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Abstract— We propose a novel dynamical system approach 
to cognitive linguistics based on cellular automata and spik-
ing neural networks1. How can the same relationship ‘in’ 
apply to containers as different as ‘box’, ‘tree’ or ‘bowl’? Our 
objective is to categorize the infinite diversity of schematic 
visual scenes into a small set of grammatical elements and 
elucidate the topology of language. Gestalt-inspired semantic 
studies have shown that spatial prepositions such as ‘in’ or 
‘above’ are neutral toward the shape and size of objects. We 
suggest that this invariance can be explained by introducing 
morphodynamical transforms, which erase image details and 
create virtual structures or singularities (boundaries, skele-
ton), and call this paradigm “active semantics”. Singularities 
arise from a large-scale lattice of coupled excitable units ex-
hibiting spatiotemporal pattern formation, in particular trav-
eling waves. This work addresses the crucial cognitive mecha-
nisms of spatial schematization and categorization at the inter-
face between vision and language and anchors them to expan-
sion processes such as activity diffusion or wave propagation. 

I. INTRODUCTION 
How can the same English relationship ‘in’ apply to 

scenes as different as “the shoe in the box” (small, hollow, 
closed volume), “the bird in the tree” (large, dense, open 
volume) or “the fruit in the bowl” (curved surface)? What 
is the common ‘across’ invariant behind “he swam across 
the lake” (smooth trajectory, irregular shape) and “the fly 
zigzagged across the hall” (jagged trajectory, regular vol-
ume)? How can language, especially its spatial elements, 
be so insensitive to wide topological and morphological 
differences among visual percepts? In short, how does lan-
guage drastically simplify information and categorize? 

This study examines the link between the spatial struc-
ture of visual scenes and their linguistic descriptions. We 
propose a spiking neural model aimed at mapping the end-
less diversity of schematic visual scenes to a small set of 
standard semantic labels (Doursat & Petitot, 2005). Our 
suggestion is that spatial and grammatical structures are 
related to each other through image transformations that 
rely on diffusion processes and wavelike neural activity. 

A. Toward a Protosemantics 
Contemporary theories of semantics have shown that 

terms with spatiotemporal content are highly polysemous. 
                                                           
1 An abbreviated version of some portions of this article appeared in 
Doursat and Petitot (2005), published under the IEEE copyright. 

For example, different uses of ‘in’ relate to qualitatively 
different spatial situations (Herskovits, 1986): “the cat in1 
the house”, “the bird in2 the tree”, “the flower in3 the 
vase”, “the crack in4 the vase”, etc. Spatial prepositions 
typically form prototype-based radial categories (Rosch, 
1975). Here, ‘in1’ represents the most prototypical con-
tainment schema, while ‘in2’ departs from it slightly in the 
texture and openness of the container. Top-down, knowl-
edge-based inferences also create metonymic effects such 
as ‘in3’—the stem, not the flower, is inside the vase. In the 
subcategorical island ‘in4’, the container is a surface, etc. 
Another major departure from prototypical use comes from 
metaphors, a pervasive mechanism of cognitive organiza-
tion rooted in the fundamental domains of space and time 
(Lakoff, 1987; Talmy, 2000). The schemas grammatical-
ized by ‘in’ are not just used to structure physical scenes 
but also abstract situations: one can be “inA a committee”, 
“inB doubt”, etc. These uses of ‘in’ pertain to a virtual con-
cept of space generalized from real space: ‘inA’ metaphori-
cally maps to an element of a discrete numerable set, such 
as “in5 a crowd”, while ‘inB’ relates to an immersion into a 
continuous ambient substance, such as “in6 water”. 

With these preliminary remarks in mind, we restrict the 
scope of the present study to relatively homogeneous sub-
categories or protosemantic features, i.e., low-level com-
pared to linguistic categories but high-level compared to 
local visual features. Our goal is to categorize scenes into 
elementary semantic subclasses, such as ‘in1’, or clusters 
of closely related subclasses, such as ‘in1-in2’. We will not 
attempt to delineate the whole cultural complex formed by 
the English preposition ‘in’ with a single (and nonexistent) 
universal. We also leave aside issues of top-down control 
or “intentionality” deciding how to choose and compose 
elements. Yet, even in their most typical and concrete in-
stantiation, we are still facing the great difficulty of linking 
these invariant semantic kernels to the infinite continuum 
of perceptual shape diversity. To help solve this problem, 
we focus on a collection of low-level dynamical routines 
that structure visual scenes in a “Gestaltist” fashion. 

B. The Gestaltist Conception of Relations 

Through a shift of paradigm initiated in the 1970’s, the 
formalist view that language is functionally autonomous 
was revised by a set of works (e.g. Lakoff, 1987; Lan-
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gacker, 1987; Talmy, 2000) collectively named cognitive 
linguistics, for which language is much rather “embodied” 
in perception, action and inner conceptual representations. 
In this paradigm, generative grammar models have been 
superseded by studies of the interdependence of language 
and perceptual reality and how these two systems influ-
ence each other’s organization. Cognitive linguistics is 
directly preoccupied with meaning and categorization. 
Refuting the distinction between syntax and semantics, it 
postulates a conceptual level of representation, where lan-
guage, perception and action become compatible 
(Jackendoff, 1983). It also remarkably revived the Gestalt 
approach calling into question the traditional roles as-
signed to visual perception—as a faculty only dealing with 
object shapes—and language—as a faculty only dealing 
with relations between objects. Classical formal linguistics 
follows the logical atomism of set theory: “things” are al-
ready individuated symbols and “relations” are abstract 
links connecting these symbols. By contrast, in the Gestal-
tist or mereological conception, things and relations consti-
tute wholes: relations are not taken for granted but emerge 
together with the objects through segmentation and trans-
formation. Here, objects involved in relations are parts of a 
higher-order complex object—the global configuration. 

