√
qeiα and therefore < (ω) =

√
q cos (α).

So c1 = 2
√
q cos (α) and RH is equivalent to

||C (Fq)| − q − 1| ≤ 2q
1
2 .

8 Weil’s “conceptual” proof of RH

To tackle the case g > 1, Weil had to take into account that C is no longer
isomorphic to its Jacobian. For a description of Weil’s proof, see e.g. James
Milne’s paper [14] “The Riemann Hypothesis over finite fields from Weil to the
present day” (2015). See also Marc Hindry [12].

Weil worked over Fq (to have a good intersection theory) and in the square
S = C×C of the curve C extended to Fq. He used the graph Φq of the Frobenius
ϕq on Fq, which is a divisor of the surface S = C × C. As the Fq-points of C,
i.e. C (Fq), are the fixed points of ϕq, their number is the intersection number:
Φq •∆ where ∆ is the diagonal of S = C × C.

Then Weil transferred to this C Hurwitz trace formula (1887), which says
that, for a Riemann surface C and a divisor Φ in S = C × C associated to a
map ϕ : C → C, one has:

Φ •∆ = Tr
(
ϕ | H0

(
C,Q

))
− Tr

(
ϕ | H1

(
C,Q

))
+ Tr

(
ϕ | H2

(
C,Q

))
.

Here this formula implies that:

Φq •∆ = Φq • ξ1 − Tr
(
ϕq | H1

(
C
))

+ Φq • ξ2

= 1− Tr
(
ϕq | H1

(
C
))

+ q

with ξ1 = e1 × C and ξ2 = C × e2 (ej points of C).
If one considers the symmetric quadratic intersection form s (D,D′) = D•D′,

one notes that ξ1 • ξ1 = ξ2 • ξ2 = 0 (the ξj are isotropic) and ξ1 • ξ2 = 1 (it is
exactly the reverse of orthonormality).

The key point is that, in this geometric context, RH for curves over Fq is
equivalent to the negativity condition D•D ≤ 0 for all divisors D of degree = 0.
And this is equivalent to the Castelnuovo-Severi inequality for every divisor D :

D •D ≤ 2 (D • ξ1) (D • ξ2) .

Indeed, let

def (D) = 2 (D • ξ1) (D • ξ2)−D •D = 2d1d2 −D •D ≥ 0
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be what Severi called the “defect” of the divisor D. Writing def (mD + nD′) ≥ 0
for all m,n, we find

|D •D′ − d1d
′
2 − d′1d2| ≤ (def (D) def (D′))

1
2 .

If we apply this to the Frobenius divisor Φq when C has genus g, and use the
fact that d1 = Φq • ξ1 = 1 and d2 = Φq • ξ2 = q, we can compute def (Φq) = 2gq
and def (∆) = 2g. So we get

|Φq •∆− q − 1| ≤ 2gq
1
2 .

But, as Φq •∆ =
∣∣C (Fq)

∣∣, one has

∣∣∣∣C (Fq)
∣∣− q − 1

∣∣ ≤ 2gq
1
2

which proves RH for genus g.
It is to prove Castelnuovo-Severi inequality that RR enters the stage with

the inequality

`(D)− `(KS −D) ≥ 1
2
D • (D −KS) + χ (S) .

Indeed, let us suppose D •D > 0.

1. One then uses RR to show that after some rescaling D  nD we must
have `(nD) > 1. So one can suppose `(D) > 1.

2. Now it can be shown that if `(D) > 1, then D is linearly equivalent to
D′ > 0. One can therefore suppose D > 0.

3. Then one shows that this implies the positivity (D • ξ1)+(D • ξ2) > 0. So
D•ξ1 and D•ξ2 cannot vanish at the same time (D cannot be orthogonal
to both the ξj).

4. One then applies Castelnuovo-Severi lemma saying that if, for every D s.t.
D •D > 0, D • ξ1 and D • ξ2 cannot vanish at the same time then for any
divisor D

D •D ≤ 2 (D • ξ1) (D • ξ2) .

9 Connes’ strategy : “a universal object for the
localization of L functions”

9.1 Come back to arithmetics

To summarize: Weil introduced an intermediate world, the world of curves over
finite fields Fq. He reformulated the RH in this new framework and used tools
inspired by algebraic geometry and cohomology over C to prove it.
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It is well known that the generalization of this result to higher dimensions led
to his celebrated conjectures and that the strategy for proving them has been
at the origin of the monumental programme of Grothendieck (schemes, sites,
toposes, etale cohomology). But after Deligne’s proof of Weil’s conjectures in
1973 the original RH remained unbroken.

Some years ago, Alain Connes proposed a new strategy consisting in con-
structing a new geometric framework for arithmetics where Weil’s proof could
be transferred by analogy.