C. Toward an Active Morphodynamical Semantics 
A fundamental thesis of Talmy’s Gestalt semantics is 

that linguistic elements structure the conceptual material in 
the same way visual elements structure the perceptual ma-
terial and that this structuration is mostly of grammatical 
origin, as opposed to lexical. Grammatical elements (‘in’, 
‘above’) provide the conceptual structure or “scaffolding” 
of a cognitive representation, while lexical elements 
(‘bird’, ‘box’) provide its conceptual contents. Consider a 
figure or trajector (TR)—to use Langacker’s terminol-
ogy—profiled against a ground or landmark (LM), for ex-
ample “TR in LM.” One of Talmy’s most compelling ideas 
is that LM is not just a passive frame but is actively struc-
tured (scaffolded) in a geometrical and morphological way 
radically different from symbolic relations. In this Gestal-
tist view, for example, “I am in/on/far from the street” con-
strues LM (the street) either as a volume, a surface or a 
reference point, thus dividing (scaffolding) reality in con-
ceptually different ways. By contrast, formal theories of 
syntax assimilate the street to a symbol, irrespective of its 
perceptual properties, and encapsulate all spatial meaning 
in an abstract relationship labeled ‘in’. 

Now, by giving a new significance to the object’s ge-
ometry we are challenged to find how it varies with lin-
guistic circumstances, i.e., how prepositions actually select 
and process certain morphological features from the per-
ceptual data and ignore others. We propose that simple 
spatial elements like ‘in’, ‘above’, ‘across’, etc., corre-
spond in fact to visual processing algorithms that take per-
ceptual shapes in input, transform them in a specific way, 
and deliver a semantic schema in output. We call these 
algorithms morphodynamical routines and the global proc-

ess active semantics. Morphodynamical routines erase de-
tails and create new forms that evolve temporally. They 
enrich a visual scene with virtual structures or singularities 
(e.g., influence zones, fictive boundaries, skeletons, inter-
section points, force fields, etc.) that were not originally 
part of it but are ultimately revealing of its conveyed 
meaning. We suggest below that these routines rest upon 
object-centered and diffusion-like nonlinear dynamics. 

In the remainder of this article, section II applies the ac-
tive semantics approach to the analysis of spatial gram-
matical elements and draws a link with visual processing 
routines in 2-D cellular automata (CA). In section III we 
discuss spatial invariance and the notion of “linguistic to-
pology” in the context of mathematical geometry, which 
leads us to reaffirm the importance of transformation rou-
tines. Section IV introduces waveform dynamics in spiking 
neural networks and shows its role in active semantics as a 
plausible mechanism of expansion-based morphology. 
This is further developed in section V through two models 
of spatial scene categorization based on wave interaction 
and detection. We conclude in section VI by hinting at 
future work beyond the preliminary results presented here 
and pointing out the originality of our proposal compared 
to both current linguistic and neural modeling. 

II. MORPHODYNAMICAL CELLULAR AUTOMATA 
Numerous examples collected by Talmy show that 

grammatical elements are largely indifferent to the mor-
phological details of objects or trajectories. Such invari-
ance of meaning points to the existence of underlying vis-
ual-semantic routines that perform a drastic but targeted 
simplification of the geometrical data. We examine a rep-
resentative sample that helps us introduce various types of 
data-reduction transforms essential to scene categorization. 

A. Magnitude Invariance →  Multiscale Analysis 
Grammatical elements are fundamentally scale-

invariant. The sentences “this speck is smaller than that 
speck” and “this planet is smaller than that planet” (Talmy, 
2000, p. 25) show that real distance and size do not play a 
role in the partitioning of space carried out by the deictics 
‘this’ and ‘that’. The relative notions of ‘proximity’ and 
‘remoteness’ conveyed by these elements are the same, 
whether speaking of millimeters or parsecs. It does not 
mean, however, that grammatical elements are insensitive 
to metric aspects but rather that they can uniformly handle 
similar metric configurations at vastly different scales. 
Multiscale processing therefore lies at the core of Gestalt 
semantics and, interestingly, has also become a main area 
of research in computational vision (since Mallat, 1989). 

B. Bulk Invariance →  Skeleton 
Another form of magnitude invariance appears in the se-

lective rescaling of some dimensions and not others. This 
is the case of thickness or bulk invariance. For example, 
“the caterpillar crawled up along the filament/flagpole/ 
redwood tree” (Talmy, 2000, p. 31) shows that ‘along’ is 
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indifferent to the girth of LM and focuses only on its main 
axis or skeleton, parallel to the direction of TR’s trajectory. 
Like multiscale analysis, skeleton transforms are widely 
used in machine vision and implemented using various 
algorithms. Studied by Blum (1973) under the name “me-
dial axis transform” and by others as “cut locus”, “stick 
figures”, “shock graphs” or “Voronoi diagrams” (e.g. 
Marr, 1982; Siddiqi, Shokoufandeh, Dickinson, & Zucker, 
1999; Zhu & Yuille, 1996), morphological symmetry plays 
a crucial role in theories of perception and is even consid-
ered a fundamental structuring principle of cognition (Ley-
ton, 1992). Skeletons indeed conveniently simplify and 
schematize shapes by getting rid of unnecessary details, 
while at the same time conserving their most important 
structural features. There is also experimental evidence 
that the visual system effectively constructs the symmetry 
axis of shapes (Kimia, 2003; Lee, 2003). 