His fundamental discovery is that a strategy could consist in working in
the world of “tropical algebraic geometry in characteristic 1”, and apply it to
the non-commutative space of the classes of adeles. In his 2014 Lectures at
the Collège de France he said that he was looking since 18 years for a geo-
metric interpretation of adeles and ideles in terms of algebraic geometry à la
Grothendieck. And in his essay [4] he explains:

“It is highly desirable to find a geometric framework for the Rie-
mann zeta function itself, in which the Hasse-Weil formula, the ge-
ometric interpretation of the explicit formulas, the Frobenius corre-
spondences, the divisors, principal divisors, Riemann-Roch problem
on the curve and the square of the curve all make sense. (p.8)”

The reader will find some details of this program in his extraordinary paper
[7] (2016) with Caterina Consani “Geometry of the scaling site”.5

9.2 The Hasse-Weil function in characteristic 1: Soulé’s
work

The first move towards an interpretation of Riemann’s original ζ (s) in terms of
a ζC (s) for an “untraceable” curve-like object C defined over an “untraceable”
new “prime field” F was achieved by Christophe Soulé.

We have seen that for curves C over finite fields Fq, the Hasse-Weil zeta
function ζC (s) counts the (finite) number N (qr) of points of C rational over
the successive extensions Fqr . Yet, the generating function of the N (qr)

ZC (T ) := exp

∑
r≥1

N (qr)
T r

r


(remind that ζC (s) := ZC (q−s)) can be defined for a lot of functions N (qr)
which do not derive from a curve.

A natural question is therefore to know if it is possible to retrieve Riemann’s
original ζ (s) as a limit case of Hasse-Weil function ZN (q−s) for a well defined
N . But what type of limit case? For curves over Fq=pk , that is global fields

5For previous elements, see Connes, Consani, Marcolli [5].
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K (C) /Fq (t), the base field Fp is a common underlying structure to all local-
izations. For the global field Q, there is no evident equivalent and this lack of
a common base raises Hymalayan difficulties.

In [19] Christophe Soulé worked out the fine and deep idea of looking at
ZN (q−s) for q → 1. More precisely, as ZN (T ) has a pole of order N (1) at
q = 1, he looked at limits

ζN (s) = lim
q→1

ZN
(
q−s
)

(q − 1)N(1)
.

The question becomes then to know if there exists a counting functionN yielding

ζN (s) = ζ∗ (s) = ζ(s)Γ
(s

2

)
π−

s
2

Now, such a “function” N does exist. If one takes the logarithms, one gets

log ζN (s) = log ζ∗ (s) = lim
q→1

∑
r≥1

N (qr)
q−sr

r
+N (1) log (q − 1)


and Connes and Consani have shown in [6] that the logarithmic derivative is
given by the formula

ζ ′N (s)
ζN (s)

=
ζ∗′ (s)
ζ∗ (s)

= −
∫ ∞

1

N (u)u−s
du

u

where N is the well-defined distribution

N (u) = u+ 1− d

du

(∑
ρ

uρ+1

ρ+ 1

)

the ρ being the non trivial zeroes of ζ (s). N (u) is the derivative in the distri-
bution sense of the increasing step function J (u) on [1,∞) diverging to −∞ at
1 (see figure 8).

J (u) =
u2

2
+ u−

(∑
ρ

uρ+1

ρ+ 1

)

9.3 Semi-rings and semi-fields of characteristic 1

The second move in implementing Connes’ strategy is to find what can mean
an algebraic geometry in characteristic q = 1.6 The (revolutionary) first idea
is to change the basic algebraic structures and shift from rings and fields to
semi-rings and semi-fields, that is, to algebraic structures

(
A, +̊, ×̊

)
where +̊, ×̊

6For an overview of the various approaches towards F1-geometry, see, e.g., López Peña–
Lorscheid [13].
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Figure 8: The integral of Soulé’s distribution.

are only monoid laws (i.e. associative, with neutral element, +̊ commutative, ×̊
distributive). In particular, one can look at Z, Q or R using the sup ∨ as new
addition +̊ and the + or the × as new multiplication ×̊.

For instance Zmax = {−∞} ∪ Z with +̊ = ∨ and ×̊ = + is a semi-field
with −∞ as the neutral element of +̊ = ∨ since x ∨ −∞ = x, and with 0 as
the neutral element of ×̊ = + since x + 0 = x. Zmax is a semi-field K whose
K×̊ is infinite cyclic (there exists no field with this property). It is essential to
note that Zmax is a semi-field with natural Frobenius endomorphisms. Indeed,
if n ∈ N×, ϕn : x 7→ xn = nx (×̊ = + is the natural addition and therefore
exponentiation is the natural multiplication) is an endomorphism of Zmax since
n (x ∨ y) = nx∨ny and n (x+ y) = nx+ny. Through the ϕn, the multiplication
× can be taken into account in Zmax.

Idem for Rmax. More generally, if H is any abelian ordered group, Hmax =
{−∞} ∪H with +̊ = ∨ (−∞ is the neutral element) and ×̊ = + is a semi-field.

Another semi-field is R+
max = R+ with +̊ = ∨ (0 is the neutral element since

all x are > 0) and ×̊ = × (1 remains the neutral element). It is the exponential
transform of Rmax.

In these semi-algebras, the “addition” +̊ is idempotent since x+̊x = x∨x = x
and it is for this reason that one says they are of characteristic 1.

The basic structure in characteristic 1 is the Boolean semi-field B = {0, 1}
with ∨ and ×, and hence 1∨ 1 = 1. R+

max is an extension of B (there don’t exist
finite extensions of B). Its Galois group is

Gal
(
R+

max

)
:= AutB

(
R+

max

)
= R∗+ ,

and the λ ∈ R∗+ act as Frobenius maps ϕλ : x 7→ xλ. One has actually (x ∨ y)λ =
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xλ ∨ yλ since x, y ≥ 0 and λ > 0, and of course (xy)λ = xλyλ. So one gets a
Frobenius flow (a multiplicative 1-parameter group) ϕλ on R+

max.
Now, one can extend the classification of finite fields (the Fpn) to finite semi-

fields. A simple but remarkable result is that B is the only finite semi-field which
is not a field.

Theorem. If K is a finite semi-field, then either K is a field (a Fpn) or K = B.
3

Indeed, let x 6= 0 in K. As K× is finite, xn = 1 for an n. Let b = 1 + x +
. . . xn−1 = 1 + a. We have xb = b. If b = 0, then b = 0 = 1 + a, a = −1 and
the semi-group + is a group and K is a field. If b 6= 0, then x = bb−1 = 1 and
K = B.

So one can use the Boolean semi-field B as a foundation for a new world of
algebraic structures, try to do algebraic geometry in characteristic 1, that is,
over a putative “non-existent” field F1, and look at the possibility of transferring
Weil’s proof of RH to this new framework. In this new world we can still use
Frobenius endomorphisms as in the case of curves over a finite field.

We have already emphasized that for curves over Fq=pn , that is, global fields
K (C) /Fq (t), the base field Fp is a common underlying structure to all localiza-
tions, while it is not the case for the global field Q and its algebraic extensions.
A great advance is the idea that B can overcome this lack.

Remark. The world of semi-rings and semi-fields in characteristic 1 is
intimately correlated to what is called tropical geometry, idempotent analysis,
and what Victor Maslov called “dequantization”. The idea is to take + as the
“multiplication” and conjugate it with scaling x 7→ xε where ε is a scale which
→ 0 as ~→ 0 in the semiclassical approximations of quantum mechanics. Now,
it is well known that

lim
ε→0

(
x

1
ε + y

1
ε

)ε
= x ∨ y

A great advantage of this framework for optimization problems is that Legendre
transforms become simply Fourier transforms. Its origin is to be found in the
technique of Newton polygons introduced by Newton to localize the zeroes of
polynomials.

9.4 The arithmetic topos A =
(
N̂×,Zmax

)
The third move of Connes’ strategy was to find the “untraceable” geometric
arithmetic-like object A enabling to interpret ζ (s) as a ζA (s). The jump is
fantastic. Connes and Consani used the topos conception of algebraic geometry
developed by Grothendieck and considered a topos adapted by construction to
characteristic 1.

Connes’ challenge was to find

“the bridge between noncommutative geometry and topos points of
view.” (p.21)
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His construction is quite astonishing. He succeeded in identifying

1. the natural action of the multiplicative group R×+ of classes of ideles on
the noncommutative space Q×\AQ/Ẑ×,

2. the natural action of the Frobenius maps ϕλ, λ ∈ R×+ on the points of the
“arithmetic topos” A over Rmax

+

Such an identification paves the way for a translation of the arithmetic uni-
verse of RH into a geometric new universe, this translation being far more
powerful than the analogy of Dedekind-Weber-Weil.

The starting point is incredibly simple, “d’une simplicité biblique”. Connes
and Consani identify N× to the small category with a single object ∗ and mor-
phisms n ∈ N× with composition n ◦ m given by the multiplication nm. We
can schematize this identification as (∗ 	 N×). Then they look at the cate-
gory N̂× of presheaves on N×, that is the category of contravariant functors
(N×)op → Set, that is the category of sets endowed with a N×-action.

If N× is endowed with the trivial Grothendieck topology, presheaves become
sheaves and N̂× becomes a topos over the site N×. Now, Zmax = ({−∞} ∪ Z,∨,+)
is a semi-ring in this topos since N× acts on Zmax through the Frobenius
maps ϕn. Connes takes it as the structural sheaf of the topos N̂× and calls
A =

(
N̂×,Zmax

)
the arithmetic site (or topos). It is a geometric object “de-

fined over” B, “geometric” in the topos sense but of an arithmetic essence.7

The key idea is then to develop the new analogy :

arithmetic site A =
(
N̂×,Zmax

)
over the finite semi-field B of characteristic 1

m
algebraic curve C

over the finite field Fq of characteristic p

10 The steps of the strategy

10.1 The points of the topos A

The first remarkable fact is that the points of the topos A correspond, up to
isomorphism, to the additive subgroups H of Q. But we have seen in section 6.2
that the subgroups of (Q,+) are parametrized by (finite) adeles. So, through
the subgroups of (Q,+), we can build a bridge between the arithmetic world of
adeles and a geometric universe in the sense of Grothendieck’s topos. This new
bridge opens up a vast array of new methods, new tactics and new strategies
for demonstrating HR in the arithmetic case.