C. Continuity Invariance →  Expansion 
Sentences such as “the ball/fruit/bird is in the box/bowl/ 

cage” are good examples of the neutrality of the preposi-
tion ‘in’ with respect to the morphological details of the 
container. We propose that the active semantic effect of 
‘in’ is to trigger routines that transform a scene in the fol-
lowing manner: the container LM (‘bowl/cage’) is closed 
by adding virtual parts to become a continuous spherical or 
blob-like domain, while the contained object TR (‘fruit/ 
bird’) expands by some contour diffusion process, irre-
spective of its detailed shape, until it collides with the 
boundaries of the closed LM. In fact, these two phases of 
the ‘in’ routine can often run in parallel: both TR and LM 
expand simultaneously until they reach each other’s 
boundaries (Fig. 1). The expansion of LM naturally creates 
its own closure while providing an obstacle to the expan-
sion of TR. Therefore, we propose the following active 
semantic definition of the prototypical ‘containment’ 
schema (‘in1-in2’ and closely related variants): a domain 
TR lies ‘in’ a domain LM if an isotropic expansion of TR is 
stopped by the boundaries of LM’s own expansion. 

 
Fig. 1.  Detection of a Proto-‘in’ Schema in a 2-D CA. We use a 100x100, 
3-state lattice: 1 for TR (black), 2 for LM (gray) and 0 for the ambient 
space (white). A simple diffusion rule requires that a 0 cell adopt the state 
of any non-0 nearest neighbor, if it exists. Starting with any two initial TR 
and LM domains and stopping when the total TR activity is constant, the 
lattice quickly converges to an attractor characterized by two contiguous 
domains of 1’s and 2’s. TR’s expansion is blocked by LM’s expansion 
from reaching the borders despite discontinuities in LM. (a) “The ball in 
the box” converges in 21 steps. (b) “The bird in the cage,” in 27 steps. 

A directly measurable consequence of this definition is 
the fact that no TR-induced activity will be detected on the 
borders of the visual field. This can be easily implemented 
in a 2-D square lattice, three-state CA (Fig. 1). The final 
boundary line between the domains is approximately equal 
to the skeleton of the complementary space between the 
objects, also called skeleton by influence zones or SKIZ. In 
the case of the containment schema, the SKIZ surrounds 
TR and no cell on the borders is in TR’s state 1. The sheer 
absence of TR activity on the borders is a robust feature 
that contributes to categorize the scene as ‘in’. It illustrates 
a typical morphodynamical routine at the basis of our 
“perceptual-semantic” classifier (Doursat & Petitot, 1997). 

D. Translation Invariance 
Another example, “the lamp is above the table”, can be 

processed in the same way: the simultaneous expansion of 
TR and LM creates a roughly horizontal SKIZ line in the 
center of the image (Fig. 2). This time, the key classifica-
tion feature is the absence of TR activity on the bottom 
border of the field, in conjunction with high TR activity on 
the top border and partial presence on the sides. This prop-
erty is conserved by translation of TR in a broad region of 
space. Prototypical ‘above’ is one example of the generic 
‘partition’ schema that includes elements such as ‘below’, 
‘beside’, ‘behind’ and ‘in front of’ (viewed in 3-D). 

 
Fig. 2.  Detection of a Proto-‘above’ Schema in a 2-D CA. We use the 
same lattice as Fig. 1. (a) LM’s expansion prevents TR’s expansion from 
reaching the bottom border. (b) Same effect when LM and TR are not 
vertically aligned, so that part of TR is directly facing the bottom border. 

Although rather simple, the double expansion process 
that we propose for the ‘containment’ and ‘partition’ 
schemas is nonetheless crucial and leads us to introduce 
the following general principles of active semantic mor-
phodynamics: (i) objects have a tendency to occupy the 
whole space; (ii) objects are obstacles to each other’s ex-
pansion. Through the action of structuring routines the 
common space shared by the objects is divided into influ-
ence zones. Image elements cooperate to propagate activity 
across the field and inhibit activity from other sources. 

E. Shape Invariance →  Singularities 
Talmy clearly shows that salient aspects of shapes are 

simply not taken into account by grammatical elements. In 
the sentences “I zigzagged/circled/dashed through the 
woods” (Talmy, 2000, p. 27), the trajectory of TR, whether 
made of segments, curves or one straight line, ultimately 
joins two opposite (and possibly virtual) sides of an ex-
tended domain LM. In our active semantic view, the ele-
ment ‘through’ creates a sharp schematization of TR in two 
steps: (1) tubification—a limited outward expansion con-
vexifying the object—followed by (2) skeletonization—the 
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reverse inward expansion eroding the object down to its 
central symmetry axis. At the same time, it does the same 
with LM: the texture is first erased, then the domain is 
skeletonized (Fig. 3). The grammatical perspective en-
forced by ‘through’ thus reduces the detailed trajectory of 
TR or texture of LM to mere fluctuations around their me-
dial axes. Finally, the characteristic feature of the ‘through’ 
schema lies at the intersection of the two skeletons. 

 
Fig. 3.  Detection of a Proto-‘through’ Schema in a 2-D CA (same as 
Fig. 1). A tubification followed by a skeletonization is performed sepa-
rately on TR (20 steps) and LM (52 steps), revealing an intersection point. 

Fig. 4 illustrates another scenario, TR ‘out of’ LM (“the 
ball out of the box”). In this case, the T-junction in the 
SKIZ between TR and LM accelerates away from TR and 
eventually disappears as TR exits the interior of LM. 
Again, this is a very robust bifurcation phenomenon, inde-
pendent of the detailed shapes or trajectories of the objects. 

 
Fig. 4.  Detection of a Proto-‘out of’ Schema in a 2-D CA. Each image is 
equivalent to the last step of Fig. 1-2, with TR and LM pasted on top. The 
influence domains of the ball and box are displayed in gray levels reflect-
ing the distance to the objects (the farther, the darker). The sequence of 
images, in which TR moves out of LM, reveals a dynamical bifurcation 
(or “phase transition”, or “catastrophe”) as the singularity formed by the 
T-junction in the SKIZ boundary line disappears (shown by arrows). 