7As was emphasized by a reviewer, “Zmax, when viewed just as a semi-field, is not suf-
ficiently deep” because “multiplication of numbers is not part of the structure of Zmax as a
semi-field. By employing the arithmetic site, multiplication is put back in. The true object
to consider is then Zmax regarded as a sheaf over the arithmetic site.”
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Recall that a point of a topos T is a geometric morphism p : Set→ T , that
is a pair of adjoint functors p∗ a p∗ with p∗ preserving finite limits (as p∗ is a
left adjoint, it is left exact and preserves general colimits) :

T
p∗→
←
p∗

Set

This means that HomSet (p∗ (F ) , S) ' HomT (F, p∗ (S)), for F ∈ T and S ∈
Set. The image p∗ (F ) is the stalk of the topos T at the point p.

In our case, an element F of N̂× is simply a set X = F (∗) endowed
with an action θn of N× and a point (p∗, p∗) : N̂× → Set associates func-
torially to each (X, θ) a set p∗ ((X, θ)) such that HomSet (p∗ ((X, θ)) , S) '
Hom cN× ((X, θ) , p∗ (S)).

Let Y : N× → N̂× be the Yoneda functor ∗ 7→ Y∗ : (N×)op → Set defined by
Y∗ (∗) = N× and Y∗ (n) = multiplication by n (noted ×n) in N×. To p∗ : N̂× →
Set one associates the covariant functor p : N× → Set

p = p∗ ◦ Y : N× Y→ N̂× p∗→ Set

More informally we can say that p associates first
(
N× 	 ×N×

)
to (∗ 	 N×)

and then
(
X 	 ×N×

)
= p∗

(
N× 	 ×N×

)
to
(
N× 	 ×N×

)
. A special case I is

when p∗
(
N× 	 ×N×

)
=
(
N× 	 ×N×

)
is the identity.

Then Connes and Consani show that, since p∗ is a geometric morphism, p
is flat. This means :

1. X = p (∗) 6= ∅,

2. Every pair of elements x, x′ ∈ X are the images of some element z ∈ X
through two morphisms p (k) and p (k′), k, k′ ∈ N× (i.e. x, x′ are always
in some orbit of the N×-action),

3. If p (k) (x) = p (k) (x′), then k = k′ (i.e. the N×-action is free).

So that, beyond the given action of the multiplicative monoid (N×,×) on
X, there is in fact an action of the ring (N×,×,+). If one defines H+ as X
endowed with the (well defined) commutative and associative addition x+x′ :=
p (k + k′) (z) for a z such that p (k) (z) = x and p (k′) (z) = x′, one can transfer
to X the construction of the ring Z from the multiplicative monoid N×.

Moreover, one can show that the N×-action is simplifiable, which means that
for every pair x, x′ ∈ X there exists a z ∈ X such that either x + z = x′ or
x′ + z = x and so either x− x′ or x′ − x can be well defined.

This implies that H+ is the positive part of an abelian additive totally ordered
group (H,H+), the N×-action being

p (k) (x) = x+ . . .+ x︸ ︷︷ ︸
k times

= kx
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(H,H+) is an increasing union of subgroups isomorphic to (Z,Z+) and is iso-
morphic to an additive subgroup of (Q,Q+). Indeed if x ∈ X, there exists an
injection jx : H ↪→ Q given by jx (x) = 1 and jx (x′) := k′

k deduced from every
z ∈ X such that p (k) (z) = x and p (k′) (z) = x′ (k

′

k is well defined).
Theorem. The category of points of the arithmetic topos N̂× is canonically

equivalent to the category whose objects are the totally ordered groups (H,H+)
isomorphic to non trivial subgroups of (Q,Q+) and morphisms are order pre-
serving injections. 3

In particular, the subgroups of Q: Hp =
{
n
pk
| n ∈ Z, k ∈ N

}
for p prime, are

special points of N̂×. And as the primes p are the (closed) points of the scheme
Spec (Z), one gets a canonical interpretation of Spec (Z) into the arithmetic
topos A.

But we have already seen that the non trivial subgroups of (Q,Q+) are
classified by the quotient of finite adeles AfQ/Ẑ×. In fact:

Theorem. The isomorphism classes of points of the arithmetic topos A
are canonically isomorphic to the noncommutative space Q×+\A

f
Q/Ẑ× where Q×+

acts by multiplication. 3

Let pH be the point of N̂× represented by the subgroup H and let Hmax be
the semi-field Hmax = {−∞}∪H with +̊ = ∨ (−∞ is the neutral element) and
×̊ = +.

Theorem. Hmax is the stalk of the structural sheaf Zmax at the point pH .
3

The special case I corresponds to pZ for which Hmax = Zmax .

10.2 Extension of scalars

In Connes’ analogy, the arithmetic topos corresponds to a curve C over a finite
field Fq. We have seen that Weil’s proof of RH uses intersection theory and RR
in the square C × C.

So, to keep on with the analogy, one has to define the square A × A and
use the Frobenius maps to “count the points”. It is a very difficult and highly
technical stuff. The aim is to construct an analogy where C, holomorphic and
meromorphic functions on C, as well as their zeros and poles, can have natural
equivalents.

The starting idea is rather subtle. Connes adds a scaling flow to the arith-
metic topos. The underlying site of the scaled topos A is constructed using the
semi-direct product [0,∞) o N× to modify the natural category structure of
open subsets of the half-line [0,∞).

The category C is the category with objects the open intervals Ω of [0,∞)
(the [0, a) and ∅ are included, ∅ is an initial object) and with morphisms
n : Ω→ Ω′ the n ∈ N× such that nΩ ⊂ Ω′ (i.e. n acts as a scaling). So we have
a topological space [0,∞) with a N×-scaling. The category C has fiber products.
One considers then the Grothendieck topology J on C defined by the covering
of open intervals Ω by families of open intervals {Ωj} and the sheaves over the
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site (C, J), that is sheaves over [0,∞) which are N×-equivariant. Connes takes
for A this category Sh (C, J) of sheaves:

A = Sh (C, J) .

10.3 The structural sheaf

Connes insists on the “enormous gain” due to the fact that the scaled arithmetic
topos A has a structural sheaf O which is a semi-ring object.

The key definition is the following. It opens the world of tropical geometry
in this new context. If Ω ⊂ [0,∞) is an open interval, O (Ω) is the semi-ring of
functions f : Ω→ Rmax

1. with values f (λ) in Rmax = {−∞} ∪ (R,+),

2. continuous,

3. piecewise affine,

4. convex

5. with integral slopes f ′ ∈ Z except at points where f ′ presents a disconti-
nuity (an angular point).

As for the morphisms (scaling) n : Ω→ Ω′, Connes defines O
(

Ω n→ Ω′
)

by
f (λ) 7→ f (nλ). It is a coherent definition since f ′ (nλ) = nf ′ (λ) and if f ′ ∈ Z
then nf ′ ∈ Z. O is a semi-ring in A and a semi-algebra over Rmax .

The deep analogy with algebraic curves in the classical Riemann’s theory is
the following:

A C
f piecewise affine f analytic

−f 1
f

f convex f holomorphic
linear point λ : f ′ (λ−) = f ′ (λ+) f holomorphic invertible at z

angular point λ with f ′ (λ−) < f ′ (λ+) zero of f
angular point λ with f ′ (λ−) > f ′ (λ+) pole of f

We see that once the universe of admissible f has been delimited by their con-
tinuity and their affine structure, the convexity constraint allows to distinguish
between “holomorphic” f with only “zeros” (convex angular points) and “mero-
morphic” f that can also have “poles” (concave angular points). But the es-
sential constraint is that the slopes must be integers. This can be weakened by
extension.
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10.4 Points of A and A over Rmax
+

When one extends the scalars to Rmax
+ , one adds a lot of new points, namely

all the subgroups of rank 1 of R. They are the subgroups of the form λHa with
a λ ∈ R scaling an additive subgroup Ha of Q. Remember (see above section
6.2) that the Ha are parametrized by the finite adeles a.

It can be shown that – just as one has C
(
Fq
)

= C
(
Fq
)

in the case of curves
over Fq – one has here A

(
Rmax

+

)
= A

(
Rmax

+

)
. The action of the Frobenius

maps ϕλ, λ ∈ R×+ on these points correspond to the action of the classes of
ideles modulo Ẑ× i.e. R×+.

The basic analogy is now

C/Fq A/B
structural sheaf OC structural sheaf O = Zmax

extension C/Fq extension A/Rmax
+ = ([0,∞) o N×,O)

O =


continuous,

piecewise affine,
convex

with integral slopes

 functions f : Ω→ Rmax

K = non necessarilly convex functions
C
(
Fq
)

= C
(
Fq
)

A
(
Rmax

+

)
= A

(
Rmax

+

)
Theorem. The isomorphism classes of points of the scaled arithmetic topos

A
(
Rmax

+

)
= A

(
Rmax

+

)
are canonically isomorphic to the noncommutative space

Q×\AQ/Ẑ×, where Q× acts by multiplication. 3

So it becomes possible to do algebraic geometry on the adeles’ classes.
It is important to note that the points of the initial arithmetic topos A

correspond to abstract groups isomorphic to the Ha defined by finite adeles a.
Now, we add to a an Archimedean component λ ∈ R (a scaling) and look at
λHa no longer as an abstract subgroup but as a well defined subgroup of R. All
the points λHa of A lie over the point Ha of A.