In these two examples, ‘through’ and ‘out of’, the spatial 
relation between the objects is inferred from virtual singu-
larities in the boundaries of the objects’ territories. These 
singularities and their dynamical evolution are important 
clues that constitute the characteristic “signature” of the 
spatial relationship (Petitot, 1995). Transformation rou-
tines considerably reduce the dimensionality of the input 
space, literally “boiling down” the input images to a few 
critical features. A key idea is that singularities encode a 
lot of the image’s geometrical information in an extremely 
compact and localized manner. In summary, after the mor-
phodynamical routines have transformed the scene accord-
ing to the expansion principles (i) and (ii), several types of 
characteristic features can be detected to contribute to the 
final categorization: (iii) presence or absence of activity on 
the borders; (iv) intersection of skeletons; (v) singularities 
in the SKIZ boundary line. Our active semantic approach 
proposes a link between the “things-relations-events” tril-
ogy of cognitive grammar (Langacker, 1987) and the “do-
mains-singularities-bifurcations” trilogy of morphody-
namical visual processing (Petitot, 1995). We suggest that 
the brain might rely on dynamical activity patterns of this 
kind to perform invariant spatial categorization. 

III. WHAT IS “COGNITIVE TOPOLOGY”? 
The core invariance of spatial meaning reviewed above 

is sometimes referred to as the “linguistic form of topol-
ogy” or “cognitive topology”. Like mathematical topology 
(MT), language topology (LT) is magnitude and shape-
neutral, yet in a way more abstract and less abstract at the 
same time (Talmy, 2000, p. 30). In some areas, LT has a 
greater power of generalization than MT. For example, ‘in’ 
closes the missing parts of ‘cage’ and ‘bowl’ to make them 
like a ‘box’. In other cases, however, LT preserves metric 
ratios and limits distortions in a stricter sense than MT. For 
example, the lexical elements ‘cup’ and ‘plate’ have dis-
tinct uses, although a plate is a flatter cup. The grammati-
cal element ‘across’ also exhibits subtle metric constraints 
in its applicability: “he swam across the pool lane” implies 
that the swimmer’s trajectory crosses the rectangle of wa-
ter parallel to its short side, not its long side. Thus, because 
of these discrepancies LT has actually little to do with MT. 

In geometry, one can identify six main levels of increas-
ing structural constraints: sets (points), topological 
(“glued” points), differentiable (“smooth” objects), con-
formal (angle-preserving), metric (distance, e.g., Rieman-
nian) and linear (vectors, e.g., Euclidean) spaces. We think 
that LT does not correspond to any of these levels or in-
termediate levels. In reality, the active conception of se-
mantics presented above leads us to consider interlevel 
transformations, i.e., processes starting at one level and 
going up or down the hierarchy. For example, a convexifi-
cation routine makes objects smoother and “rounder”: it 
discards most of the objects’ metric properties, therefore 
seems to go down, towards the “soft” topological levels. 
Yet, at the same time, the convex classes it creates are 
more “rigid” than the original objects because, precisely, 
mappings at their level must preserve convexity. There-
fore, convex classes also belong to the higher metric lev-
els. This illustrates the subtle interplay between impover-
ishment of details and rigidification of structures. Active 
semantics is neutral toward shape or continuity but it trans-
forms objects into prototypes, which by nature are more 
metrically constrained. One could say that schematization 
and categorization replace “soft complex” forms (e.g., in-
tricate amoeboid blobs) with “rigid simple” ones (e.g., 
spheres). Here lies the puzzling apparent paradox of LT. 

In summary, what is called “topology” in Gestalt seman-
tics and cognitive grammar actually corresponds to a fam-
ily of morphological operators, as reviewed in II. These 
operators are similar to the basic operations of dilation and 
erosion defined in “mathematical morphology” (MM) of 
Serra (1982). Dilation and erosion can be combined to ob-
tain the closure (filling small gaps), opening (pruning thin 
segments) or skeleton of a shape. Thus, MM is better 
suited than MT as a “toolbox” for an active-semantic LT. 

IV. WAVES IN SPIKING NEURAL NETWORKS 

A. Dynamic Pattern Formation in Excitable Media 
Elaborating upon this first morphodynamical model, we 
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now establish a parallel with neural modeling. Our main 
hypothesis is that the transition from analog to symbolic 
representations of space might be neurally implemented by 
traveling waves in a large-scale network of coupled spik-
ing units, via the expansion processes discussed above (see 
Fig. 6 for a preview). There is a vast cross-disciplinary 
literature, revived by Winfree (1980), on the emergence of 
ordered patterns in excitable media and coupled oscillators. 
Traveling or kinematic waves are a frequent phenomenon 
in nonlinear chemical reactions or multicellular structures 
(e.g. Swinney and Krinsky, 1991), such as slime mold ag-
gregation, heart tissue activity, or embryonic pattern for-
mation. Across various dynamics and architectures, these 
systems have in common the ability to reach a critical state 
from which they can rapidly bifurcate between randomness 
or chaos and ordered activity. To this extent, they can be 
compared to “sensitive plates”, as certain external patterns 
of initial conditions (chemical concentrations, food, elec-
trical stimuli) can quickly trigger internal patterns of col-
lective response from the units. 

We explore the same idea in the case of an input image 
impinging on a layer of neurons and draw a link between 
the produced response and categorical invariance. In the 
framework proposed here, a visual input is classified by 
the qualitative behavior of the system, i.e., the presence or 
absence of certain singularities in the response patterns. 