Theorem. If pH is the point of A defined by the rank 1 subgroup H of R,
the stalk of the structural sheaf O at pH is the semi-ring RH of germs at λ = 1
(the identity scaling) of functions f which are (1) Rmax -valued, (2) continuous,
(3) piecewise affine, (4) convex, (5) with slopes belonging to H. 3

Let x = f (1) ∈ Rmax and h = f ′ (1−) ∈ H and h+ = f ′ (1+) ∈ H. As f
is convex, h ≤ h+. If h = h+, f is regular (linear) at 1 and if h < h+, f is
singular at 1 (angular point). RH is the semi-ring of triplets (x, h , h+) with

(x, h , h+) ∨
(
x′, h′ , h′+

)
=


(x, h , h+) if x > x′(
x′, h′ , h′+

)
if x < x′(

x, h ∧ h′ , h+ ∨ h′+
)

if x = x′

(x, h , h+) +
(
x′, h′ , h′+

)
=

(
x+ x′, h + h′ , h+ + h′+

)
Then one defines the order of f as ord (f) = h+−h. As f is convex, ord (f) ≥

0. If ord (f) = 0 then f is linear.
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For a rescaling µ, the action of Frobenius ϕµ on O is given by

ϕµ : RH → RµH , (x, h , h+) 7→ (x, µh , µh+)

10.5 The RR strategy

In the framework of the scaled arithmetic topos, one can transfer to the square
A× A Weil’s RR strategy for trying to prove RH.

The “graphs” of the Frobenius scaling flow ϕλ define a flow of Frobenius
scaling “correspondences” Φλ on A× A (λ ∈ R×+) and one has Φλ ◦ Φλ′ = Φλλ′
up to some technicalities when λλ′ ∈ Q while λ, λ′ /∈ Q.

11 The “elliptic” case of periodic points

11.1 An analogy with Fp elliptic curves

In A, all the points λHp with Hp =
{
n
pk
| n ∈ Z, k ∈ N

}
lie over the point Hp of

A. They are parametrized by R∗+/pZ and constitute in some sense a “circle” Cp
over p which is a periodic orbit of the Frobenius scaling flow ϕλ.

Remark. When one makes the link of this toposic approach of arithmetics
with the explicit formulas, one finds that the “length” of Cp must be log p.
It has been a long while since Selberg noted the deep analogy of Riemann’s
explicit formula with his own “trace formula” concerning the eigenvalues of the
Laplacian of hyperbolic compact surfaces (Riemann surfaces of genus ≥ 2). It
is the log of the length of the closed geodesics (i.e. the periodic orbits of the
geodesic flow) which is involved.

Connes and Consani have recently proved RR in that simple case, which as
they say, is “encouraging”. More precisely they have shown that the algebraic
geometry of elliptic curves over Fp can be completely transfered to the Cp.

The analogy is with the 1959 theory of John Tate (see A review of non-
Archimedean elliptic functions [20] and the correspondence with Serre).

The classical theory of elliptic curves Eτ as quotients C/Λ of C by a lattice
Λ = 〈1, τ〉 with = (τ) > 0 (i.e. τ ∈ H, the hyperbolic Poincaré half-plane)
cannot be extended to the p-adic context. To overcome this difficulty, Tate
remarked that, since functions f over Eτ are doubly periodic functions f (z)
over C with periods 1 and τ (elliptic functions), one can “absorb” the period 1
in the change of variables z 7→ u = e2πiz.

This is a Fourier transform transforming the cylinder (C/Z,+, 0,×, 1) into
(C∗,×, 1, exp, 1). Then f (z) becomes a function f (u) on C∗ with period τ .
Applying again a Fourier transform, namely q = e2πiτ (|q| < 1 since = (τ) > 0),
f (z) becomes q-periodic and hence a function on C∗/qZ. Indeed,

if z 7→ z + τ , then e2πiz 7→ e2πi(z+τ) = e2πize2πiτ = qe2πiz
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So Eτ can be identified with C∗/qZ, q = e2πiτ , and Tate reformulated the
whole theory of elliptic curves in that new context and showed how it can be
transfered to the p-adic case. The reason of the transfer is that (p. 2)

“these Fourier expansions, suitably normalized, yield “universal”
identities among power series with rational integral coefficients.”

11.2 The periodic orbit Cp ' R∗+/pZ of the Frobenius scal-
ing flow

The analogy is then between Tate’s C∗/qZ and Connes’ R×+/pZ.
The Rmax-valued functions f are now multiplicatively p-periodic functions

f (λ) defined on the scales λ ∈ R×+, i.e. on R×+/pZ. So, the f are periodically
scale invariant and can be considered as defined on [1, p]. Remember that the
algebraic operations are +̊ = ∨ and ×̊ = +.
O (Cp) = Op is the sheaf ot germs of p-periodic functions f (λ) which are (1)

Rmax -valued, (2) continuous, (3) piecewise affine (f (λ) = hλ+ a), (4) convex,
(5) with slopes f ′ (λ) = h in Hp at all points λ. (As f ′ (λ) ∈ Hp is the same
as λf ′ (λ) ∈ λHp the condition (5) is invariant.) They are the equivalent of
holomorphic functions in Tate’s case.
O (Cp)

× = O×p is the sheaf of invertible elements of Op that is of the f
whose germs are linear at every point, and therefore differentiable of class C1.
It is evident that there cannot exist non constant global sections of O×p since we
would have a f p-periodic, C1, and everywhere convex, which is impossible.
K (Cp) = Kp is the sheaf of germs of functions f (λ) which are (1) Rmax -

valued, (2) continuous, (3) piecewise affine, (4) non necessarilly convex, (5) with
slopes f ′ (λ) in Hp at all points λ. Kp has a lot of global sections (the equivalent
of elliptic functions in Tate’s case).

11.3 Divisors

As in the classical case, Cartier divisors are global sections of the quotient
sheaf Kp/O×p . As in the classical case, they are finite formal sums D of points
pλ, that is of rank 1 subgroups λHp of R. The fundamental difference is that
the order D (pλ) of D at pλ belongs now to λHp ⊂ R and no longer to Z. So,
if D =

∑j=n
j=1 D (pλi) pλi , deg (D) =

∑j=n
j=1 D (pλi) ∈ R is a real number.

Now let f be continuous, piecewise affine, with multiplicative period p, and
with slopes in Hp. If one decomposes f in its affine parts on a fondamental
domain λ0 < λ1 < · · · < λn = pλ0 and remember that ord (f) at pλ is
λ
(
h
(
λ+
)
− h

(
λ−
))

, one sees that, as in the classical case, the degree of the
principal divisor (f) vanishes: deg ((f)) = 0.

There is another number that can be associated to a divisor. If p > 2,
Hp/ (p− 1)Hp ' Z/ (p− 1) Z. Then, for H = λHp, consider the map

χ : H → Z/ (p− 1) Z, µ 7→ µ

λ
∈ Hp

43



µ
λ being seen as an element of Hp/ (p− 1)Hp ' Z/ (p− 1) Z. The map χ can
be extended to divisors by linearity and one shows that χ ((f)) = 0 for principal
divisors. So, one can consider the map (deg, χ) from divisors to R× Z/ (p− 1) Z.
The principal divisors constitute the kernel of (deg, χ).

11.4 The Frobenius scaling flow in the “elliptic” case

Remember that for a rescaling µ, the action of the Frobenius ϕµ on the structural
sheaf O is given by

ϕµ : RH → RµH , (x, h , h+) 7→ (x, µh , µh+)

On the functions f (λ), the natural action is

ϕµ (f) (λ) := µf
(
µ−1λ

)
Indeed, in the multiplicative semi-field Rmax

+ , ϕµ acts as ϕµ : x → xµ. In
the additive semi-field Rmax (which is the log of Rmax

+ ), ϕµ acts therefore as
ϕµ : x→ µx.

Now, f is valued in Rmax and piecewise affine: f (λ) = hλ + a, and the ϕµ
act on the a. So we must have

ϕµ (f) (λ) = hλ+ µa = µ
(
hµ−1λ+ a

)
= µf

(
µ−1λ

)
The ϕµ act also on divisors.

1. If D =
∑
j (Hj , hj ∈ Hj), then ϕµ (D) =

∑
j (µHj , µhj ∈ µHj),

2. deg
(
ϕµ (D)

)
= µdeg (D),

3. χ
(
ϕµ (D)

)
= µχ (D).

11.5 “Elliptic” functions and “theta” functions

In the classical case, it is well known that elliptic functions on the elliptic curve
Eτ = C/Λ can be expressed using theta functions. Due to Liouville theorem,
an entire elliptic function on Eτ is necessarilly constant.

So if we want to get non constant functions we have two possibilities:

1. to keep the periodicity, weaken the property of being entire, and accept
meromorphic functions;

2. to weaken the periodicity and keep the property of being entire.

The first possibility leads to elliptic functions and the second to theta functions.
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Tate reformulated the Θ-functions when the elliptic curve Eτ is written as
C∗/qZ with q = e2πiτ . Tate’s formula is

Θ (w) =
∑

Z
(−1)n q

n(n−1)
2 wn

= (1− w)
m=∞∏
m=1

(1− qm) (1− qmw)
(
1− qmw−1

)
and Θ (w) satisfies the functional equation

−wΘ (qw) = Θ (w)

As in Tate’s case, Connes defined a theta function Θ (λ) on the whole R×+,

1. which is no longer p-periodic (i.e. “elliptic”),

2. but which is globally (1) continuous, (2) piecewise affine, (3) convex (i.e.
globally “holomorphic”),

3. and which satisfies a functional equation.

Tate’s term (1− w)
∏m=∞
m=1 (1− qmw) =

∏m=∞
m=0 (1− qmw) is translated into

Θ+ (λ) λ ∈ (0,∞)

Θ+ (λ) :=
m=∞∑
m=0

(0 ∨ (1− pmλ))

and Tate’s term
∏m=∞
m=1

(
1− qmw−1

)
is translated into

Θ− (λ) :=
m=∞∑
m=1

(
0 ∨

(
p−mλ− 1

))
The term

∏m=∞
m=1 (1− qm) can be skipped.