B. Spatiotemporal Patterns in Neural Networks 
During the past two decades, a growing number of neu-

rophysiological recordings have revealed precise and re-
producible temporal correlations among neural signals and 
linked them with behavior (Abeles, 1982; Bialek, Rieke, 
de Ruyter van Steveninck, & Warland, 1991; O’Keefe & 
Recce, 1993). Temporal coding (von der Malsburg, 1981) 
is now recognized as a major mode of neural transmission, 
together with average rate coding. In particular, quick on-
sets of transitory phase locking have been shown to play a 
role in the communication among cortical neurons engaged 
in a perceptual task (Gray, König, Engel, & Singer, 1989). 

While most experiments and models involving neural 
synchronization were based on zero-phase locking among 
coupled oscillators (e.g. Campbell & Wang, 1996; König 
& Schillen, 1991), delayed correlations have also been 
observed (Abeles, 1982, 1991). These nonzero-phase lock-
ing modes of activity correspond to reproducible rhythms, 
or waves, and could be supported by connection structures 
called synfire chains (Abeles, 1982; Ikegaya et al., 2004). 
Bienenstock (1995) construes synfire chains as the physi-
cal basis of elementary “building blocks” that compose 
complex cognitive representations: synfire patterns exhibit 
compositional properties (Abeles, Hayon, & Lehmann, 
2004; Bienenstock, 1996), as two waves propagating on 
two chains in parallel can lock and merge into one single 
wave by growing cross-connections between the chains (in 
a “zipper” fashion). In this theory, spatiotemporal patterns 
in long synfire chains would thus be analogous to proteins 
that fold and bind through conformational interactions. 

The present work construes wave patterns differently: 
we look at their emergence on regular 2-D lattices of cou-
pled oscillators to implement the expansion dynamics of 
our morphodynamical spatial transformations. Compared 
to the traditional blocks of synchronization, i.e., the phase 
plateaus often used in segmentation models, we are also 
rather interested in traveling waves, i.e., phase gradients. 

C. Wave Propagation and Morphodynamical Routines 
A possible neural implementation of the morphody-

namical engine at the core of our model relies on a net-
work of individual spiking neurons, or local groups of 
spiking neurons (e.g., columns), arranged in a 2-D lattice 
similar to topographic cortical areas, with nearest-neighbor 
coupling. Each unit obeys a system of differential equa-
tions that exhibit regular oscillatory behavior in a certain 
region of parameter space. Various combinations of oscil-
latory dynamics (relaxation, stochastic, reaction-diffusion, 
pulse-coupled, etc.) and parameters (frequency distribu-
tion, coupling strength, etc.) are able to produce waveform 
activity, however it is beyond the scope of the present 
work to discuss their respective merits. We want here to 
point out the generality of the wave propagation phenome-
non, rather than its dependence on a specific model. 

For practical purposes, we use Bonhoeffer-van der Pol 
(BvP) relaxation oscillators (FitzHugh, 1961). Each unit i 
is located on a lattice point xi and described by a pair of 
variables (ui, vi). Unit i is locally coupled to neighbor units 
j within a small radius r and may also receive an input Ii: 
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where η is a Gaussian noise, || xi – xj || < r and Ii = 0 or a 
constant I. Parameters are tuned as in Fig. 5a, so that indi-
vidual units are close to a bifurcation in phase space be-
tween a fixed point and a limit cycle, i.e., one spike emis-
sion. They are excitable in the sense that a small stimulus 
causes them to jump out of the fixed point and orbit the 
limit cycle, during which they cannot be disturbed again. 

 
Fig. 5.  Typical Firing Modes of a Stochastic BvP Relaxation Oscillator. 
Plots show u(t), solution of Eq. (1) with a = .7, b = .8, c = 3, η > 0, k = 0, 
I = 0. (a) Sparse stochastic firing at z = −.2 (spikes are upside-down). 
(b) Quasi-periodic firing at z = −.4. At critical value zc = −.3465, without 
noise, there is a bifurcation from a stable fixed point u ≈ 1 to a limit cycle. 

Fig. 6b shows waves of excitation in a network of cou-
pled BvP units created by the schematic scene “a small 
blob above a large blob”. Block impulses of spikes trigger 
wave fronts of activity that propagate away from the object 
contours and collide at the SKIZ boundary between the 
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objects. These fronts are “grass-fire” traveling waves, i.e., 
single-spike bands followed by refraction and reproducing 
only as long as the input is applied. Under the nonlinear 
dynamics, waves annihilate when they meet, instead of 
adding up. Fig. 6a shows the same influence zones ob-
tained by mutual expansion in a CA, as seen in section II 
(Fig. 2). Again, there is convincing perceptual and neural 
evidence for the significant role played by this virtual 
SKIZ structure and propagation in vision (Kimia, 2003). 

 
Fig. 6.  Realizing Morphodynamical Routines in a Spiking Neural Net-
work. (a) SKIZ obtained by diffusion in a 64x64 3-state CA, as in Fig. 2. 
(b) Same SKIZ obtained by traveling waves on a 64x64 lattice of coupled 
BvP oscillators in the regime of Fig. 5a with η = 0, connectivity radius 
r = 2.3 and coupling strength k = .04. Activity u is shown in gray levels, 
brighter for lower values, i.e., spikes u < 0. Starting with uniform resting 
potentials u ≈ 1 (or weak stochastic firing with noise η > 0), an input 
image is continuously applied with amplitude I = −.44 in both TR and LM 
domains. This amounts to shifting z to a subcritical value z = −.3467 < zc, 
thus throwing the BvP oscillators into periodic firing mode (Fig. 5b). This 
in turn creates traveling waves in the rest of the network. 

V. TWO WAVE CATEGORIZATION MODELS 
We now show how wave dynamics can support the cate-

gorization of spatial schemas by proposing two models 
based on the principles discussed in section II. First, waves 
implement the expansion-based transformations stated in 
principles (i)-(ii), then the detection of global activity or 
singularities created by the wave collisions is based on 
principles (iii)-(v). One wave model implements the border 
detection principle (iii) used in the ‘containment’ (Fig. 1) 
and ‘partition’ (Fig. 2) schemas. The second model focuses 
on the SKIZ singularities and “signature” detection princi-
ple (v), which can be used as a complement or alternative 
to border detection. In this case, we illustrate SKIZ detec-
tion with the same ‘above’ schema as in border detection. 

A. Border Detection with Cross-Coupled Lattices 
Detecting the presence or absence of TR activity on the 

borders of the image, as for ‘in’ or ‘above’, is not possible 
in the single lattice of Fig. 6b because the waves triggered 
by TR and LM cannot be distinguished from each other. 
However, as discussed earlier in section IV.B, a number of 
models have shown that lattices of coupled oscillators can 
also carry out segmentation from contiguity by exploiting a 
simpler form of temporal organization in the lattice: zero-
phase synchronization or “temporal tagging”. We take here 
these results as the starting point of our simulation and 
assume that the original input layer is now split into two 

distinct sublayers, each holding one component of the 
scene. Thus, after a preliminary segmentation phase (not 
presented here), TR and LM are forwarded to layers LTR 
and LLM, where they generate wave fronts separately 
(Fig. 7). Mutual wave interference and collision is then 
recreated by cross-coupling the layers: unit i in layer LTR is 
not only connected to units j in LTR inside a neighborhood 
of radius r, but also to units j´ in LLM inside a neighborhood 
of radius r´. The modified dynamics is therefore: 

( ) ( ) TR
ij

TR
i

LM
jj

TR
i

TR
j

TR
i

TR
i IuukuukuFu +−′+−+= ∑∑ ′ ′)(&   (2) 

where F(u) is the right hand side of Eq. (1) without k and I 
terms. A symmetrical relation holds for ui

LM, swapping TR 
and LM. Variables vi are not coupled and obey (1) as be-
fore. The net effect is shown in Fig. 7: the spiking wave 
fronts created by TR are cancelled by LM’s wave fronts 
and never reach the bottom border of LTR, while hitting the 
top and partly the sides. This could be easily detected by 
external cells receiving afferents from the border units and 
linked to an ‘above’ response (not presented here). Again, 
the invisible collision boundary line is the SKIZ, which we 
now examine more closely in the next network model. 

 
Fig. 7.  Detection of the ‘above’ Schema by Mutually Inhibiting Waves. 
Two 64x64 lattices of BvP units, LTR and LLM, are internally coupled and 
cross-coupled according to Eq. (2) and its symmetrical version, with 
r = r’ = 2.3, η = 0, k = .03, k’ = −.03. (a) Single wave fronts obtained by 
injecting a pulse input I = −.44 in TR and LM for 0 ≤ t < 2 (10 time steps 
dt = .2). (b) Multiple wave fronts obtained by applying the same input 
amplitude indefinitely. In both cases, no spike reaches the bottom of LTR. 

B. SKIZ Signature Detection with Complex Cells 
Border activity provides a simple categorization mecha-

nism but is generally not sufficient. Alone, it does not al-
low to distinguish among similar but nonoverlapping pro-
toschemas, such as the ones in Fig. 8. This is where the 
properties of the SKIZ can help. For example, the concave 
or convex shape of the SKIZ is able to separate (b) and (c). 
For (a) and (d), one should also take into account the flow 
velocity along the SKIZ (Blum, 1973). Indeed, the dynam-
ics of coupled spiking units (Fig. 6b) is richer than the 
morphological model (Fig. 6a) because it contains specific 
patterns of activity that are absent from a static geometric 
line. In particular, the wave fronts highlight a secondary 
flow of propagation along the SKIZ line, which travels 
away from the focal shock point with decreasing speed on 
either branch. The focal point (where the bright band is at 
its thinnest in Fig. 6b, t’ = 32) is the closest point to both 
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objects and constitutes a local optimum along the SKIZ. 
While a great variety of object pairs produce the same 
static SKIZ, the speed and direction of flow along the 
SKIZ vary with the objects’ relative curvature and prox-
imity to each other. For example, a vertical SKIZ segment 
flows outward between brackets facing their convex sides 
)|(, whereas it flows inward between reversed brackets (|). 
This refined information is revealed by wave propagation. 

 
Fig. 8.  Four Prototypical Horizontal Partition Schemas. In each case, TR 
(light gray) and LM (dark gray) are displayed with their SKIZ line 
(black). (a-c) English ‘above’. (b) Mixtec ‘siki’: LM is horizontally elon-
gated (Regier, 1996). (c) French ‘par-dessus’: TR is horizontally elon-
gated and covers LM. (d) English ‘on top of’: TR is in contact with LM. A 
simple border-based detection would give the same output in all cases. 

In order to detect the focal points and flow characteris-
tics (speed, direction) of the SKIZ, we propose in this 
model additional layers of detector neurons similar to the 
so-called “complex cells” of the visual system. These cells 
receive afferent contacts from local fields in the input layer 
and respond to segments of moving wave bands, with se-
lectivity to their orientation and direction. More precisely, 
the spiking neural network presented in Fig. 9 is a three-
tier architecture comprising: (a) two input layers, (b) two 
middle layers of orientation and direction-selective “D” 
cells, and (c) four top layers of coincidence “C” cells re-
sponding to specific pairwise combinations of D cells. 
(These are not literally cortical layers but could correspond 
to functionally distinct cortical areas.) As in the previous 
model, TR and LM are separated on two independent layers 
(Fig. 9a). In this particular setup, however, there is no 
cross-coupling between layers and the waves created by 
TR and LM do not actually interfere or collide. Rather, the 
regions where wave fronts coincide “vertically” (viewing 
layers LTR and LLM superimposed) are captured by higher 
feature cells in two direction-selective layers, DTR and DLM 
(Fig. 9b), and four coincidence-detection layers, C1…4 
(Fig. 9c). Layer DTR receives afferents only from LTR, and 
DLM only from LLM. Layers Ci are connected to both DTR 
and DLM through split receptive fields: half of the afferent 
connections of a C cell originate from a half-disc in DTR 
and the other half from its complementary half-disc in DLM. 