Then, one shows the functional equation Θ+ (pλ) = Θ+ (λ)− (0 ∨ (1− λ)) ,
Θ− (pλ) = Θ+ (λ) + (0 ∨ (λ− 1)) , and therefore
Θ (pλ) = Θ (λ) + λ− 1 since (0 ∨ x)− (0 ∨ (−x)) = x

Connes and Consani then proved the equivalent of the classical reconstruc-
tion of all elliptic functions from theta functions. From the basic theta func-
tion Θ (λ), they define a whole family of theta functions Θh,µ parametrized by
(h, µ) ∈ H+

p × R×+, that is by a positive slope and a rescaling. These functions
Θh,µ are associated with the Frobenius scaling flow

Θh,µ (λ) := µΘ
(
µ−1hλ

)
45



(the role of µ and µ−1 is to warrant that the slopes remain in Hp).
Their divisors are

δ (h, µ) :=
(
point µh−1Hp, order µ

)
(one checks that µ ∈ µh−1Hp since µ = µh−1h and h ∈ Hp). Let D = D+−D−
be a divisor with D+ =

∑
i δ (hi, µi) and D− =

∑
j δ
(
h′j , µ

′
j

)
and suppose that

deg (D) = 0.
Theorem. If χ (D) = 0 (that is if h ∈ Hp satisfies (p− 1)h =

∑
i hi −∑

j h
′
j), then the function

f (λ) :=
∑
i

Θhi,µi (λ)−
∑
j

Θh′j ,µ
′
j

(λ)− hλ

is a global section of Kp with divisor (f) = D. Moreover all “elliptic” functions
can be recovered through such a canonical decomposition. 3

11.6 p-adic norm, filtration and dimension

As the slopes of the f are in Hp =
{
n
pk
| n ∈ Z, k ∈ N

}
we can look at them

“p-adically” that is by filtering them through the pk.
Let h (λ) ∈ Hp be the slope of f at λ. Connes defines the appropriate p-adic

norm ‖f‖p of f as

‖f‖p := max
λ∈R×+

{ |h (λ)|p
λ

}
with |•|p the p-adic norm normalized by |p|p = 1

p . As h (pλ) = 1
ph (λ), this

definition is appropriate since,
|h(λ)|p
λ is invariant by the scaling periodicity

λ 7→ pλ :

|h (pλ)|p
pλ

=
p |h (λ)|p

pλ
=
|h (λ)|p
λ

The ultrametricity of this p-adic norm is compatible with the algebraic opera-
tions +̊ = ∨ and ×̊ = + on functions.

One has also ‖paf‖p = p−a ‖f‖p and ‖f‖p ≤ 1 iff the restriction f |[1,p] has
integral slopes.

11.7 The H0 (D) and their dimension

As in the classical case, if D is a divisor one can consider the space H0 (D) (or
L (D)) of the f such that D + (f) ≥ 0.

H0 (D) := {f ∈ Kp | D + (f) ≥ 0}

which is a Rmax-module (i.e. stable by ∨).

46



The challenge becomes to prove the Riemann-Roch theorem. But for that,
one must at first define the dimensions of the spaces H0 (D) (they are the
` (D) = dimC (L (D)) in the classical case). This is not trivial at all since they
are Rmax-modules.

To define dim
(
H0 (D)

)
, Connes filters the H0 (D) using the p-adic norm,

that is the filtration of H0 (D) by the

H0 (D)p
n

=
{
f ∈ H0 (D) s.t. ‖f‖p ≤ p

n
}

and proposes the formula

dim
(
H0 (D)

)
:= lim

n→∞
p−n dimtop

(
H0 (D)p

n
)

where, for a topological space X, dimtop (X) is the smallest k such that for every
sufficiently fine open covering U = {Ui}of X, every point x of X belongs to at
most k + 1 open sets Ui.

11.8 RR theorem

RR theorem. If D ∈ Div (Cp) is a positive divisor, then dim
(
H0 (D)

)
=

deg (D). If D is any divisor, then

dim
(
H0 (D)

)
− dim

(
H0 (−D)

)
= deg (D)

(remember that these numbers are real numbers and not integers). H0 (−D)
corresponds to Serre’s duality between H0 (D) and H0 (K −D) in the classical
case. 3

11.9 The rest of the story

Connes’ programme is now (2017) to develop the intersection theory in the
square A×A of the scaled arithmetic topos, to prove RR for this “surface” and
show that for divisors D on A× A one has the inequality

dim
(
H0 (D)

)
+ dim

(
H0 (−D)

)
≥ 1

2
D •D

which would be the analog of the classical formula over S = C × C for curves:

`(D) + `(KS −D) ≥ 1
2
D • (D −KS) + χ (S)
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