In the intermediate D layers, each point contains a fam-
ily of cells or “jet” similar to multiscale Gabor filters. 
Viewing the traveling waves in layers L as moving bars, 
each D cell is sensitive to a combination of bar width λ, 
speed s, orientation θ and direction of movement φ. In the 
simple wave dynamics of the L layers, λ and s are ap-
proximately uniform. Therefore, a jet of D cells is in fact 
single-scale and indexed by one parameter θ = 0…2π, with 
the convention that φ = θ + π/2. Typically, 8 cells with 
orientations θ = kπ/4 are sufficient. Each sublayer DTR(θ) 
thus detects a portion of the traveling wave in LTR (same 

with LM). Realistic neurobiological architectures generally 
implement direction-selectivity using inhibitory cells and 
transmission delays. In our simplified model, a D(θ) cell is 
a “cylindrical” filter, i.e., a temporal stack of discs contain-
ing a moving bar at angle θ (Fig. 9b, center of D layers): it 
sums potentials from afferent L-layer spikes spatially and 
temporally, and fires itself a spike above some threshold. 

 
Fig. 9.  SKIZ Detection in a Three-Tier Spiking Neural Network Archi-
tecture. (a) Input layers show single traveling waves as in Fig. 7a, except 
that there is no cross-coupling and potentials are thresholded to retain 
only the spikes u < 0. (b) Orientation and direction-selective cells. Each D 
layer is shown as 8 sublayers (smaller squares) of cells selective to orien-
tation θ = kπ/4, with k = 8…1 from the top, clockwise. (c) Pairwise coin-
cidence cells. Each cell in C1(θ) is connected to a half-disc neighborhood 
in DTR(θ) and its complementary half-disc in DLM(θ - π), rotated at angle 
θ. For example: a cell in C1(0) (illustrated by the icon on the right of C1) 
receives afferents from a horizontal bar of DTR(0) cells in the lower half of 
its receptive field, and a bar of DLM(π) cells in the upper half. Same for 
C2(0), swapping TR/LM and upper/lower. Similarly, C3(θ) cells are half-
connected to DTR(θ) and to DLM(θ - π/2), with orthogonal bars (swapping 
TR/LM for C4). The net output is sparse activity confined to C1(π), C2(0), 
C3(3π/4) and C4(-π/4). We use only global Ci activity: in reality, C1 cells 
fire first when the two wave fronts meet, then C2 cells when they separate 
again, and finally C3 and C4 cells in rapid succession when the arms cross. 
This precise rhythm of Ci spikes could also be exploited in a finer model. 

Among the four top layers (Fig. 9c), C1 detects converg-
ing parallel wave fronts, C2 detects diverging parallel wave 
fronts, and C3 and C4 detect crossing perpendicular wave 
fronts. Like the D layers, each Ci layer is subdivided into 8 
orientation sublayers Ci(θ). Each cell in C1(θ) is connected 
to a half-disc neighborhood in DTR(θ) and the complemen-
tary half-disc in DLM(θ - π), where the half-disc separation 
is at angle θ. The net output of this hierarchical arrange-
ment is a signature of coincidence detection features pro-
viding a very sparse coding of the original spatial scene. 
The input ‘above’ scene is eventually reduced to a handful 
of active cells in a single orientation sublayer Ci(θ) for 
each Ci: C1(π), C2(0), C3(3π/4) and C4(-π/4) (Fig. 9c). 

In summary, the active cells in C1 and C2 reveal the fo-
cal point of the SKIZ, which is the primary information 
about the scene, while C3 and C4 reveal the outward flow 
on the SKIZ branches, which can be used to distinguish 
among similar but nonequivalent concepts. This sparse 
SKIZ signature is at the same time characteristic of the 
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spatial relationship and largely insensitive to shape details. 
For example: ‘below’ yields C1(0) and C2(π); ‘on top of’ 
(Fig. 8d) yields C2(0) like ‘above’ but no C1 activity be-
cause TR and LM are contiguous (wave fronts can only 
separate at the contact point, not join); ‘par-dessus’ with a 
convex SKIZ facing up (Fig. 8c) yields C3(π) and C4(-π/2), 
etc. Note that the actual regions of Ci(θ) where cells are 
active (e.g., the location of the SKIZ branches in the south-
west and south-east quadrants of Fig. 8c) are sensitive to 
translation and therefore are not good invariant features. 

VI. DISCUSSION 
We have proposed a dynamical approach to cognitive 

linguistics drawing from morphological CA and spiking 
neural networks. We suggest that spatial semantic catego-
rization can be supported by an expansion-based dynamics, 
such as activity diffusion or wave propagation. Admit-
tedly, the few results we have presented here are not par-
ticularly surprising given the relative simplicity and artifi-
ciality of the models. However, we hope that this prelimi-
nary study will be a starting point for more efficient or 
plausible network architectures exploring the interface 
between high-level vision and symbolic knowledge. 

A. Future Work 
1)  Wave Dynamics and Scene Database: We want to 

conduct a more systematic investigation of the morphody-
namical routines and their link with protosemantic classes. 
Similarly to Regier (1996), a database of schematic im-
age/label pairs representing a broad cross-linguistic variety 
of spatial elements could be used to assess the level of in-
variance of the singularities and their robustness to noise. 

2) Real Images and Low-Level Vision: Currently, our 
primary material consists of presegmented schematic im-
ages. It could be extended to real-world examples by using 
low-level image processing techniques based on edge con-
tiguity and texture. Segmentation models such as nonlinear 
diffusion (Whitaker, 1993), variational boundary/domain 
optimization (Mumford & Shah, 1989) or temporal phase 
tagging (König & Schillen, 1991) have proven that shapes 
can be separated from the background in a bottom-up way 
without prior knowledge, if the scene is not too cluttered. 

3) Learning the Semantics from the Protosemantics: 
Semantic classes are intrinsically fuzzy: as TR moves 
around LM and their SKIZ rotates, when is TR no longer 
‘above’ but ‘beside’ or ‘below’ LM? Different languages 
also divide space differently: for example, ‘on’ translates 
in German either as ‘auf’ (top contact) or as ‘an’ (side con-
tact). Intra- and cross-linguistic boundaries could be 
learned using known image/response pairs. Our morpho-
dynamical routines already considerably reduce the dimen-
sionality of the input space by mapping images to a few 
singularities. In a final step, the same universal pool of 
protosemantic features could be combined in various ways 
to form full-fledged semantic classes using statistical esti-
mation methods. What is critical, however, is how well the 
elementary routines map the examples into optimally sepa-

rable clusters (Geman, Bienenstock, & Doursat, 1992). 
Applying learning methods directly to the original image 
space or to irrelevant features would evidently be fruitless. 

4) Verb Processes and Bifurcation Events: Another im-
portant challenge is the temporal processes and events of 
verbal scenarios. The singularities created by fast wave 
activity can themselves evolve on a slower timescale 
(Fig. 4). Short animated clips of moving TR’s and LM’s 
could be categorized into archetypal verbs, e.g., ‘give’ or 
‘push’, based on an important family of psychological ex-
periments about the perception of causality and animacy. 
Landmark studies (see Scholl & Tremoulet, 2000) have 
shown that movies involving simple geometrical figures 
were spontaneously interpreted by human subjects as in-
tentional actions. For example, a few triangles and circles 
moving around a square strongly tend to elicit verbal 
statements such as ‘chase’, ‘hide’, ‘attack’, ‘protect’, etc. 

5) Complex Scenes: After treating single schemas sepa-
rately, we also want to show how multiple schemas can be 
evoked simultaneously and assembled to form complex 
scenarios. This addresses the compositionality of semantic 
concepts, or “binding problem” (von der Malsburg, 1981). 
Our ultimate goal is to explain mental imagery in terms of 
structured compositions of morphodynamical routines. 

B. Original Points of this Proposal 
1) Bringing Large-Scale Dynamical Systems to Cogni-

tive Linguistics: Despite their deep insights into the con-
ceptual and spatial organization of language, cognitive 
grammars still lack mathematical and computational foun-
dations. Our project is among few attempts to import spa-
tiotemporal connectionist models into linguistics and spa-
tial cognition. Other authors (e.g. Regier, 1996; Shastri & 
Ajjanagadde, 1993) have pursued the same objectives, but 
use small “hybrid” artificial neural networks, where nodes 
already carry geometrical or symbolic features. We work at 
the fine-grained level of numerous spatially arranged units. 

2) Addressing Semantics in CA and Neural Networks: 
Conversely, our work is also an original proposal to apply 
large-scale lattices of cellular automata or neurons to high-
level semantic feature extraction. These bottom-up systems 
are usually exploited for low-level image processing or 
visual cortical modeling, or both—e.g., Pulse-Coupled 
Neural Networks (Johnson, 1994) or Cellular Neural Net-
works (Chua & Roska, 1998). Shock graphs and medial 
axes are also used in computer vision models of object 
recognition (Siddiqi et al., 1999; Zhu & Yuille, 1996), but 
with the concern to preserve and match object shapes, not 
erase them. Adamatzky (2002) also envisions collision-
based wave dynamics in excitable media, but as a mecha-
nism of universal computing based on logic gates. 

3) Advocating Pattern Formation in Neural Modeling: 
Self-organized, emergent processes of pattern formation or 
morphogenesis are ubiquitous in nature (stripes, spots, 
branches, etc.). As a complex system, the brain produces 
“cognitive forms”, too, but instead of spatial arrangements 
of molecules or cells, these forms are made of spatiotem-
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poral patterns of neural activities (synchronization, corre-
lations, waves, etc.). In contrast to other biological do-
mains, however, pattern formation in large-scale neural 
networks has attracted only few authors (e.g. Ermentrout, 
1998). This is probably because precise rhythms involving 
a large number of neurons are still experimentally difficult 
to detect, hence not yet proven to play a central role. 

4) Suggesting Wave Dynamics in Neural Organization: 
Indeed, fast rhythmic activity on the 1-ms timescale, in 
random (Bienenstock, 1995), regular (Milton, Chu, & 
Cowan, 1993) or small-world (Izhikevich, Gally, & Edel-
man, 2004) networks, has been much less explored than 
pure synchronization, when addressing segmentation or the 
“binding problem” (see review in Roskies, 1999). Along 
with Bienenstock (1995, 1996), we contend that waves 
open a richer space of temporal coding suitable for general 
mesoscopic neural modeling, i.e., the intermediate level of 
organization between microscopic neural activities and 
macroscopic representations. At one end (AI), high-level 
formal models manipulate symbols and composition rules 
but do not address their fine-grain internal structure. At the 
other end (neural networks), low-level dynamical models 
study the self-organization of neural activity but their 
emergent objects (attractor cell assemblies or blobs) still 
lack structural complexity and compositionality (Fodor & 
Pylyshyn, 1998). Waves and other complex spatiotemporal 
patterns could provide the missing link bridging the gap 
between these two levels. Furthermore, our hypothesis is 
that this mesoscopic level corresponds to the central con-
ceptual level postulated by cognitive linguistics. 
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